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SO(r)-COBORDISM AND EMBEDDING OF 4-MANIFOLDS*
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Introduction. Let M be a C°°-manifold, which we assume to be compact
and orientable. We shall call M an *SO(r)-manifold if the structure group of
the stable normal bundle of M, which is the stable special orthogonal group
SO, is reducible to a subgroup SO(r). Two n-dimensional closed *SΌ(r)-mani-
folds Mx and M2 are called to be <SΌ(r)-cobordant if there exists an (τz+l)-di-
mensional iSO(r)-manifold W whose boundary is union of M1 and — M2 {—M2

denotes M2 with the reversed orientation) and the restriction of the 5O(r)-struc-
ture of W to boundary induces the given structure of M1 and M2. We can
define the SΌ(r)-cobordism group, which we denote by Ωn(SO(r)). In his
paper [5], Liulevicius has calculated the group Ωn(SO(r)) for r=2 and n^8.

In this note, we shall apply Liulevicius'result to the embedding of 4-mani-
fold in Euclidean space. Our main result is the following:

Theorem (5.1) Let M be an orientable 4-manifold which is oriented cobor-
dant to zero. If M is immersible in R6, then M is embeddable in R\

As a corollary to this theorem, we have

Theorem (5.2) Any simply connected 4-manifold which is oriented cobor-
dant to zero is embeddable in R7.

Throughout this note, we assume that a manifold is compact, orientable and
of the class C°°.

The author wishes to express his hearty thanks to Professors M. Adachi
and Y. Shikata for their kind discussions and valuable suggestions.

1. *SΌ(r)-cobordism group

Let M be an w-manifold and embedded in a Euclidean (ra+iV)-space with
normal bundle v. If the structure group of v is reducible to a subgroup SO(r),
then M is called an SO(r)-manifold. More precisely, by the theorem 9.4 in [6],
the structure group of v is reducible to SO(r) if and only if there exists a map
/: M->Έ so that the diagram
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is commutative, where E is the fibre bundle associated to the universal iV-plane
bundle with SO(N)/SO(r) as fibre and fv is the classifying map for v. Then
we call the pair (M, /) an SO(r)-manifold and / an SO(r)-structure. We shall
identify an SO(r)-structure with those induced from it by suspension. A
homotopy class of / determines uniquely an *SΌ(r)-structure on M.

The following lemma is well known.

Lemma (1.1) (1) If a manifold W with boundary bW admits an Sub-
structure f, then its boundary bW also admits an SO(r)-structure, i.e. fjbW.
(2) If two manifolds Wx and W2 admit SO(r)-structures f1 and f2 respectively
which induce the same structure on the common boundary bW1=bW2, then the
manifold W obtained from the union of Wλ and W2 by identifying the boundary
also admits an SO{r)-structure, i.e. /iU/2.

An //-dimensional /SΌ(r)-manifold (M, f) without boundary is called to be
5Ό(r)-cobordant to zero if there is an (τz+l)-dimensional 5Ό(r)-manifold
(W, F) such that bW=M and FjbW=f. Two SO(r)-manifolds (Miy f) and
(M2yf2) are called to be *SΌ(r)-cobordant if the disjoint union (M2 U —M19 fλ U Q
is 5Ό(r)-cobordant to zero.

As a corollary to lemma (1.1), we have

Corollary. The SO(r)-cobordism is an equivalence relation.
Let [M, f] denote the *SΌ(r)-cobordism calss of (M, /). We define an

addition of two classes by [M1,/J + [M2,/J = [M 1UM 2,/ 1U/J, where Mx\jM2

denotes the disjoint union of Mx and M2. By this addition, the set of all co-
bordism classes admits an abelian group structure. We denote this group by
ίln(SO(r)).

2. Homotopy interpretation of the group Ωn(SO(r))

In this section, we shall prove the following

Proposition (2.1) We have an isomorphism

nn(SO(r)) ^ πN+n{S"-rMSO{r))

where MSO(r) is the Thorn space of the universal r-plane bundle and SN~rMSO(r)
the {N-r)-fold suspension of MSO(r).

We shall first prove the stability of homotopy group of SN~rMSO(r); the
suspension homomorphism



£O(r)-COBORDISM AND EMBEDDING OF 4-MANIFOLDS 135

S: πn+N(S»-'MSO(r)) - πn+i+N{S^

is an isomorphism for n-\-\f^N. In fact, since MSO(r) is (r— l)-connected, the
suspension homomorphism S: πj(MSO(r))-^πJ+1(SMSO(r)) is isomorphic for
j^2r— 1, by a theorem of Blaker-Massey. Thus SMSO(r) is r-connected.
Similarly it is known that SN~r(MSO(r)) is (N— l)-connected. By the theorem
of Blaker-Massey,

S: πj(SN-rMSO(r)) -> πJ+1(SN-r+1MSO(r))

is an isomorphism for j^2N—l. This implies that

is isomorphic for n-\-l <̂ iV.

