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1. Introduction and results. We consider the Schroedinger operator
L=—A+¢(x) with the potential function ¢(x) satisfying the following condition
(4,) in the whole 3-dimensional Euclidean space E, where A designates the 3-
dimensional Laplacian and x a position vector in E with its length |x|:

c(x) is a real-valued B function defined on E and satisfies
(A) le(x)| < Cie™™ (x€E),

where C, and 8 are positive constants.

Here ' stands for the space of all bounded, continuous functions f(x) defined
over E with bounded, continuous first derivatives.

It is well known that under condition (4,) the symmetric operator L on 9
is lower semi-bounded and essentially self-adjoint in L*=L? (E), where 9 con-
sists of all infinitely many times differentiable functions with compact support
in E (see T. Kato [2], Section 6, Theorem 1). Then we denote again by L
the unique self-adjoint extension with domain 93z D732 (m=1, 2) is the com-

1/2
pletion of the space 9 with respect to the norm ||f H”‘=<mz<m SElD“’ f(x)l”dx) ’

or is equivalently the space with the norm ||-]|,, of all functions f(x)& L* whose

derivatives D®f(x) (|| <m) in the distribution sense all belong to L? (o=

(e, a,, a;) with the a,’s non-negative integers; DF@,?—’ D*= D}{:D3:D3s, and
"

la|=a,+a,+ay).

The spectrum of L can be only on the real axis. On the whole positive
axis there exists only the essential spectrum, which is, in fact, absolutely con-
tinuous, while on the negative axis we have only the discrete point spectrum, if
any (see T. Ikebe [1], Chapter 2, Section 7). Here we assume

(A,) The operator L has no negutive eigenvalues.

Let B; be the space of all continuous functions f(x) defined on E with
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l|fls=sup|e ®¥?¥If(x)| <<oo. Then B; becomes a Banach space with the norm
*ER

[lflls- Furthermore, we impose another condition on ¢(x):

The homogeneous integral equation
=1 S «)
has only the trivial solution f=0 in B;.

An appendix will be added for a remark on (4,).

Let j, (t)= {}/{Et(% 2t<a)’ where a is any fixed positive number, and o be

real. Now we consider in the free space E the initial value problem for the
wave equation

0 o(x O+ Lo,(x, H=q(x)e™5u(0)
(1.1a) 5
oy, 0) =0, Zo(x 0)=g0),

and the reduced wave equation
(1.2) Lu(x) = ou(x)+q(x)
under conditions (4,), (4,), (4,),

q(x) is a measurable function defined on E and there exists a pair of

(B) positive numbers Q, and 7y such that for any x in E
lg(x)| <Qe™,
and

8(x) is a C? function defined over E and has the estimate
(©) | D%g(x)| < Ge™ ! (x<E, |a]|<2),
where G and u are positive constants.

Then the initial value problem (1.14) has a unique solution (-, t) in L?, which
will be set forth more in detail in Proposition 2.1.
Our first result can be stated as follows:

Theorem 1. Suppose (A4,), (4,), (4;), (B,) and (C). Then the following
assertions hold:

(1) (Limiting amplitude principle) There exists the limit function u(x)=
lim v,(x, t)e™*** uniformly on any bounded set in E, which is a solution of (1.2).
oo

(i) (Exponential decay) wv,(x, t) can be expressed as
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{ (%, )= u(x)e’"“”~|—81(x, £)

18,(x, £)] < Cemie==t,

where a, is some positive constant <<min (8/2, v, u), and C is a positive constant
depending only on c(x), q(x), g(x), 0, a and «,.

(iif) (Sommerfeld radiation principle) wu(x) satisfies the Sommerfeld radi-
ation conditions

‘ u(x) = O(|x]| ™)

G- tiou(x) = of ] )

as |x|—>oco.

In the sequel the letter C exclusively means a positive constant. C does

not always denote the same one.
In addition to (4,), (4,), (4,), (B,) and (C) assume

q(x) has continuous first derivatives satisfying
(B2) lgrad g(x)| < Q™™™ (x€E),
where Q, and v are positive contants,

and consider the initial value problem

g—; V%, 1)+ Lo, (x, t) = q(x)eiw'
(1.1b)
Vy(x, 0) =0, g;‘vz(x! 0) = g(x) ’

where j,(#) which appeared in (1.1a) has been deleted. Then there exists a
unique solution v,(-, f)&L* (see Proposition 2.1), and our second result is as
follows:

Theorem 2. Under assumptions (4,), (4,), (4.), (B,), (B,) and (C) the
statements (1), (i2) and (iti) in Theorem 1 are all valid for (1.1b) and (1.2), if v (x, t)
is replaced there by v,(x, t)=u(x)e’*'+3,(x, t), and the estimate for 8,(x, t) by
|8,(x, t)| < Ce®®*le~%! where a, is some positive constant <min (8/2, v, v, p),
and where C depends only on c(x), q(x), g(x),  and a,.

O.A. Ladyzenskaja [3] has given a proof of Theorem 1 on the basis of the
Laplace transformation theory where both ¢(x) and g(x) are assumed to have a
compact support, and (1.1a4) to have zero initial data. Fundamentally on the
same line as hers we shall prove the two above-mentioned theorems.

