Childs, L. N. Osaka J. Math. 4 (1967), 173-175

A NOTE ON THE FIXED RING OF A GALOIS EXTENSION

L.N. CHILDS¹⁾

(Received October 7, 1966)

M. Harada [5] showed that if A is a central separable C-algebra and a Galois extension of B with group G, and B is a separable $B \cap C$ -algebra, then the order of the subgroup of G which leaves C fixed is a unit in C. In this note we obtain a partial converse to this result (Theorem 4 below). The method of approach is to use the modules J_{σ} associated with automorphisms σ of A. These modules were discovered in [8] and their connection with Galois extensions was recognized in [7].

The author would like to thank the referee for pointing out the reference [4] for the proof of Proposition 2.

We begin by recalling the definition of J_{σ} :

DEFINITION. Let A be a central separable C-algebra and σ a ring automorphism of A. Then

 $J_{\sigma} = \{x \text{ in } A \mid \sigma(a) x = xa \text{ for all } a \text{ in } A\}.$

It was shown in [8] that if σ is a *C*-algebra automorphism of *A*, then J_{σ} is a rank one projective *C*-module. The following useful fact, noted for Galois extensions in [7], can also be extracted from [8]: (\otimes means \otimes_c)

Lemma 1. Let A be a central separable C-algebra, and σ , τ be two C-algebra automorphisms of A. Then the map κ : $J_{\sigma} \otimes J_{\tau} \rightarrow J_{\sigma\tau}$ given by $\kappa(x \otimes y) = xy$, x in J_{σ} , y in J_{τ} , is an isomorphism.

It is easy to see that the image of κ is in $J_{\sigma\tau}$, and [8], Lemma 5, shows that there exists an isomorphism from $J_{\sigma} \otimes J_{\tau}$ onto $J_{\sigma\tau}$; the proof of Lemma 1 consists, first, in verifying that the sequence of isomorphisms connecting $A \otimes J_{\sigma} \otimes J_{\tau}$ and $A \otimes J_{\sigma\tau}$ on the last line of page 1112 of [8] sends $a \otimes x \otimes y$ to $a \otimes xy$, and then, using this fact, noticing that the sequence of isomorphisms on the bottom of page 1111 of [8] which gives the isomorphism of $J_{\sigma} \otimes J_{\tau}$ with $J_{\sigma\tau}$ is

¹⁾ This material is adapted from the author's Ph. D. thesis at Cornell University. The author would like to thank Professor Alex Rosenberg for his advice and encouragement.

 κ . We omit the tedious details.

Proposition 2. Let A be a central separable C-algebra and G a finite group of C-algebra automorphisms of A. Let $N=\sum J_{\sigma}$, and suppose that as a C-module, the sum is direct. Then N is a separable C-algebra if |G|, the order of G, is a unit of C.

Proof. Since the kernel of the map from N^e to N given by $x \otimes y \to \otimes xy$ is a finitely generated C-module, we have by [1], III, 2.10 that N is a separable C-algebra if $N \otimes C_m = N_m$ is a separable C_m -algebra for all maximal ideals m of C. Moreover, if G' is G acting on $A \otimes C_m = A_m$ via $\sigma' = \sigma \otimes 1$, and $N' = \Sigma$ $\oplus J_{\sigma'}$, where $J_{\sigma'} = \{x' \text{ in } A_m \mid \sigma'(y')x' = x'y' \text{ for all } y' \text{ in } A_m\}$, then $N' = N_m$: in fact $J_{\sigma'} = (J_{\sigma})_m$. For

$$(J_{\sigma})_{m} = \left\{ \frac{x}{s} \text{ in } A_{m} | \sigma(y) x = xy \text{ for all } y \text{ in } A \right\}, \text{ and}$$
$$J_{\sigma'} = \left\{ \frac{x}{s} \text{ in } A_{m} | \exists t \text{ in } C\text{-}m \text{ so that } t(\sigma(y) x - xy) = 0 \right\}$$

for all y in A,

so clearly $(J_{\sigma})_m \subseteq J_{\sigma'}$. On the other hand, if $\frac{x}{s} \in J_{\sigma'}$, let y_1, \dots, y_r generate *A* over *C*, t_i be in *C*-*m* such that $t_i(\sigma(y_i)x - xy_i) = 0$, and $t = \prod_{1}^{r} t_i$. Then $tx \in J_{\sigma}$, so $\frac{x}{s} = \frac{tx}{ts}$ is in $(J_{\sigma})_m$. Now, since |G| is a unit of *C* if |G| is a unit of C_m for all *m*, it suffices to prove the theorem assuming *C* is local.

