SO(r)-COBORDISM AND EMBEDDING OF 4-MANIFOLDS*

TSUYOSHI WATABE

(Received December 15, 1966)

Introduction. Let M be a C^{∞} -manifold, which we assume to be compact and orientable. We shall call M an SO(r)-manifold if the structure group of the stable normal bundle of M, which is the stable special orthogonal group SO, is reducible to a subgroup SO(r). Two n-dimensional closed SO(r)-manifolds M_1 and M_2 are called to be SO(r)-cobordant if there exists an (n+1)-dimensional SO(r)-manifold W whose boundary is union of M_1 and $-M_2$ $(-M_2$ denotes M_2 with the reversed orientation) and the restriction of the SO(r)-structure of W to boundary induces the given structure of M_1 and M_2 . We can define the SO(r)-cobordism group, which we denote by $\Omega_n(SO(r))$. In his paper [5], Liulevicius has calculated the group $\Omega_n(SO(r))$ for r=2 and $n \leq 8$.

In this note, we shall apply Liulevicius' result to the embedding of 4-manifold in Euclidean space. Our main result is the following:

Theorem (5.1) Let M be an orientable 4-manifold which is oriented cobordant to zero. If M is immersible in \mathbb{R}^6 , then M is embeddable in \mathbb{R}^7 .

As a corollary to this theorem, we have

Theorem (5.2) Any simply connected 4-manifold which is oriented cobordant to zero is embeddable in R^{7} .

Throughout this note, we assume that a manifold is compact, orientable and of the class C^{∞} .

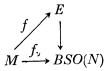
The author wishes to express his hearty thanks to Professors M. Adachi and Y. Shikata for their kind discussions and valuable suggestions.

1. SO(r)-cobordism group

Let *M* be an *n*-manifold and embedded in a Euclidean (n+N)-space with normal bundle ν . If the structure group of ν is reducible to a subgroup SO(r), then *M* is called an SO(r)-manifold. More precisely, by the theorem 9.4 in [6], the structure group of ν is reducible to SO(r) if and only if there exists a map $f: M \rightarrow E$ so that the diagram

^{*} This paper was partially supported by Yukawa Fellowship.

T. WATABE



is commutative, where E is the fibre bundle associated to the universal N-plane bundle with SO(N)/SO(r) as fibre and f_{ν} is the classifying map for ν . Then we call the pair (M, f) an SO(r)-manifold and f an SO(r)-structure. We shall identify an SO(r)-structure with those induced from it by suspension. A homotopy class of f determines uniquely an SO(r)-structure on M.

The following lemma is well known.

Lemma (1.1) (1) If a manifold W with boundary bW admits an SO(r)structure f, then its boundary bW also admits an SO(r)-structure, i.e. f/bW. (2) If two manifolds W_1 and W_2 admit SO(r)-structures f_1 and f_2 respectively which induce the same structure on the common boundary $bW_1=bW_2$, then the manifold W obtained from the union of W_1 and W_2 by identifying the boundary also admits an SO(r)-structure, i.e. $f_1 \cup f_2$.

An *n*-dimensional SO(r)-manifold (M, f) without boundary is called to be SO(r)-cobordant to zero if there is an (n+1)-dimensional SO(r)-manifold (W, F) such that bW=M and F/bW=f. Two SO(r)-manifolds (M_1, f_1) and (M_2, f_2) are called to be SO(r)-cobordant if the disjoint union $(M_2 \cup -M_1, f_1 \cup f_2)$ is SO(r)-cobordant to zero.

As a corollary to lemma (1.1), we have

Corollary. The SO(r)-cobordism is an equivalence relation.

Let [M, f] denote the SO(r)-cobordism calss of (M, f). We define an addition of two classes by $[M_1, f_1] + [M_2, f_2] = [M_1 \cup M_2, f_1 \cup f_2]$, where $M_1 \cup M_2$ denotes the disjoint union of M_1 and M_2 . By this addition, the set of all cobordism classes admits an abelian group structure. We denote this group by $\Omega_n(SO(r))$.

