ON THE SMOOTHING PROBLEM AND THE SIZE OF A TOPOLOGICAL MANIFOLD

Yoshihiro SHIKATA*

(Received September 13, 1966)

0. Introduction

In this paper which is a direct continuation of [S], we treat the smoothing problem of a compact topological manifold.

We define in §3 a size |X/d| of a compact topological manifold X relative to a distance function d on X. As is seen in §4, it is rather easy to see that if X admits a smooth structure and if d is a Riemannian metric relative to the structure, then |X/d| = 0.

Our main result is the converse of this fact, that is, if |X/d| is sufficiently small, then X admits a smoothing and d is approximated by a Riemannian metric on the smoothing in the sense of Lipschitz ratio. (See Theorem 1)

We call a smoothing σ of X compatible in the strong sense with its distance d, if σ admits a Riemannian metric whose Lipschitz ratio to d is less than |X/d| (see §3). Then, by Part II of [S], it is easy to see that if |X/d| is sufficiently small, any two compatible smoothings are differentiably equivalent. Therefore we conclude as follows:

"If |X/d| is sufficiently small, then X admits unique smoothing which is compatible with its distance d."

Finally we define the absolute size |X| of X by

$$X = \inf \{ |X/d| \ d : \ distance \ function \ on \ X \},$$

to get a criterion for the existence of a smoothing on X:

"
$$|X| = 0 \Leftrightarrow X$$
 is smoothable."

1. Modification of ϕ -average

We start with the following lemma which might be well known;

Lemma 1. Given relatively compact open sets U, V, W in R^n such that $\overline{U} \subset V$, $\overline{V} \subset W$, then there is a smooth function $0 \le t(p) \le 1$ on R^n which satisfies

^{*} During the work, the author was partly supported by Fūjukai Fund.

294 Y. Shikata

the following:

(1) t=1 on U, t=0 on W'.

(2) when F denote the closed set defined by

$$F = \{x \in R^n/t(x) = 0\} \supset W'$$

then, for some positive δ ,

$$t(p) \leq \operatorname{dist}(p, F)\delta$$
 and $F \subset V$.

(3) for any $\xi \in T_n(\mathbb{R}^n)$,

$$|\partial_{\xi}t(p)| < \alpha_0 |\xi|/\delta$$
,

where α_0 is the constant of (1.2)' of [S].

Proof. Take an open set V_0 so that

$$\bar{U} \subset V_0$$
, $\bar{V}_0 \subset V$,

and define u(p) by

$$u(p) = \min (1, \operatorname{dist}(p, V')/\operatorname{dist}(V_0, V')),$$

then u(p) is continuous and is such that

$$0 \le u(p) \le 1$$
, $u(p) = 1$ on V_0 , $u(p) = 0$ only on V' .

Let t(p) be the ϕ -average of u(p) (see §1 of [S]):

$$t(p) = \int \phi_{\delta}(x, p)u(x)dv,$$

where $\delta > 0$ is given by

$$\delta = \min \left(\text{dist} \left(U, V_0' \right), \text{ dist} \left(V_0, V' \right), \text{ dist} \left(V, W' \right) \right).$$

Then $0 \le t(p) \le 1$ and hence if $p \in U$, then $\operatorname{Car} \phi_{\delta}(x, p) \subset V_{0}$, therefore

$$u(x) = 1$$
 on $\operatorname{Car} \phi_{\delta}(x, p)$.

Consequently t(p)=1 on U. In case of $p \in W'$, $Car \phi_{\delta}(x,p) \subset V'$, therefore

$$u(x) = 0$$
 on $\operatorname{Car} \phi_{\delta}(x, p)$

Hence t(p) = 0 on W and similarly $F \subset V$.