Meanwhile, C.S. Morawetz has studied the decay of solutions of the initial-
boundary value problem for the wave equation v,(x, t)—Av(x, £)=0 with zero
Dirichlet condition in the exterior of a star-shaped reflecting body in E. In [8]
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and [9] she has obtained the rate of decay with time ¢ at least like t™/? and ™'
respectively by the Kirchhoff formula and certain estimates derived from so-
called energy identities (Friedrichs’ a, b, c-method). Moreover, P.D. Lax,
C.S. Morawetz and R.S. Phillips [4] have proved the exponential energy decay of
the solutions, following the ideas developed in [8] and [5]. Recently C.S.
Morawetz [10] has deduced an exponential energy decay from a certain preassumed
decay rate for not-necessarily star-shaped domains (she has considered Robin as
well as Dirichlet boundary conditions), and, applying this criterion for the ex-
ponential decay to the problem in [4], has given another direct proof. [9] also
contains the result that the solution v of the initial-boundary value problem for
the inhomogeneous equation v,,(x, t)—Av(x, t)=g(x)e’** with zero Dirichlet
condition approaches to a solution u of its reduced equation Awu(x)=cw"u(x)+
q(x) as fast as 712,

2. Laplace transformations. Under the hypotheses (4,), (B,) and
(C) the general existence theorem on the initial value problem for hyperbolic
equations (refer e.g to S. Mizohata [7], Chapter 6 or [6]) guarantees

Proposition 2.1. Suppose (4,), (B,) and (C). Then there exists a unique
solution v,(x, t) of (1.1a) such that (v,(x, t), %v,(x, 1)) EEYo(Diz) X E850(D12) and
@1 e, B+ S, 0| <ce,

where 3 is some positive constant, and f(t)EE7(D2) (m=1, 2) means that
f()E D32 and is continuous on the interval t >0 in the topology of Dy:.  The same
1s true for v,(x, t) of (1.1b).

By Proposition 2.1. the Laplace transform w,(x, \) of v,(x, £)
2.2) Wy, N) = rvk(x, feMdt  (Rea>@; k=1, 2)
0

exists in 9?22 and is analytic in Re A>g3, where Re A denotes the real part of \.
Moreover, the inverse transformation of w,(x, )

o+ A
2.3) va(®, £) = lim 1 S +.A wim, NMdn (k=1 2)

4> 2771

can be carried out along any path Re A=o>8.
Applying the Laplace transformation to the initial value problems (1.1a)
and (1.16) in Re A>3, we have

(2.4) (LAN)wa(x, 2) = g(@)fl(M)+8(x) (k=1 2),
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where
1— e%Go=R

Sy = “aGo— N
fz()') =

A—iw

From (4,) and the statement on the spectrum of L in Section 1 it follows that
every point —\? with Re A>0 becomes a regular point of L. Hence there
exists the resolvent (L+\?)"' carrying L* onto 932 in ReA>0. Therefore
(2.4) has a unique solution in 9%z which is analytic in Re A>0. Then we can
consider the Laplace transform w,(x, \) (k=1, 2) to be extended analytically to
the whole half-plane Re A >0.

Putting

(2.5) wi(%, N) = wp(, X)f(X) (Re x>0; k=1, 2),

we can see from (2.4) and the discussion following it that u,(x, X) is a unique
solution in 93z of the equation

26) (LN, ) = g@) (=) (Rer>0; k=1, 2),

which is analytic in ReA>0. Since in ReA>0 there exists the resolvent
(—A+2%7*, which is an integral operator of Carleman type with the kernel
(4r|x—y|) e ™MV uy(x, N) in (2.6) satisfies the integral equation

2.7) ua( \) = o " (q)+eO) ) dy—
Ix yl

1 e MF . b
S S ylc(y)u,,(y, Ndy  (Rea>0; k=1, 2).

3. Integral equations. In this section we shall study the unique solva-
bility of equation (2.7) in Bj;, which leads to the analytical extension to Re A<<0
of u,(x,2\) in (2.5) and then to the meromorphical one of wy(x, 1) in (2.5) (k=1,2).

Now let us introduce a domain Dj defined by Dy={\; Re A>—§/2}.

Proposition 3.1. Under assumption (A ) the integral operator T\, defined by

1) = 4 |, G COVOMy

is completely continuous on By into itself for each fixed \ € D;.
Proof. Let f€B;and A&D;. When Re A <0, we first have

| Tufe) | <ClIflL | S dy = ClIfllJ

—ReA|x=Y|—(8/2)|Y|

lx—y|
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To estimate J we note that [x—y|<|x|+]|y|, and |x—y|>|y| when
ly|<l|x|/2,and | y| >(1/3)|x—y| when |y|>|x|/2. We then obtain

_ReAlx e—<1/2> (8+2Re M) |Y| e"(l/ﬁ)(8+2Re)\)|x-y|
VA R —r ly

d
Iyl vr lx—y|

1yI<i*|/2 1r1=1%1/72

< C(5-+2Re \) e~ Reri,

Hence we have
3.1) [ T\ f(x)| <C(8+2Re 1) 77| f||se ReM*! (Rer<0),

where C is independent of x and A. When Re A>0, the estimate for T, f(x)
can be worked out with more ease in a similar fashion by using the inequality
le™**21] <1, and we get

(3.2) | Taf(x) | < ClIfls (Rer>0),
where C does not depend on x nor . From (3.1) and (3.2) it follows that

C(5-+2Re N) 2| f|l,e~ /2 ReDl1 (Re A<0)

—(8/2) |x
(3.3) e 2T, flx)] < { Clfllse" ¥ (Rer>0).