2. Homotopy interpretation of the group $\Omega_n(SO(r))$

In this section, we shall prove the following

Proposition (2.1) We have an isomorphism

$$\Omega_n(SO(r)) \simeq \pi_{N+n}(S^{N-r}MSO(r)) \qquad (N \ge n+2)$$

where MSO(r) is the Thom space of the universal r-plane bundle and $S^{N-r}MSO(r)$ the (N-r)-fold suspension of MSO(r).

We shall first prove the stability of homotopy group of $S^{N-r}MSO(r)$; the suspension homomorphism

SO(r)-cobordism and Embedding of 4-manifolds

$$S: \pi_{n+N}(S^{N-r}MSO(r)) \to \pi_{n+1+N}(S^{N+1-r}MSO(r))$$

is an isomorphism for $n+1 \leq N$. In fact, since MSO(r) is (r-1)-connected, the suspension homomorphism $S: \pi_j(MSO(r)) \rightarrow \pi_{j+1}(SMSO(r))$ is isomorphic for $j \leq 2r-1$, by a theorem of Blaker-Massey. Thus SMSO(r) is r-connected. Similarly it is known that $S^{N-r}(MSO(r))$ is (N-1)-connected. By the theorem of Blaker-Massey,

$$S: \pi_j(S^{N-r}MSO(r)) \to \pi_{j+1}(S^{N-r+1}MSO(r))$$

is an isomorphism for $j \leq 2N-1$. This implies that

$$S: \pi_{n+N}(S^{N-r}MSO(r)) \to \pi_{n+N+1}(S^{N-r+1}MSO(r))$$

is isomorphic for $n+1 \leq N$.

Now we shall construct an isomorphism $\Omega_n(SO(r)) \cong \pi_{n+N}(S^{N-r}MSO(r))$. Suppose that M be a closed *n*-dimensional SO(r)-manifold. Embed M in S^{n+N} with normal bundle (we consider normal disk bundle) $\nu: A \to M$, which we assume to admit an SO(r)-structure f. There is a bundle map

$$\begin{array}{c} A \xrightarrow{\bar{f}_{\nu}} E(\eta_N) \\ \nu \downarrow \qquad \qquad \downarrow \\ M \xrightarrow{f_{\nu}} BSO(N) \end{array}$$

where η_N denotes the universal N-disk bundle. Since ν admits an SO(r)structure, there exists a map $g: M \to BSO(r)$ such that $f_{\nu} = i \circ g$, where $i: BSO(r) \to BSO(N)$ is the inclusion map. Thus we have a commutative
diagram of bundle maps

$$A \xrightarrow{\overline{g}} E(\eta_r \oplus \mathcal{E}^{N-r}) \xrightarrow{\overline{i}} E(\eta_N)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$M \xrightarrow{g} BSO(r) \xrightarrow{i} BSO(N)$$

and an induced map $A/\dot{A} \rightarrow S^{N-r}MSO(r)$, where \dot{A} denotes the associated sphere bundle of A. Then there exists the composite map F given by

$$F: S^{n+N} \to S^{n+N}/S^{n+N} - \operatorname{int} A \cong A/\dot{A} \to S^{N-r}MSO(r)$$

Thus to an SO(r)-manifold corresponds a map $F: S^{n+N} \to S^{N-r}MSO(r)$. Conversely if a map $F: S^{n+N} \to S^{N-r}MSO(r)$ is given, we can find a map $F': S^{n+N} \to S^{N-r}MSO(r)$ so that

(1) F' is a smooth map homotopic to F

and

(2) F' is *t*-regular on BSO(r).

Then $F'^{-1}(BSO(r))$ is an *n*-dimensional smooth submanifold of S^{n+N} with normal bundle $\nu \oplus \varepsilon^{N-r}$. These correspondence induces an isomorphism between $\Omega_n(SO(r))$ and $\pi_{n+N}(S^{N-r}MSO(r))$. (For the details, see [7])

Next we shall prove the following

Proposition (2.2) The natural homomorphism $\Omega_n(SO(r)) \rightarrow \Omega_n$ is isomorphic for $n+1 \leq r$.