In order to prove assertion (2), we prove first

(4) dist $(p, F) \ge$ dist (x, V') for any x for which dist $(x, p) \le \delta$. In case of $x \in V$, let $f \in F$ be a point such that

$$\operatorname{dist}(p, f) = \operatorname{dist}(p, F)$$
,

and let the line \overrightarrow{xf} cross ∂V at y. Then it is easy to see the following:

$$\operatorname{dist}(x, f) = \operatorname{dist}(x, y) + \operatorname{dist}(y, f),$$

$$\operatorname{dist}(x, f) \leq \operatorname{dist}(x, p) + \operatorname{dist}(p, f),$$

$$\operatorname{dist}(x, y) \geq \operatorname{dist}(x, V'), \quad \operatorname{dist}(y, f) \geq \operatorname{dist}(V, f) \geq \delta.$$

Therefore

$$\operatorname{dist}(x, V') \leq \operatorname{dist}(x, y) = \operatorname{dist}(x, f) - \operatorname{dist}(y, f)$$
$$\leq \operatorname{dist}(x, p) - \operatorname{dist}(y, f) + \operatorname{dist}(p, f)$$
$$\leq \operatorname{dist}(p, F).$$

And if $x \in V$, (4) is obvious, since dist (x, V')=0, finishing the proof of (4). Now (4) yields that

$$u(x) \leq \operatorname{dist}(x, V')/\delta \leq \operatorname{dist}(p, F)/\delta$$
 on $\operatorname{Car} \phi_{\delta}(x, p)$,

therefore, taking ϕ -average,

$$t(p) \leq \operatorname{dist}(p, F)/\delta$$
.

Thus (2) is proved, and (3) is proved as follows:

$$|\partial_{\xi}t(p)| = \left| \int \partial_{\xi}\phi_{\delta}(x, p)u(x)dv \right|$$

$$\leq 4\gamma(n)\delta^{n} \max |u(x)| |\xi|/\kappa(n)\delta^{n+1}$$

$$\leq \alpha_{0} |\xi|/\delta,$$

where $\alpha_0 = 4\gamma(n)/\kappa(n)$ (see (1.2)' of [S]).

Let $U, V, W, \delta, t(p), F$ be as in Lemma 1 and assume there given a Lipschitz homeomorphism h of \overline{W} into R^N . Define (modified) ϕ -average ϕh of h by

$$\phi h(p) = \begin{cases} h(p) & (p \in F \cap \bar{W}), \\ \int \phi_{K\delta \, t(p)}(x, \, p)h(x)dv & (p \in F' \cap \bar{W}), \end{cases}$$

where K is a positive <1.

Obviously ϕh is smooth on F' and because of (1.6) of Part II of [S], ϕh satisfies

$$|\phi h(p)-h(p)| \leq \mu_0(1+\lambda)K\delta t(p),$$

provided h is of λ^2 -Lipschitz condition.

This particularly implies the continuity of ϕh on \bar{W} and yields

Lemma 2. If
$$\lambda < 1$$
, then for $K \leq \min(1, 1/4\mu_0)$, $\phi h(F') \cap \phi h(F) = \emptyset$.

296 Ү. Shikata

Proof. Suppose $\phi h(p) = \phi h(q)$ with $p \in F'$, $q \in F$, then

$$|h(p)-h(q)| = |h(p)-\phi h(p)| \le \text{dist}(p, F)/2$$
,

On the other hand

$$|h(p)-h(q)| \ge \operatorname{dist}(p, q)/(1+\lambda) > \operatorname{dist}(p, q)/2.$$

Therefore we should have

$$\operatorname{dist}(p, F)/2 \leq \operatorname{dist}(p, q)/2 < \operatorname{dist}(p, F)/2$$
,

which is a contradiction.

Lemma 3. For $0 < K < K_0$ and $\lambda < \lambda_0$, ϕh is non degenerate in F'.

Proof. Set $\mathcal{E}=K\delta$ and let $\partial'_{\xi}\phi_{te}$, $\partial''_{\xi}\phi_{te}$ denote the differential of ϕ_{te} keeping t fixed and the differential only in t, respectively. Then

$$\partial_{\xi}\phi h = \int \partial'_{\xi}\phi_{te}hdv + \int \partial''_{\xi}\phi_{te}hdv$$
.