Next we proceed to show the continuity of T, f(x) in x for each fixed A€ D;.
For this purpose we consider the difference

1 1 1 N
() oy
=J1+J2‘

Considering (4,) and the inequality

) e ReAmaxcz=YL ¥ =ID| )\ | | x' —x| (Re x<0)
|eA==21 e A= | <
Mlx—x  (Rex>0),

we have, when Re A <0,

—ReA|Xx—Y|—(8/2|¥|

1< Cllfll x’—x( S = o
| S < ClIflls| 2" — =] R E ] g
N e ReMF/=¥|-8/D7|
2
1% —y|>1x -y lx_—yl

—ReA|x-Y|—(8/2)|¥|

<Ol flls 12" —a | (1e Rer ) Sf’ =i

<Ol flls| 2" —x| (1—}—e‘Re"l"’—xl)e—Re)\|x| ,
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—2ReA|*¥/—|—(1/2) (§-2Re M) |¥| 1/2
y)"

<l =l (§ =

e~ (/2 (8+2ReX)|¥| 1/2 ,
(S : dy) <Cllfllsla"—x|e ket
E |x—y|

in a way similar to the one used for obtaining (3.1). Similarly, when Re x>0,

we get
—(8/2)|¥|
] <C /__ g € d’<c I_ ,
TS Cllfllx'— 1) T dy<Cliflslx'—al
<l —=1(] S a) ([ S a)"
. < x'—x L L
’ ela—yP?) \Uela =7

< Clifllsla"— .
So it follows that in E X Dy

Cllflls|x"—x|e Rer=iti==2p (Re A< 0)

(34)  ITf()—Tuf(x")| < { Cllifllsla’—x|  (Rer0)

where C’s depend only on A. By (3.3) and (3.4) T} is a bounded linear operator
on B; into itself.

Let S be any bounded set in B;. We want to show that 7, is relatively
compact in B, which deduces the complete cotinuity of 7). Let {g,} (n=1, 2,
-++) be any sequence chosen from T,S. By (3.1), (3.2), (3.4) and the bound-
edness of S, {g,(x)} must be a uniformly bounded and equicontinuous family of
continuous functions on any compact domain of E. Employing the Ascoli-
Arzela selection theorem we can find out a subsequence {g,/(x)} converging toa
continuous function g(x) uniformly on any compact domain of E. In view of
(3.3), e”¥/?1*1g /(x) tends to 0 uniformly inn’ as [x|—>co. So does e™¥/?1*Ig(x).
Then ||g,/—glls—0 as n'— co, and g B;, which is the desired result.

Proposition 3.2. Assume (A,), (A,) and (A4,). Then there exists a positive
number a(<8/2) such that for any g=B; the equation (I—T))f=g admits one
and only ome solution f&B; for each fixed neD={\; Re \>—a}, which is
analytic in D, and (I—T,)™" has the estimate

II—=T5)"ll,<C
uniformly in D, where ||T||;= ”sflﬂ£)=l [|Tf|5 for an operator T in By and I stands for
the identity operator in Bs.
Proposition 3.2 will be proved by the following four lemmas.

Lemma 3.1. Suppose (4,), (4,) and (A4,). Let Rer>0 and geB;.
Then the integral equation
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(3.5) f=g+Tf

has a unique solution f = B;, which is analytic on Re A >=0.

Proof. Let feB; be a solution of the homogeneous equation f=T,f.
When Re A>0, we get

~ReA|x—Y|-(8/2 ||

/)| = T f) | < Il s | dy = ClIfllsJ;

[
E lx—y|

1]
2

when |y] <13,

—~ReA|x-¥|

and, noting that |x—y| >|y| and |x—y|>

—(ReA/2+8/2)|¥|

Iyl

- [
] < e (ReA/® x|

Iri<ix|/2

deoma | ¢

t 4
|x—y| Y

1v1>1%1/2

< C(e'(Re)\/A) 1%| (R_§l+7>‘2+e—(6/4)lx|(Re 7\)_2> ,

where C’s are independent of x and A. So we can see that

| f)| = | Toflo) | < C | flls(e™ReMNO = fem @0 1)

where C is dependent only on A. Therefore f&L? for A with Rer>0.
Also when Re A=0 and A+0, feL?. This follows from A. Ya. Povzner [11],
Chapter 2, Lemmas 1, 2, 5and 6. As f fulfills the equation (L+2\?)f=0, —\*
(Re A >0, A=0) cannot be an eigenvalue of L by (A4,) and the statement on the
spectrum of L in Section 1. Hence, if we also note (4,) for A=0, the equation
f=T,f implies f=0 in B; for A with ReA>0. So by the Riesz-Schauder
theory together with Proposition 3.1, equation (3.5) is uniqely solvable in B,
for any g B; and the operator I—T), has a bounded inverse in B;. Moreover,
from its definition in Proposition 3.1 T is seen to be analytic for Re A>0 (cf.
e.g. K. Yosida [13], Chapter 5, Section 3). Thus (I—T,)™" is also analytic for
Re A >0, which was to be proved (cf. e.g. ibid., Chapter 8, Section 2).