Proof. To prove the proposition, we need the following lemmas.

Lemma (2.1) The homomorphism $\pi_j(SMSO(r)) \rightarrow \pi_j(MSO(r+1))$ induced by the inclusion $SMSO(r) \rightarrow MSO(r+1)$ is isomorphic for $j \leq 2r$.

For the proof, see [1].

Lemma (2.2) The iterated suspension homomorphism S^{N-r-1} : $\pi_j(SMSO(r))$ $\rightarrow \pi_{j+N-r-1}(S^{N-r}MSO(r))$ is isomorphic for $j \leq 2r+1$.

Proof. This is a straightforward application of the theorem of Blaker-Massey.

Now we consider the diagram

$$\pi_{j}(SMSO(r)) \longrightarrow \pi_{j}(MSO(r+1))$$

$$\downarrow S^{N-r-1} \qquad \qquad \downarrow S^{N-r-1}$$

$$\pi_{j+N-r-1}(S^{N-r}MSO(r)) \longrightarrow \pi_{j+N-r-1}(S^{N-r-1}MSO(r+1))$$

Since the vertical and top horizontal homomorphism are isomorphic for $j \leq 2r$, we have

$$\pi_{j+N-r-1}(S^{N-r}MSO(r)) \simeq \pi_{j+N-r-1}(S^{N-r-1}MSO(r+1)) \quad (j \leq 2r)$$

Thus we have

$$\pi_{n+N}(S^{N-r}MSO(r)) \simeq \pi_{n+N}(S^{N-r-1}MSO(r+1))$$

for $n+1 \leq r$. In other words, if $n+1 \leq r$, $\Omega_n(SO(r)) \simeq \Omega_n(SO(r+1))$.

3. The group $\Omega_n(SO(2))$

In section 2, we have shown that $\Omega_n(SO(2)) \simeq \pi_{n+N}(S^{N-2}MSO(2))$ (N is sufficiently large integer). R. Thom has shown that MSO(2) can be identified with the infinite dimensional complex projective space CP^{∞} . For a space X, let $\pi_m^s(X)$ denote the *m*-th stable homotopy group of X.

136

In his paper [5], Liulevicius has obtained the following results;

m	1	2	3	4	5	6	7	8	
$\pi_m^s(CP^\infty)$	0	Ζ	0	Ζ	Z_{2}	Ζ	Z_{2}	$Z+Z_2$	

By definition, $\pi_{m+2}^{s}(CP^{\infty})$ is nothing else than $\Omega_{m}(SO(2))$.

4. The characteristic numbers

Let *M* be a closed SO(r)-manifold with dimension *n* and *f* the classifying map for the normal bundle; $f: M \to BSO(r)$). *f* induces a homomorphism $f^*:$ $H^n(BSO(r)); Q) \to H^n(M; Q)$. For any element $x \in H^n(BSO(r); Q)$, we call $f^*(x) [M] \in Q$ the normal characteristic number corresponding to *x*, where [M] is the fundamental class of *M*.

We have the commutative diagram

$$H^{n+r+N}(S^{N}MSO(r); Q) \xrightarrow{T(f)^{*}} H^{n+r+N}(T(M); Q) \longrightarrow H^{n+r+N}(S^{n+r+N}; Q)$$

$$\uparrow \simeq \qquad \uparrow \simeq$$

$$H^{n}(BSO(r); Q) \xrightarrow{f^{*}} H^{n}(M; Q)$$

where T(M) denotes the Thom space of the normal bundle of M in S^{n+r+N} . The isomorphism $\pi_{n+r+N}(S^N MSO(r)) \otimes Q \simeq H_{n+r+N}(S^N MSO(r); Q)$ implies that if $\overline{f}: S^{n+r+N} \rightarrow S^N MSO(r)$ represents a class in the free part of π_{n+r+N} $\times (S^N MSO(r)), \ \overline{f}^*: H^{n+r+N}(S^N MSO(r); Q) \rightarrow H^{n+r+N}(S^{n+r+N}; Q)$ is a zero homomorphism only if \overline{f} is homotopic to zero. Hence f^* is a zero homomorphism only if \overline{f} is homotopic to zero. In other words, if all normal characteristic numbers of M are zero, then the cobordism class of M is zero in $\Omega_n(SO(r))/$ torsion subgroup. It is easy to see that if two SO(r)-manifolds are SO(r)cobordant, then they have the same characteristic number. Thus we have proved.