As for ∂'_{ξ} type differential we have ((1.7) of Part II of [S])

(6)
$$\left| \int \partial'_{\xi} \phi_{t\varepsilon}(x, p) h(x) dv - h_{\sigma}(\xi) \right| \leq \mu_1 \lambda |\xi|,$$

for a simplex σ at p of diameter $t\mathcal{E}$. And we get easily,

$$\partial''_{\xi}\phi_{t\varepsilon}=(-\phi'|x-p|/\kappa\varepsilon^{n+1}t^{n+2}-n\phi/\kappa\varepsilon^{n}t^{n+1})(\partial_{\xi}t).$$

Therefore

$$\left| \int \partial''_{\xi} \phi_{te} h dv \right| \leq \varepsilon \sqrt{N} (4+n) (1+\lambda) |\partial_{\xi} t| / \kappa$$

$$\leq \alpha K |\xi|.$$

Thus

$$|\partial_{\xi}\phi h - h_{\sigma}(\xi)| \leq (\mu_1 \lambda + \alpha_1 K) |\xi|,$$

and an arguement similar to that in §3 of [S] yields the conclusion.

A calculation similar to that in p. 68 [S] gives an evaluation of $|h_{\sigma}(\xi)| - |\xi|$ and therefore gives

Corollary 1. With a constant $\mu = \mu(n)$, $\partial_{\xi} \phi h$ satisfies

$$|\partial_{\varepsilon}\phi h| - |\varepsilon|| \le (\mu \lambda + \alpha K)|\varepsilon|.$$

2. Smoothing of homeomorphism

Let M be a smooth manifold (not necessarily closed) isometrically imbed-

ded in R^N with tubular neighbourhood T(M) of sufficiently small diameter. Then for any $x \in T(M)$ and for any $y \in M$, we may assume

$$|y - \pi(x)|/4 \le |x - y|.$$

where π denotes the projection of T(M) onto M.

Lemma 4. Let h be a homeomorphism of a relatively compact open set W_1 of R^n into M and let U, V, W be open sets such that $\bar{U} \subset V$, $\bar{V} \subset W$, $\bar{W} \subset W_1$. Then if h satisfies the λ_0^2 Lipschitz condition on W_1 , there is a positive K_0 such that for any $K < K_0$ the modified ϕ_K -average $f_K = \pi \phi_K h$ of h relative to U, V, W followed by the projection π maps F' into h(F').

Proof. Suppose on the contrary $f_K(p) \in h(F')$ for some $p \in F'$, then obviously

$$\rho(h(p), f_K(p)) \ge \rho(h(p), h(\partial F')) = \rho(h(p), h(q)),$$

for some point $q \in \partial F'$. Since h is of λ_0^2 -Lipschitz,

$$\rho(h(p), f_K(p)) \ge |p-q|/1 + \lambda_0 \ge \operatorname{dist}(p, \partial F')/1 + \lambda_0$$

On the other hand (see (1, 2) (1, 5)).

$$|\phi h(p) - h(p)| \leq \mu_0(1 + \lambda_0) K \delta t(p)$$

$$\leq \mu_0(1 + \lambda_0) K \min(\delta, \operatorname{dist}(p, F)).$$

Therefore, if K is small, we may assume that $|h(p)-f_K(p)|$ is small and approximates $\rho(h(p), f_K(p))$, in particular,

$$\rho(h(p), f_K(p))/2 \leq |h(p)-f_K(p)|.$$

Thus we should have

$$\operatorname{dist}(p, \partial F')/2(1+\lambda_0) \leq 4\mu_0(1+\lambda_0)K \operatorname{dist}(p, F).$$

which yields a contradiction for $K < 1/8\mu_0(1+\lambda_0)^2$.

Corollary 2. Be the notations same as in Lemma 4, then if $K < K_0$, the map h_s defined by

$$h_s(p) = \begin{cases} f_{sK}(p), & \text{if } 0 < s \leq 1 \\ h(p), & \text{if } s = 0 \end{cases}$$

gives a homotopy between f_K and h as maps of F' into h(F') and therefore as maps of W_1 into $h(W_1)$.

Lemma 5. Using the same notation as in Lemma 4, we can find a positive $K_1(\leq K_0)$ such that if $K < K_1$, then $f_K = \pi \phi_K h$ is non degenerate on F'.

298 Ү. Ѕніката

Proof. The evaluation (1.7) and an argument similar to that in the proof of Proposition 3 of [S] yield easily the conclusion.