Lemma 3.2. Assume (4,), (4,) and (4;). Then for awy N'>0 one can
find a positive a’(<8/2) such that for neD'={\n; —a’'<Re\, |N|<N'} equa-
tion (3.5) has a unique solution in B;, which is analytic in D', and the estimate

NI=Ty)7l<C
holds in D', where C is dependent only on D’.
Proof. Clear from Lemma 3.1 and the Heine-Borel theorem.

Lemma 3.3. Assume (A,) and let 0<<b<<1. Then, for any >0 there exists
a positive number N independent of (x,y)< E X E such that the kernel of the operator
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e—Mx—si—)\ |s-)’l| c(s)ds

™% ¥; N) = (47)7%(y) SE Te—s|s—y|

has the estimate

e-(8/2) | % l'r(x, ¥; 7\)[ <ee—(l/2+(l—b)/4)8|y|
for (%, y, N)EEXEX {x; Rex>—235, | >N}

Proof. Let Re 7\>—g—5. We first assume (x, y)=(E—Kg) X E or

KrX(E—Kp), where K means the sphere of radius R with its center at the
origin. Since by an estimation similar to the one utilized for having (3.1) we

have
f eb81xF-SI=8s| 12 b8|S—Y|-8|s| 12
(s ys Wi <Ce (| = %) (e @

< Ce—(l-b/2)8|y|e<b/2)8|xl ,

we can see that

(3.6) e~ @/ 1% |7-(x’ ¥ 7\)| L Ce™WDA-b8Re~(1-5/2817| ((x’ y)E(E—KR)XE) ,
(3.7) e~ ¥/ |7(x, y; 7\)] K Ce™WHA-0BRe=A/2+A-0)/0817] ((x, y)eKRX(E—KR)) :

Next, assuming (x, y)E Kz X Kz, we similarly have

(3.8) e /DI |r(x, y; N)| < Ce™@/21#1-811 'S Mc(s)ds +
4 AP oy ey
,}_Ce—w/z)m—alyl S i=j1_+_]2 ,
E—KR

-1/2>A-58|s| 1/2 —1/2)A-p 85| 1/2
—-(1/2)1~ B8R~ (1-b/2>8 | ¥ | € e
E s—y|

< Ce'(1/2)(1—b)6Re-(1‘b/2)8IJ’| .

To estimate J, we consider the ellipsoid |x—s|+ |s—y| <& with the foci x and
y for each fixed (x, y)€ Kp X K and a positive £.  Let us denote such an ellipsoid
by E(x,y). Then, noting that E,g(x, y) contains Ky for any (¥, y)E Kz X Kg,
we have

e—h]x—s[—)\]s—yl
sl Ty &
Elsmyl4pl8 P

(3.10)  J, = Ce @/ 1#1-811
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s =1

E4R(x, y)—E'x,pr(x, » E4R(x, y)-KR

<e—8|y]<yc S + C >_J|_Ce~<8/2)|xl—8lyl><
Ely—yl40® P B @ D= Epyy14p®
I R R A A
E4R(x,y)—KR
(311) j13< Ce—(sl?.) [%1-81¥1 S ‘ — ]2< Ce—(llz)(l—b)SRe-(l—b/Z)SIyI .
E-Kg,

Here C’s appearing in (3.6) to (3.11) all depend only on 4. Now for any £>0 we
can choose a sufficiently large R such that Ce™@/»@ 3R i (3.6), Ce VP ~8R jp
(3.7), and Ce™@/»¢~83R jp (3.9) and (3.11) are all smaller than £/4. Furthermore

ds
Y Bt
Elx—_v]+
[#-$]

p(x. )
<[s-

7|

where C depends only on b and R. In E|,_,,,(x, ¥) we introduce a cylindrical
coordinate system (7, 6, t) such that (0, 8, 0) corresponds to x and the t-axis is
directed from x to y. Since |x—s|*=r*+¢ for s=(r, 6, t) and the Jacobian for
the coordinate transformation becomes 7, a simple evaluation gives

i 27 R CVvyp 7
(3.12) J.<C S a6 S_R dt So <4
for a sufficiently small p(<<2R) uniformly in (x, y)EKpX Kg. C’s in (3.12)
never depend on p.  For the estimation of J,, we first assign the 3-dimensional
orthogonal coordinates (s,, s,, ;) to each point s in E,g(x, ¥)—E|,_, o(%, y) in
such a way that the origin 0 is the middle point of x and y, and the s,-axis the
line directed from 0 to y. Secondly, considering s to be a radius vector which
starts from 0, we introduce two angles § and @; € is measured from the s,-axis
toward s, and @ from the s,-axis toward the projection of s to the (s,, 5,)-plane.
Finally we set £=|x—s|-+|s—y|. Thus for each fixed (x, y)€EKpXx K
every point s=(s,, §,, ;) in E,p(x, ¥)—E|._,.0(x,y) can be expressed in terms
of new coordinates (£, 8, @) (|x—y|+p<E<4R, 0<0<r, 0<p<2z). Now
we have
0 [

p P
v—s|=> L, js—yl> L5 Sesi<c,
s> £, Js—yl pgl—s1<C, 5

J— < e
5 ls—y[<C;

| J(E 6, p)| <C, %u@,e,w«,
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where J(£, 6, ) is the Jacobian for the coordinate transformation, and C’s de-
pend only on R and p. By integration by parts in consideration of (4,) and
these inequalities, J,, can be estimated as follows:

— e_)\EC(E’ 0, ‘P)IJ(E’ 9, ¢)|
Ja=|C x5, 0, 9)| 15E, 0, 9)—] dgdods |

¥~y +P<E<IR
0<O<T7, 0<P<2™

= ‘—% S dfdo [e"“f(& 0, )| JE 6, ¢)I]£=‘R

[x—s||s—y] E=lx—xl+p
C g 0 E(E: b, )| JE 6, #)| _C__
+ng9d¢se 8&( [x—s||s—y] >d%’l<|7\| '

Therefore for any given £>0 we can find an N>0 independent of (x, y)e Kg
x K such that

(3.13) Ju< £

holds for (x, ¥, N)e Kz X KgX {7\; Re X>—%8, N >N}. Considering (3.6),

(3.7) and (3.8), together with (3.9) to (3.13) and the statement just below (3.11),
we have Lemma 3.3.

Lemma 3.4. Assume (4,). Let 0<<b<<l. Then there exists an N">0 such

that the equation f=g-T\f has one and only one solution in B; for any g< By and
reD" = {7\; Re 7\>—~l;v S, [N >N"}, which is analytic in D", and (I—T))™
is uniformly bounded there in the operator norm.

Proof. By Lemma 3.3, for any 7 (0<<%<C1) we can find out an N">0 such
that the inequality

(3.14) T3s<7
holds in D”:{x; Rex>—g— 3, |M>N”}. By (3.14) the series

U+ T)I4 T34 Ti4 o T30

converges to a bounded linear operator in By uniformly in D" in the operator
norm. Moreover, multiplication of the series by I—T, on the left or right
gives I, so that the series actually represents (/—73)™". Its uniform boundedness
and analyticity in D" follow from the series, (3.14) and the analyticity of T,
which proves the assertion of Lemma 3.4.

Combining Lemmas 3.4 and 3.2 under the assumptions of Proposition
3.2, we obtain Proposition 3.2.
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Let a®(x, A) and a®(x, 1) be functions given by

s n) = - [ ST a0y,
o 1 e M=)
@) = 4o | S0y

Then the integral equation (2.7) can be rewritten in the form
(3.15) (I—Tyug(s, N) = a®(+, N)+a®(-, M) fi*(h)  (k=1,2).

Proposition 3.3a. Suppose (B,). Let Dy={\; Rex>—v}. Then the
inequality
Cly+Ren)%e ™Mo (Re A<0)
c (Re A >0)

holds in E X D,, where C’s are independent of x and .

la®(x, N)] < {

Proof. Let aeD,. By virtue of the estimation used for obtaining
(3.1) and (3.2), we clearly have, when Re A <0,

e ReAF-31-7|3|

¢ T d
E |x—y] Y
<Ce—ReMx\(,y+Re )\‘)—2

|a®(x, M) <C g

and, when Re A >0,

=72l
a®(x, x <CS LT _dy<C,
la®(x, NI I P

where C’s are all independent of x and A. 'This completes the proof.

Proposition 3.3b. Assume (B,) and (B,). Let D, ,={\; ReA>—min(y,»)}.
Then a®(x, \) has the estimate

Ce ™ ReM=I(1+ | x| +(y+ReN) '+ (v+Re n) x| +
|a®(x, \)| < +@-+Ren)?)[n] ! (Rer<0)
C(1+4|x|) x| ! (Re A>0)

in EX Dy ,, where C’s are not dependent on any of x and .

Proof. Let A&D,,. Introducing spherical coordinates, we can express
a®(x, \) as

(3.16) @, \) = o S“ do S“sin 946 S“ ¢ pg(x+1)dp
0 ] 0

4z

N 1 Szﬂd S‘}Z . .
=5 ). 4 0smé?d()-] (y—x=t, |t|=p).

El
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Integrating by parts in view of (B,) and (B,), we obtain

J= e L (patar+t)a

= % (S: e Mg(x+t)dp+ S: e p % g(x+1) a’p),

(317) |]| <C <j e Rez\Pe—'YIP—leldp_}_Sm e—ReMpe—vlp—lxlldp> l 7\'1 -1
= C(]l_l’]z)p\'] _1’

where

oo

e(‘Y—Re )\)de_*_e‘)'l-ﬂ S e“(‘)‘+Re)\)Pdp s

[Ed]

)2l [E4
]1 =¢e j

0

Jum e

0

e(V—ReA)dep+ele| STI e—(v+ReA)dep A
x
When Re A <<0, we get

Ji<Ce ReM(14(y+Rer)™),
Jo<Ce RN [ x| +(v+Re n) ™ |x| +(v+Re 1)™?)..