Theorem (4.1) The class of $\Omega_n(SO(r))/torsion$ subgroup is completely determined by the normal Euler and Pontrjagin numbers.

Corollary. The natural homomorphism $\Omega_4(SO(2)) \rightarrow \Omega_4$ is monomorphic.

Proof. Since $\Omega_4(SO(2))$ has no torsion, for 4-manifold, the normal Euler number completely determines SO(2)-cobordism class. Suppose an SO(2)manifold M be oriented cobordant to zero. Then the Pontrjagin number $p_1[M]$ is zero, and hence $\bar{p}_1[M]=0$. Since $\bar{p}_1=\bar{X}_2^2$, this implies that the normal Euler 'number $\bar{X}_2^2[M]=0$. Therefore M is SO(2)-cobordant to zero. This completes the proof.

5. Embedding of 4-manifolds

In this section, we shall consider the embeddability of closed 4-manifold M in Euclidean 7-space R^{7} .

We know the following results about the embeddability of M.

(1) Any closed 4-manifold is embeddable in \mathbb{R}^{8} .

(2) Any closed 4-manifold M is embeddable in R^{7} almost differentaibly (i.e. M-x is embeddable in R^{7} , where x is a point of M) [2].

(3) Any orientable closed 4-manifold is embeddable in R^{7} piecewise linearly [3].

In the following, we shall prove

Theorem (5.1) Let M be an orientable, closed 4-manifold which is oriented cobordant to zero. If M is immersible in R^6 , then M is embeddable in R^7 .

Theorem (5.2) Let M be closed, simply connected and oriented cobordant to zero. Then M is embeddable in \mathbb{R}^{7} .

In his paper [9], the author has proved the following result.

(4) Let M be a closed, simply connected and *s*-parallelizable 4-manifold. Then M is embeddable in R^6 .

The proof of theorem (5.1).

Let (M, f) be an *n*-dimensional SO(2)-manifold with or without boundary. We shall prove the following lemma.

Lemma (5.1) Suppose $n \ge 2$. Then there exists an n-dimensional SO(2)manifold (M', f') such that

(1) M' is simply connected,

and

(2) If M has boundary, then bM=bM' and f/bM=f'/bM'.

Proof. Let α be a non-zero element of $\pi_1(M)$ represented by a map $\overline{g}: S^1 \to M$. Since the dimension of M is greater than 1 and M is orientable, \overline{g} is homotopic to an embedding $g: S^1 \to M$ with a trivial normal bundle. g can be considered as a map

$$g: S^1 \times D^{n-1} \longrightarrow M$$
.

If $bM \neq \phi$, we may assume that $g(S^1 \times D^{n-1}) \subset \operatorname{int} M$. Define an (n+1)-manifold W as follows;

$$W = (M \times [0, 1]) \cup D^2 \times D^{n-1},$$

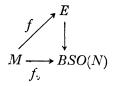
where $D^2 \times D^{n-1}$ is attached to $M \times 1$ by the embedding $g: S^1 \times D^{n-1} \to M$.

138

By smoothing the corners, W admits a smooth structure (Compare Kervaire-Milnor [4], p. 519). Clearly W has the homotopy type of $M \cup D^2$. Then

$$H^{i}(W, M; Z) = \begin{cases} Z & \text{if } i=2\\ 0 & \text{otherwise.} \end{cases}$$

We shall extend the given SO(2)-structure on M over W. Consider the following diagram



where E is the bundle associated to the universal N-plane bundle with fibre SO(N)/SO(2). Obstructions to the extending f over W are in $H^i(W, M; \pi_{i-1} \times (V_{N,N-2}))$. Since $H^i(W, M)=0$ for $i \neq 2$, there is only one obstruction in $H^2(W, M; \pi_1(V_{N,N-2}))$, which is zero. Hence f is extendable over W.