Lemma 6. Be the notation same as in Lemma 5, then if $K < K_1$, f_K maps F' onto h(F').

Proof. Suppose on the contrary, $h(p) \notin f_K(F')$ with $p \in F'$, then the arc $h_s(p)$ from h(p) to $f_K(p)$ should cross $\partial f_K(F')$ at $h(q) \in h(F')$ (see Lemma 4). Since F' is compact and since f_K is an open map (see Lemma 5), we get

$$h(q) \in \partial f_K(F') \subset f_K(\partial F') = h(\partial F')$$
,

which is a contradiction. Combining Lemmas 5, 6 with Corollary 1, we get

Proposition 1. There exists a positive α such that if a map h of an open set W into a Riemannian manifold M has the Lipschitz size less than α , then for any open set U for which $\bar{U} \subset W$, a homeomorphism f of W into M approximates h in such a way that

- (1) f=h on \overline{W} ,
- (2) f is differentiable on U,
- (3) the differential df on U satisfies

$$\mathfrak{l}(df) \leq ((\mathfrak{l}h))^{\gamma(n)}$$

with a positive $\gamma = \gamma(n)$ depending on $n = \dim W$.

3. Construction of a smooth manifold

Let $C = \{(U_i, h_i)\}_{i \in I}$ be a local coordinate system of a compact topological manifold X consisting of a open covering $U = \{U_i\}_{i \in I}$ of X and of a set of homeomorphismus h_i of discs in R^n onto U_i . We refer simply by $I(h_i)$ the Lipschitz size of h_i relative to a (fixed) distance d on X and the usual metric $|\cdot|$ on R^n , (see p. 66 [S]). Let I(C) denote the maximum of $I(h_i)$ and let m(U) be the multiplicity of the covering:

$$m(\mathcal{U}) = \max_{i \in I} \#\{j \in I \mid U_i \cap U_j = \phi\}.$$

Then we define the size |C/d| of C relative to the distance d by

$$|\mathcal{C}/d| = (8\gamma)^{m(\mathcal{U})} \log I(\mathcal{C}).$$

where $\gamma = \gamma(n)$ is the positive depending on $n = \dim X$ of Proposition 1. The size |X/d| of the manifold is defined to be the infimum of the numbers $|\mathcal{C}/d|$ taken over the set of the coordinate systems of finite coverings. Then the condition $|X/d| < \varepsilon/2$ implies that there exists a finite covering $\mathcal{U} = \{U_i\}_{i \in I}$ of X and a system of homeomorphismus h_i of discs D_i onto U_i satisfying

$$(\mathfrak{l}(\mathcal{C}))^{(8\gamma)^{m(\mathcal{C})}} < \exp(\varepsilon).$$

We now construct a smooth manifold under the condition above, provided ε is sufficiently small.

Lemma 7. From a given finite open covering \mathbb{U} of X, we can construct an open covering $\{X_1, \dots, X_m\}$ of X such that

- (1) $m=m(\mathcal{O})+1$
- (2) each open set X_i is a disjoint union of some of open sets of \mathcal{V} .
- (3) every open set U_i of U appears in only one open set X_i .

Proof. Using a suitably defined order in the index set I, we classify I into subsets I_1, \dots, I_m in the following way;

- (1) $1 \in I_1$ and $i \in I$, 1 < i belongs I_1 if and only if for all $j \in I_1$, j < i, it holds that $U_i \cap U_i = \phi$.
- (2) min $(I-I_1 \cup \cdots \cup I_k) \in I_{k+1}$ and $i \in I-(I_1 \cup \cdots \cup I_k)$, belongs I_{k+1} if and only if for all $j \in I_{k+1}$, j < i, it holds that $U_i \cap U_i = \phi$.

This process continues at most $m=m(\mathcal{O})+1$ times, in fact, suppose on the contrary that there is $i \in I$ such that $i \notin I_1 \cup \cdots \cup I_m$, then $U_i \cap U_{k_j} \neq \phi$ with some $k_j \in I_k$ for each $k=1, \dots, m$, indicating that $\sharp \{j \in I_i \cap U_j \neq \phi\} \geq m=m(\mathcal{O})+1$.

Hence letting $X_k = \bigcup_{i \in I_k} U_i$, we get the covering.