Assuming C local, $\sigma \in G$ is inner, conjugation by an element u, and $J_{\sigma}=Cu_{\sigma}$ ([8]). Since $Cu_{\sigma}\cdot Cu_{\tau}=Cu_{\sigma\tau}$, $u_{\sigma}u_{\tau}=a_{\sigma,\tau}$, $u_{\sigma\tau}$, $a_{\sigma,\tau}$ a unit of C, so $N=\Sigma\oplus Cu_{\sigma}$ is a twisted group ring (i.e. a crossed product with factor set in the units of C, and with G acting trivially on C). Thus we may apply [4], Lemma 4, to obtain that N is separable over C if |G| is a unit of C, as desired.

Lemma 3. If A is a central separable C-algebra, G is a finite group of Calgebra automorphisms of A, and $N=\Sigma J_{\sigma}$, then the fixed ring of G acting on A, A^{G} , is equal to A^{N} , the commutator of N in A.

Proof. If x is in A^N then x is in $A^{J_{\sigma}}$ for all σ in G, so $xy_{\sigma}=y_{\sigma}x$ for all y_{σ} in J_{σ} . But since for all x in A, y_{σ} in J_{σ} , we have $\sigma(x)y_{\sigma}=y_{\sigma}x$, it follows that if x is in A^N , $(\sigma(x)-x)y_{\sigma}=0$ for all y_{σ} in J_{σ} and all σ in G. By Lemma 1 $J_{\sigma} \cdot J_{\sigma^{-1}}=C$, so there exist $y_{\sigma,\nu}$ in J_{σ} , and $z_{\sigma,\nu}$ in $J_{\sigma^{-1}}$ so that $\sum_{\nu} y_{\sigma,\nu} z_{\sigma,\nu}=1$. Thus $0=\sum_{\nu} (\sigma(x)-x)y_{\sigma,\nu} z_{\sigma,\nu}=(\sigma(x)-x)\cdot 1$, so x is in A^G . The converse is trivial.

174

Now, using Kanzaki's result ([7], Proposition 1) which states that if A is a Galois extension of B with group G, then $N=\Sigma \oplus J_{\sigma}$, we obtain our main result.

Theorem 4. Let A be a ring whose center C has no idempotents but 0 and 1. Suppose A is a Galois extension of B with group G, and A is separable over $B \cap C$. Let H be the subgroup consisting of all elements of G which are the identity on C. Then if the order of H is a unit in C, B is a separable $B \cap C$ -algebra.

Proof. If A is a Galois extension of B with group G, then directly from the definition of Galois extension A is a Galois extension of A^H , the fixed ring of H, with group H. Thus $N=\Sigma \oplus J_{\sigma}$ by [7], Prop. 1. By Proposition 2, N is a separable C-algebra, so by Lemma 3 and [6], Theorem 2, A^H is separable over C.

Now *H* is a normal subgroup of *G*, *G* restricted to A^H is isomorphic to G/H, as is *G* restricted to *C*, and $C^c = B \cap C$. Since *A* is assumed separable over $B \cap C$, the center *C* of *A* is separable over $B \cap C$, so ([3], 1.3) *C* is a Galois extension of $B \cap C$ with group G/H. Defining the action of G/H on $B \otimes_{B \cap C} C$ via $\sigma(b \otimes c) = b \otimes \sigma(c)$, $B \otimes_{B \cap C} C$ becomes a Galois extension of *B* with group G/H, just as in [3], 1.7. Also A^H is a Galois extension of *B* with group G/H. The map from $B \otimes_{B \cap C} C$ to A^H given by $b \otimes c \rightarrow bc$ is a G/H-module and *B*-algebra map, so by a trivial extension of [3], 3.4, it is an isomorphism: $B \otimes_{B \cap C} C \cong A^H$. Thus, since $B \cap C$ is a $B \cap C$ -direct summand of *C* by [3], 1.6, *B* is a *B*-direct summand of A^H , so is separable over $B \cap C$ by [2], IX, 7.1 and the fact that A^H is separable over $B \cap C$. This completes the proof.

NORTHWESTERN UNIVERSITY

L.N. CHILDS

Bibliography

- [1] H. Bass: Topics in Algebraic K-Theory, notes of lectures given at the Tata Institute, Bombay, 1965–66.
- [2] H. Cartan and S. Eilenberg: Homological Algebra, Princeton, 1956.
- [3] S. Chase, D. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15-33.
- [4] M. Harada: Some criteria for hereditarity of crossed products, Osaka J. Math. 1 (1964), 69-80.
- [6] T. Kanzaki: On commutor rings and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103-115.
- [8] A. Rosenberg and D. Zelinsky: Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109-1117.