Let M'' be the component of bW different from M. Since W is an SO(2)-manifold, M'' is also an SO(2)-manifold. As well known,

$$\pi_1(M'') = \pi_1(M) / \{\alpha\},\$$

where $\{\alpha\}$ is some subgroup of $\pi_1(M)$ containing α . After a finite number of steps, we can obtain a manifold M' with the desired properties.

Now let M be a 4-manifold which is oriented cobordant to zero. By corollary of theorem (4.1), M is SO(2)-cobordant to zero. In other words, there exists an SO(2)-manifold W with dimension 5 whose boundary is M. By lemma (5.1), we may suppose that W is simply connected. \tilde{W} is the double of W. By lemma (1.1), \tilde{W} is also an SO(2)-manifold, and by van Kampen theorem, \tilde{W} is simply connected. The following theorem which is due to Hirsch [3] implies that $\tilde{W}-x$ is embeddable in R^r and hence M is embeddable in R^r .

Theorem of Hirsch. Let M be a closed (m-1)-connected n-manifold, $2 \leq 2m \leq n$, with a smooth triangulation; let x be a point of M. If a neighbourhood of the (n-m)-skelton can be immersed in \mathbb{R}^q for $q \geq 2n-2m+1$, then M-x can be embedded in \mathbb{R}^q .

A 4-manifold is immersible in R^6 if and only if it is an SO(2)-manifold. This completes the proof of theorem (5.1).

The proof of theorem (5.2).

To obtain the theorem, it is sufficient to show that any closed simply connected M which is oriented cobordant to zero is immersible in R^6 . We can find a 5-manifold W whose boundary is M. By a theorem of Wall [8], we may suppose that W has the homotopy type of a bouquet of 2-spheres. Such a 5-manifold is immersible in \mathbb{R}^r . In fact, let W be embedded in \mathbb{R}^{5+N} , where N is sufficiently large, with normal bundle ν and $\tilde{\nu}$ the bundle associated to ν with $V_{N,N-2}$ as fibre. Then $\tilde{\nu}$ admits a cross section if and only if W can be immersed in \mathbb{R}^r . Since $H^i(W)=0$ for $i\geq 3$, there is no obstruction to the existence of cross section of $\tilde{\nu}$. Since W is immersible in \mathbb{R}^r , its boundary is immersible in \mathbb{R}^6 . The proof of theorem is concluded.

REMARK. The result of theorem (5.2) is best possible. In fact, the total space of non-trivial 2-sphere bundle over 2-sphere can not be embedded in R^6 , because it has non-vanishing 2nd Stiefel-Whitney class.

NIIGATA UNIVERSITY

References

- [1] P.E. Conner and E.E. Floyd: Differentiable periodic maps, Springer-Verlag, 1964.
- [2] M.W. Hirsch: On imbedding differentiable manifold in Euclidean space, Ann. of Math. 73 (1961), 566-571.
- [4] M. Kervaire and J. Milnor: Groups of homotopy spheres I, Ann. of Math. 77 (1963), 504-537.
- [5] A. Liulevicius: A theorem in homological algebras and stable homotopy group of projective spaces, Trans. Amer. Math. Soc. 109 (1963), 540–552.
- [6] N.E. Steenrod: The topology of fibre bundles, Princeton, 1951.
- [7] R. Thom: Quelques propriétés globales des variétés difféntiables, Comm. Math. Helv. 28 (1954), 17–86.
- [8] C.T.C. Wall: On simply connected 4-manifold, J. London Math. Soc. 39 (1964), 141-149.
- T. Watabe: On imbedding closed 4-manifolds in Euclidean space, Sci. Rep. Niigata Univ. Ser. A 3 (1966), 9-13.

140