Hence, when Re A<<0, (3.17) becomes
(3.18) | JI<Ce ®eM 1+ |x|+(v+ReN) '+ (v+Re 1) ||+ (v+Re A) A |2,
where C is independent of x and A. When Re A >0, we have

1*] o
e 1 S dp+e Sm e "dp<C (Rer>v)

1 S e"d p-t &7 Sm e *dp<C (Re v<),

%1 e
e Vil S pdp_l_ele[ Sl le—wpdpg C(1+ |x|) (Re 7\,21,)
0 x

Jo< A

12| ©
e‘“"“S e’pdp+-e*! S| e Pdp<C(1+]x]) (Rer<w).
0 x
Consequently, when Re A >0, we can see that
Ji<C, J<C(1+|x]),
and

(3.19) IJI<C+ [N,

where C’s are independent of x and .
Thus (3.16), (3.18) and (3.19) give the required estimate for a®(x, ), which

proves Proposition 3.3b.
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Proposition 3.4. Suppose (C). Let Dy={\; ReA>—pu}. Then a®(x, \)
satisfies

(i)  |a®(x \)| < { C(u+Ren)%e ™M™ (Re 1<0)

C (Re 7\:20) )
Ce RN (1 |x| 4 (u+Re A) (14 |x]) (4 Re 1) 2)A| 2
() 1a®, V)< (Re2<0)

in EX D,, where C’s never depend on x nor \.

Proof. Considering (C) and the definition of a®(x, \), (i) is obtained by
an estimation similar to the one in the proof of Proposition 3.3a.

Proceeding as in the proof of Proposition 3.35, we can establish (ii) in £ X
D,. TFirst we rewrite a®(x, \) as

(3.20) @, 3) = g "o [ sin 040 [ pg(e-t)dp
1 27 4 .
:ESO do S Sin0d6-J (y—x—t, |1]=p).

Then, integrating by parts twice in view of (C), we have
J= 5 e oot nae
A Jo ap

1 1 < Sw ° : Sm B 2
| — Y _—_ 2 p—_ - Py~ 0
A2 g("‘)"’ A2 0 € apg(x+t)dp+ 0 € pang(‘x i [)dP) ,

(321) l]i <C<1_’_Sm e—Rexpe—#lP—lxlldP_l__Sw e—ReAppe~P~|P—|xl|dp>|X|—z
_ {Ce-ReW'(mxl +(p+Ren) (1 + %) + (5 +Ren) A2 (Rer<0)
e+ e In (Rer>0),

where C’s do not depend on any of ¥ and A. (3.20) and (3.21) immediately
prove (iif). This completes the proof of Proposition 3.4.

Proposition 3.5. Assume (A4,), (4,), (4,), (B) and (C). Put D=
{r; Re A>—min (&, v, u)} with o in Proposition 3.2. Then it follows that

(i) a®(+, \)EBs, a®(+, N\)E B; for every & D,,

(i1) Equation (3.15) admits a unique solution in B; for each »&D,, which is
analytic in D,, with the estimate ||(I— T)\)™*||s< C uniformly in D,,

(iii) In terms of this unique solution, u,(x, N) (k=1, 2) in (2.5) is extended
analytically to D,.

Proof. In view of Propositions 3.3a and 3.4 (i) we have only to prove the
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continuity of a™®(x, A\) and a®(x, \) in xE for every AED, in order to
establish (i). This is proved by using (B,) and (C) if we proceed as in the
estimation for having (3.4).

Now (ii) follows directly from Proposition 3.2 with (i) and the analyticity
of a®(+, ) and a®(-, 2) in D,. Let @,(x, \) be the unique solution of (3.15)
(k=1, 2).

Furthermore, #,(-, )= L?* for Re A>0, noting in (3.15) that a®(-, A),
a®(+, 7) and T,@,(-, A) all belong to L? for ReA>0 by (B,), (C) and (4,)
(k==1, 2) (¢f. e.g. the estimation of T, f(x) in the proof of Lemma 3.1). On the
other hand, we have already stated in Section 2 that u,(+, A) (k=1, 2) in (2.5),
which is analytic in Re A>0, belongs to L? and satisfies (3.15) for ReA>0. By
(4,) and the note on the spectrum of L in Section 1, f=T,f (f€L? ReA>0)
implies that f=0. Then u,(x, A\)=d(x, \) (k=1, 2) in EX{\; ReA>0} in
consideration of their continuity in x for Re A>0. Thus we have (iii), and the

proof is complete.
Proposition 3.6a. Suppose (A4,), (4,), (4,), (B,) and (C). Let D=
{\; Re A\>—min (a, v, u)} with a in Proposition 3.2. Then w,(x, \) in (2.5)
can be defined for (x, \)EEX D, in the form w,(x, N)=u,(x, \)f,(\) as a mero-
morphic function in D, with the sole simple pole N=1w, and has the estimate
[ Ce®1#((y 1-Re A) | A —iw| *+(14+(p+Re X))+
[z, (2, N)| < | +(p+Rer)*)|n]7?) (Re x<0)
P Ce®(In—iw| 24+ |N]17%) (Rerz0)  ((x, \)€EXD),

where C’s are not dependent on x nor \.