Now we shall construct an isomorphism Ωn(SO(r))^πn+N{SN~rMSO(r)).
Suppose that M be a closed //-dimensional SO(r)-manifold. Embed Λf in
Sn+N with normal bundle (we consider normal disk bundle) v: A-+M, which
we assume to admit an iSΌ(r)-structure /. There is a bundle map

A - i - E(VN)

-I I
M—H> BSO(N)

J V

where 77̂  denotes the universal iV-disk bundle. Since ẑ  admits an S u b -
structure, there exists a map g: M-^BSO(r) such that fv = iogy where 1:
BSO(r)->BSO(N) is the inclusion map. Thus we have a commutative
diagram of bundle maps

A -^+ E(Vr &€"->•)• • E(VN)

I I J
M >BSO(r) > BSO(N)

g 1

and an induced map A/Λ^SN~rMSO(r), where A denotes the associated
sphere bundle of A. Then there exists the composite map F given by

F: Sn+N -* Sn+NISn+N-mt A^A/A — SN~rMSO(r).

Thus to an 5Ό(r)-manifold corresponds a map F: 5B+Λr-> SN-rMSO(r). Con-
versely if a map F: Sn+N-^SN-rMSO(r) is given, we can find a map F': Sn+N

^SN~rMSO(r) so that
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(1) Fr is a smooth map homotopic to F
and

(2) F' is ί-regular on BSO(r).

Then F'1 (BSO(r)) is an ^-dimensional smooth submanifold of Sn+N with nor-
mal bundle v@SN~r. These correspondence induces an isomorphism between
Ωn(SO(r)) and πn+N (SN-rMSO(r)). (For the details, see [7])

Next we shall prove the following

Proposition (2.2) The natural homomorphism Ωw(SO(r))->ΩM is ίsomorphic

forn+ί^r.

Proof. To prove the proposition, we need the following lemmas.

Lemma (2.1) The homomorphism πj(SMSO(r))^πj(MSO(r+l)) induced
by the inclusion SMSO(r)->MSO(r-{-l) is isomorphic for j<*2r.

For the proof, see [1].

Lemma (2.2) The iterated suspension homomorphism SN~r~1: πj(SMSO(r))
-*πJ+N_r_1(SN~rMSO(r)) is isomorphic

Proof. This is a straightforward application of the theorem of Blaker-
Massey.

Now we consider the diagram

πj(SMSO(r)) > πj(MSO(r+l)

I SN~r-i 1 SN-r-i

Since the vertical and top horizontal homomorphism are isomorphic
we have

Thus we have

πn+N(S»-"MSO(r)) « πn+N(S^

for n+l^r. In other words, if n+\^r, Ωn(SO(r))^CLn(SO(r+l)).

3. The group ΩΛ(SO(2))

In section 2, we have shown that Ωn(SO(2))^πn+N{SN-2MSO(2)) (N is
sufficiently large integer). R. Thorn has shown that MSO{2) can be identified
with the infinite dimensional complex projective space CP°°. For a space X,
let πs

m(X) denote the m-th stable homotopy group of X.
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In his paper [5], Liulevicius has obtained the following results;

m 1 2 3 4 5 6 7 8

πl(CP° 0 Z 0 Z

By definition, πs

m+2(CP°°) is nothing else than Ωm(SO(2)).

4. The characteristic numbers

Let M be a closed SO(r)-manifold with dimension n and/ the classifying map

for the normal bundle; / : M->BSO(r)). f induces a homomorphism / * :

Hn(BSO(r)); Q)^Hn(M; Q). For any element χ(=Hn(BSO(r); Q\ we call

/#(x) [M] ̂  Q the normal characteristic number corresponding to x, where [M]

is the fundamental class of M.

We have the commutative diagram

Hn+r+N(SNMSO(r); Q)-Q Hn+r+N(T(M); Q) > Hn+r+N(Sn+r+N; Q)

I
H»(BSO(r); Q)

where T(M) denotes the Thorn space of the normal bundle of M in Sn+r+N.

The isomorphism πn+r+N(SNMSO(r))® Q^Hn+r+N(SNMSO(r); Q) implies

that if / : Sn+r+N-^SNMSO(r) represents a class in the free part of πn+r+N

χ(SNMSO(r)), /•: Hn+r+N(SNMSO(r); Q)->Hn+r+N(Sn+r+N Q) is a zero

homomorphism only if f is homotopic to zero. Hence f* is a zero homomor-

phism only if / i s homotopic to zero. In other words, if all normal characteristic

numbers of M are zero, then the cobordism class of M is zero in Ωn(SO(r))/

torsion subgroup. It is easy to see that if two ASO(r)-manifolds are SO(r)-

cobordant, then they have the same characteristic number. Thus we have

proved.

Theorem (4.1) The class of Ωn(SO(r)) I torsion subgroup is completely

determined by the normal Euler and Pontrjagin numbers.

Corollary. The natural homomorphism Ω4(£Ό(2))-^Ω4 is monomorphic.