Let E_i denote the disjoint union of discs D_j , $j \in I_i$ and let H_i be the homeomorphism of E_i onto X_i which agrees with h_i on each component D_i of E_i .

Take concentric m discs $D_j^m \subset \cdots \subset D_j^2 \subset D_j^1 \subset D_j$ such that the images X^k_i of $E^k_i = \bigcup_{j \in I_i} D^k_j$ under the homeomorphism H_i form a covering of X for each $k=1, \dots, m$.

Each open set X_i is obviously smoothable as an homeomorphic image of a smooth manifolds E_i having a naturally defined Riemannian metric d_i . The homeomorphism $H_{12}=H_1^{-1}H_2$ is defined on $E_{12}=H_2^{-1}(X_1\cap X_2)$ and has the Lipschitz size less than $I(H_1)I(H_2)$ (see (2.3) p. 66 [S]).

Therefore, if $I(H_1)I(H_2) \leq \alpha$ on E_{12} (α of Proposition 1), then an application of Proposition 1 to H_{12} and $E_{12}^{-1} = H_2^{-1}(X_1^{-1} \cap X_2^{-1}) \subset E_{12}$ yields that there exists a homeomorphism h_{12} of E_{12} into E_1 which is diffeomorphic on E_{12}^{-1} . By the identification through h_{12} , $E_1^{-1} \cup E_2^{-1}$ (disjoint union) turns out to be a smooth manifold C_2^{-1} and then $X_1^{-1} \cup X_2^{-1} = Y_2^{-1}$ to be a smoothable manifold by a homeomorphism F_2 of C_2^{-1} onto Y_2^{-1} defined by the following:

$$F_2(x) = \begin{cases} H_1 p_1^{-1}(x) & \text{if} \quad x \in p_1(E_1^{-1}) \\ H_1 h_{12} p_2^{-1}(x) & \text{if} \quad x \in p_2(E_{12} \cap E_2^{-1}) \\ H_2 p_2^{-1}(x) & \text{if} \quad x \in p_2(E_2^{-1}) - p_2(E_{12}) \ . \end{cases}$$

300 Ү. Ѕніката

In order to make $Y_3^2=X_1^2\cup X_2^2\cup X_3^2$ smoothable, consider the homeomorphism $H_{23}=F_2^{-1}H_3$ of $E_{23}=H_3^{-1}(Y_2^1\cap X_3^1)$ into C_2^1 . We may proceed as in the same way above, if the Lipschitz size of H_{23} is sufficiently small relative to a certain Riemannian metric ρ_2 on C_2^1 and d_3 on E_3 . Define ρ_2 by the following bilinear form $\langle \cdot \rangle_x$ on the tangent space $T_x(C_2^1)$ of C_2^1 ;

$$\langle \xi, \eta \rangle_x = a_1(x) \langle dp_1^{-1}(\xi), dp_1^{-1}(\eta) \rangle + a_2(x) \langle dp_2^{-1}(\xi) dp_2^{-1}(\eta) \rangle$$

where a_i is a partition of unity associated to the covering $\{p_i(E_i)\}_{i=1,2}$. Then an inequality

(4)
$$||dh_{12}\xi|^2 - |\xi|^2| \le \beta^2 |\xi|^2 (\xi \in T(E_i))$$

yields that, for $\xi \in T_x(C_2^1)$,

$$||\xi|_{x}^{2} - |dp_{i}^{-1}(\xi)|^{2}| \leq a_{j}(x)||dh_{12}dp_{i}^{-1}(\xi)|^{2} - |dp_{i}^{-1}(\xi)|^{2}|$$

$$\leq \beta^{2}|dp_{i}^{-1}(\xi)|^{2} \qquad (i \neq j).$$

Therefore we easily see that under the inequality (4),

$$\sqrt{1-\beta^2}d_i(p,q) \leq \rho_2(p_i(p), p_i(q)) \leq \sqrt{1+\beta^2}d_i(p,q)$$

and we get the following:

Lemma 8. If $\mathfrak{I}^2(dh_{12}) \leq 4/3$, then $\mathfrak{I}(p_i)$ (rel. ρ_2 , d_i) $\leq \mathfrak{I}^2(dh_{12})$. Thus combining Lemma 7 with Proposition 1, (3), we get;

$$\mathfrak{l}(H_{23})$$
 (rel. ρ_2, d_3) $\leq \mathfrak{l}^{2\gamma}(H_{12})\mathfrak{l}^{\gamma}(H_{12})\mathfrak{l}^{2}(\mathcal{C}) \leq \mathfrak{l}^{8\gamma}(\mathcal{C})$.