Proof. Putting w,(x, AM)=u,(x, A\)f,(A) for Re A<0, w,(x, A) in (2.5) can
be extended meromorphically to D, by Proposition 3.5 (iii). By Proposition
3.5 (i) u,(x, ) may be expressed as

(22)  u(-,A)=(I-T)7[a®(-, MN+a®(-, MfT'(M)] (A€Dy),

where ||(I—T,)"|,< C uniformly in D,. Using Propositions 3.5 (i), 3.3a and
3.4 (ii) we have, in D,,

C(y+Rer)? (Re a<0)

C (Rerz=0),

C(1-+(u+ReN) "+ (u+Re M) )1 (Rer<0)
CIn™ (Rer>0),

(323)  [la(-, MIb< {

(B.24) 0¥, Wllb< {

where C’s are all independent of A. Hence, noting (3.22) together with (3.23)
and (3.24), we get, in EX D,,
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la,(, XY | < Ce®™®=1([[a®(-, M)l |g+11a® (5 ML FTH))
Ce®® 1 #\((y+Re N) 2+ (14 (w+Re 1) '+ (p+Re 1) %) X
< XM (Rer<0)
Ce®™ = (14 fT2 (N A ] 72) (Rex>0),
where C’s do not depend on any of x and A. Now, in view of w,(x, \)=

u,(x, M)f;(\), we have proved the desired estimate for w,(x, A) in ExD,. This
completes the proof of the proposition.

Proposition 3.6b. Assume (B,) in addition to the conditions in Proposition
3.6a. Let D,={\; Re \> —min (a, v, v, u)} with a in Proposition 3.2. Then
wy(x, N) in (2.5) may be extended meromorphically to D, in the form w,(x, \)=

uy(%, N)fo(N) with the only simple pole N=iw. Besides, in EX D, wy(x, \) has the
estimate

Ce®P¥(C INn—iw| N T+ C [N 7?) (Rer<0)

[ M) < { e 11|\ —iwo| A | 4 1| 7) (ReA>0),

where
{ C, = 14+(y+Rer) '+ (»+Rer)'+(v+Re r)®
C,=1+(p+ReX)"+(u+Rer)™,
and where C’s are independent of x and .

Proof. Considering that our assumptions in this proposition are more
stringent than those in Proposition 3.6a, we have (3.24), (3.22) for u,(-, )
and f3'(A) in D,, and the meromorphical extension of w,(x, A) in (2.5) to D,,
in a way similar to the one in the proof of the preceding proposition. Now
by Propositions 3.5 (i) and 3.3 we have the estimate

C(1+(y+Rer)*+(v+Rer) '+ (v+Rer)?) 0] ?
(3.25)  |la®(+, MlIs< (Rex<0)

Cin™ (Re A >0)
in D,, where C’s do not depend on A. From (3.24), (3.25) and (3.22) for u,(+, \)
and f3'(1) it follows that in Ex D,

luy(, M) < Ce®™ = ([la®(, M5 +11a®(+, Mlslfz M)
| Cem#C N+l M) (Rer<0)
COMTHIfZNTINT) (Rer>0),

where C, and C, are the same as in the proposition, and where C’s are independent
of x and A. Noting that w,(x, N)=u,(x, A)f,(A), we complete the proof.

4. Proof of the theorems. Now we assume (4,), (4,), (4,), (B,) and
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(C) for the proof of Theorem 1, and, moreover, (B,) for that of Theorem 2.
On the complex plane we chocse a rectangular path T', with vertices o—iA,
o+i4, —a,+iA and —a,—id, where o>@8 (see Proposition 2.1), 0<a,<
min («, v, ) and 0<a,<min («, v, v, ) with @ in Proposition 3.2, and where
A is a positive number large enough for T'; to contain the simple pole A=iw
of wy(x,\) (k=1,2). Propositions 3.6a (k=1) and 3.66 (k=2) enable us
to apply the residue theorem to the contour integral of w,(x, A)e* along the
positively oriented closed path T',. That is

g wy(x, N)eMdn = 2mi Res [wy(x, M)e¥] (k=1 2).
e A=iw

Meanwhile, the left-hand side can be divided as

—@,tiA —@ptiA o-iA
+ +

c+iA

o+ A
S wi(x, N)eMdr = S : wi(x, N)eMdA— S
Te i A

ao-1

—-op-iA

(k=1, 2).

~wp~iA

Propositions 3.6a (k=1) and 3.6b (k=2) also assert that the third and the fourth
integrlas on the right-hand side tend to zero as A— oo for every (x, )€ E X [0, o),
and that

Res [w(x, X)eM] = uy(x, iw)e'! (k=1,2).

A=iw
In view of equation (3.15) for A={w we can set
uy(%, tw) = u(x) (k=1, 2),

which is a solution of the reduced wave equation (1.2) by Proposition 3.5 (ii).
Thus, recalling (2.3), we have

(4.1)  ovyx, 1) = lim - S—mkﬁAwk(x, N)eMdn—+u(x)e’ ! (k=1, 2).