Proof. Since Ω4(5O(2)) has no torsion, for 4-manifold, the normal Euler

number completely determines *SΌ(2)-cobordism class. Suppose an SO(2)-

manifold M be oriented cobordant to zero. Then the Pontrjagin number

pλ[M\ is zero, and hence p1[M]=0. Since pί=Xly this implies that the normal

Euler 'number Xl[M]=0. Therefore M is SO(2)-cobordant to zero. This
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completes the proof.

5. Embedding of 4-manifolds

In this section, we shall consider the embeddability of closed 4-manifold

M in Euclidean 7-space R\

We know the following results about the embeddability of M.

(1) Any closed 4-manifold is embeddable in R8.

(2) Any closed 4-manifold M is embeddable in R7 almost differentaibly (i.e.

M-x is embeddable in R\ where x is a point of M) [2].

(3) Any orientable closed 4-manifold is embeddable in R7 piecewise linearly

[3].

In the following, we shall prove

Theorem (5.1) Let M be an orientable, closed 4-manifold which is oriented

cobordant to zero. If M is ίmmersίble in R6, then M is embeddable in R7.

Theorem (5.2) Let M be closed, simply connected and oriented cobordant to

zero. Then M is embeddable in R7.

In his paper [9], the author has proved the following result.

(4) Let M be a closed, simply connected and s-parallelizable 4-manifold.

Then M is embeddable in R6.

The proof of theorem (5.1).

Let (My f) be an //-dimensional *SΌ(2)-manifold with or without boundary.

We shall prove the following lemma.

Lemma (5.1) Suppose n^2. Then there exists an n-dimensional 50(2)-

manίfold (AT, /') such that

(1) Mr is simply connected,

and

(2) // M has boundary, then bM=bM' and f\bM=f \bM'.

Proof. Let a be a non-zero element of πx(M) represented by a map

g: Sλ-^M. Since the dimension of M is greater than 1 and M is orientable,

g is homotopic to an embedding g: Sλ^M with a trivial normal bundle, g

can be considered as a map

g: S'xD"-1 >M.

If WWΦφ, we may assume that g(S* xD"'1)cintM. Define an (τz+l)-manifold

W as follows

W=(Mx[0, l])ΌD2xDn-\

where D2xDnl is attached to Mxί by the embedding g: SιχDnl^M.
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By smoothing the corners, W admits a smooth structure (Compare Kervaire-
Milnor [4], p. 519). Clearly W has the homotopy type of MUD 2 . Then

otherwise.

We shall extend the given 5O(2)-structure on M over W. Consider the fol-
lowing diagram

M >BSO!N)

Λ
where E is the bundle associated to the universal iV-plane bundle with fibre
SO(N)/SO(2). Obstructions to the extending / over W are in H'(W> M\ πt^
X(VNN_2)). Since W{W, M)=0 for zφ2, there is only one obstruction in
H2(W, M; πλ(VNfN-2))> which is zero. Hence / is extendable over W.

Let M" be the component of bW different from M. Since W is an SO(2)-
manifold, M" is also an SΌ(2)-manifold. As well known,

where {a} is some subgroup of πx{M) containing α. After a finite number of
steps, we can obtain a manifold M' with the desired properties.

Now let M be a 4-manifold which is oriented cobordant to zero. By
corollary of theorem (4.1), M is 5O(2)-cobordant to zero. In other words, there
exists an 5O(2)-manifold W with dimension 5 whose boundary is M. By lemma
(5.1), we may suppose that W is simply connected. W is the double of W.
By lemma (1.1), W is also an 5O(2)-manifold, and by van Kampen theorem,
W is simply connected. The following theorem which is due to Hirsch [3]
implies that W—x is embeddable in R7 and hence M is embeddable in R7.

Theorem of Hirsch. Let M be a closed (m—1)-connected n-manifold,
2t^2m<^n, with a smooth triangulatton; let x be a point of M. If a neighbourhood
of the (n-m)'skelton can be immersed in Rq for q^2n—2m-\-ί, then M-x can be
embedded in R9.

A 4-manifold is immersible in R6 if and only if it is an SO(2)-manifold.
This completes the proof of theorem (5.1).

The proof of theorem (5.2).
To obtain the theorem, it is sufficient to show that any closed simply con-

nected M which is oriented cobordant to zero is immersible in R6. We can
find a 5-manifoM W whose boundary is M. By a theorem of Wall [8], we
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may suppose that W has the homotopy type of a bouquet of 2-spheres. Such a

5-manifold is immersible in R\ In fact, let W be embedded in R5+N

y where

N is sufficiently large, with normal bundle v and v the bundle associated to

v with VN N_2 as fibre. Then V admits a cross section if and only if W can be

immersed in R\ Since H*(W)=0 for />3, there is no obstruction to the

existence of cross section of V. Since W is immersible in R\ its boundary is

immersible in R6. The proof of theorem is concluded.

REMARK. The result of theorem (5.2) is best possible. In fact, the total

space of non-trivial 2-sρhere bundle over 2-sphere can not be embedded in

R6, because it has non-vanishing 2nd Stiefel-Whitney class.
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