Therefore if $\mathfrak{l}^{s\gamma}(C) \leq \alpha$ then we approximate H_{23} by h_{23} on $E_3^{-1} = H_3^{-1} F_2(C_2^{-1})$ so as to the identified manifold $C_3^{-2} = E_3^{-2} \bigcup_{h_{23}} C_2^{-2}$ through h_{23} is a differentiable manifold which covers Y_3^{-2} by a suitably defined homeomorphism F_3 . We continue the process and get manifolds C_{k+1}^{-k} and homeomorphisms F_k , covering $Y_{k+1}^{-k} = Y_1^{-k} \cup \cdots \cup Y_{k+1}^{-k}$, as long as $H_{k,k+1} = F_k^{-1} H_{k+1}$ satisfy

$$\mathfrak{l}(H_{\boldsymbol{k}\,\boldsymbol{k}+1}) \text{ (rel. } \rho_{\boldsymbol{k}}, d_{\boldsymbol{k}+1}) \leq \alpha.$$

Since inductively we easily verify

$$\mathfrak{l}(H_{m{k}\,m{k}+1}) ext{ (rel. }
ho_{m{k}}, \ d_{m{k}+1}) \leqq \mathfrak{l}^{(8\gamma)m{k}}(\mathcal{C})$$
 ,

provided $I^{(8\gamma)^{k-1}}(C) \leq 2/\sqrt{3}$, the assumption that

$$\mathfrak{l}^{(8\gamma)^{M}}(\mathcal{C}) \leq \min(\alpha, 2/\sqrt{3}),$$

where $M=m(\mathcal{U})$, yields that we can complete our construction.

4. A remark in the differentiable case

We remark that if X is differentiable then |X| = 0. In fact, take a Riemannian metric d on X, then the exponential map \exp_p defined around $p \in X$, relative to d is such that if diam $(U(p)) \to 0$, then $I(\exp_p)$ (rel. d, $|\cdot|) \to 1$ on U(p). Thus to prove |X/d| = 0, it is sufficient to show that for any $\delta > 0$, there exists an open covering $U = \{U_i\}_{i \in I}$ of X such that diam $(U_i) < \delta$ and $m(U) \le M$ (M is independent of δ). Such a covering is constructed as follows; Take the triangulation of X, described in [Wy. p. 124–135] or [S. p. 72], for $\varepsilon = 1/4 \delta$, and let $U(p) = \{x \in X/d(p, x) < \delta/2\}$ for each $p \in K^0$, the 0-skelton of K. Then since diam $\sigma < \varepsilon = 1/4\delta$ for any $\sigma \in K$, $\{U(p)\}_{p \in K^0}$ forms an open covering of X and each open set of the covering has diameter less than δ . To evaluate the multiplicity, consider the volume of n-simplex σ in K which is estimated in [S] as in the following form with positive functions $\theta(n)$, $\beta(n)$ of n;

vol
$$\sigma \ge 1/4 \theta(n) \operatorname{diam}^{n}(\sigma) \ge \beta(n)\theta(n)\delta^{n}/4^{n+1}$$

provided δ is sufficiently small. Therefore the maximal number of verteces in U(p) is less than

$$\operatorname{vol}(U(p))/\operatorname{vol}\sigma \leq 4^{n+2}\Gamma(n)/\beta(n, N)\theta(n, N) = M$$
,

where $\Gamma(n)$ is the ratio to the volume of *n*-sphere to its diameter, thus we see the multiplicity is less than M.

Osaka City University

References

[S] Y. Shikata: On a distance function on the set of differentiable structures, Osaka J. Math. 3 (1966), 65-79.

[Wy] H. Whitney: Geometric Integration Theory, Princeton University Press.