>0 2770 ) —ap-iA
Furthermore, by Propositions 3.6a (k=1) and 3.6b (k=2) we get
1

) - 4 1
el et S—A <(p—w)2+a§ +P2+Ol%> dp (k=1)
@y tiA
'wk(x, k)e"'d?\ < (8/2) 1% - ot 4 1 1 d
o < cemmrm I Co—gravrra mra)®
(k=2),

where p is the imaginary part of A, and where the first C depends on «, and
the second on a, but both are independent of (x, )€EX][0, o). As the
integrals on the right-hand side converge as A—>co, (4.1) can be rewritten as
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|v(, ) —u(x)eit| < Ce®® Fle %t |

where C depends on «, and w, but not on x nor ¢ (k=1, 2). Therefore we have
(1) and (i) in both theorems.
By its definition u(x) satisfies the integral equation

u(x) S e~ ielF=Y| ( ) S e felF-yl ( ) ( )d
~——c(y)u(y)dy ,
Tamyl 097 4 ) Ty P
where [g(y)| <Q,e”™”" and |c(y)u(y)| < Ce ®»?1 by means of (B,), (4,) and
Proposition 3.5 (ii). 'Then, for the proof of (iii) in both theorems it is sufficient
to refer to A. Ya. Povzner [11], Chapter 2, Lemmas 1 and 2.
Thus we have proved Theorems 1 and 2.

Appendix. As was mentioned in Section 1 we remark here that the
assumption of (4,) has a justifiable ground. For we can give an example of
c(x) satisfying (4,) and (4,), but not (4,), which means that (4,) is independent
of the others on ¢(x) (¢f. also T. Shirota and K. Asano [12]).

sin | x| ( x| <

Consider
T
-1 <'x'<7> [x]

) fo(x) =
o () Tl (e

It follows from a simple computation that f,(x) satisfies the equation

)
Y

to[:;

co(x) =

TR

fu) = = o § 2 oy

However c,(x) is not smooth. So let p(x)=p(|x|) be a C= function such that
p(x)=0, p(x)=0 (|x| >1) and S p(x)dx=1. Moreover, denoting by * the con-
E

volution, we put

P co folx — ok
1) o) = 2XGH ) = pef).

Then f,(x)=f,(|x]) is a strictly postitive solution in B;N C*(E) of the equation

= § 720 rony,

but it is not in L* because it equals |x| ™" for |x|> % +1. Furthermore, the

numerator of ¢,(x) is a C* function with support in the sphere |x| <21, and

2
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so is ¢,(x)==¢,(|x|). Hence ¢,(x) satisfies (4,), but not (4,).

Now we are proving that the operator L,—=—A-c¢,(x) has no negative
eigenvalue with an L” eigenfunction. Let A<<0. Letf&L?be a solution of the
equation

() L.f=x\f.
If we put, in spherical coordinates,
(3) g(r> 0, p) = rf(r’ 0, 9) (1] =r),

g may be expressed in terms of the series

20,0, 9) =3} 200 nln) Y, (0, 9),

where {Y,,} is a complete orthonormal system of spherical harmonics, and
where

4) o) = | dp | 81,0, 9)Y, ul0, @) sin 046,

which fulfills the equation

) L bum)+(r =) = " )s, ) = 0.

4

Since M (n>1) represents a positive definite operator, we have only to
r

prove, in view of (5), (3) and (4), that b(r)= L*0, co) must identically vanish if
b(r) satisfies

(6) b"(r)+(n—e(r))b(r) = 0,
(7) b(0) = 0.

By the statement following (1), b,(r)=7f,(r) fulfills

) B()>0 (r7>0),  byr) =1 <r> §+1),
9 b"(r)—c,(r)by(r) = 0,
(10) B(O)=0,  8/(0)>0.

Any solution of equtaion (6) with (7) may be determined except for a constant
multiple. Hence we can assume

(11) b'(0)>b,'(0) .
By (7), (10) and (11) we have, for sufficiently small positive values of 7,
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(12) b(r)>by(7) .

Assume that b(r) and b,(r) have the first common value at r=r7, except the
origin. 'Then we obtain

(13) b'(r,)< b, (1) -
Multiplying (6) and (9) by &,(r) and b(r) respectively, and subtracting, we have
Aby(1)b(r) = b(r)by" (r)—by(r)b"() -

Integrating the above equation over [0, 7,], we get, by (7) and (10),
» Sro bo(r)b(r)dr = bo(’o)(bo/(ro)_bl(ro)) (7\<0) ’

where the left-hand side is negative by (8) and (12), while the right-hand side is
non-negative by (8) and (13). This is a contradiction. So by (12) we have

b(r)>by(r) (r>0).

Hence, by (8) b(r) does not lie in L*0, o). That is, b(r) € L*(0, o) satisfying (6)
and (7) must be identically zero, which was to be proved. Therefore (4,) is the
case with ¢,(x).

Thus ¢,(x) is a required example satisfying (4,) and (4,), but not (4,).
In other words, (A4,) is not too unnatural a restriction on the potential function

c(x).
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