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0. Introduction

In this paper which is a direct continuation of [S], we treat the smoothing
problem of a compact topological manifold.

We define in §3 a size | X/d| of a compact topological manifold X relative
to a distance function 4 on X. As is seen in §4, it is rather easy to see that if
X admits a smooth structure and if 4 is a Riemannian metric relative to the struc-
ture, then | X/d|=0.

Our main result is the converse of this fact, that is, if | X/d| is sufficiently
small, then X admits a smoothing and d is approximated by a Riemannian metric
on the smoothing in the sense of Lipschitz ratio. (See Theorem 1)

We call a smoothing ¢ of X compatible in the strong sense with its distance
d, if o admits a Riemannian metric whose Lipschitz ratio to d is less than | X/d |
(see §3). Then, by Part II of [S], it is easy to see that if | X/d| is sufficiently
small, any two compatible smoothings are differentiably equivalent. Therefore
we conclude as follows:

“If | X/d| is sufficiently small, then X admits unique smoothing which is
compatible with its distance d.”

Finally we define the absolute size | X| of X by

X = inf {|X/d| d: distance function on X},
to get a criterion for the existence of a smoothing on X:

“|X| =0 = X is smoothable.”

1. Modification of g-average

We start with the following lemma which might be well known;

Lemma 1. Given relatively compact open sets U, V, W in R" such that
UcV, Vc W, then there is a smooth function 0< (p)<1 on R" which satisfies
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the following:
1) t=1o0nU t=00n W'.
(2) when F denote the closed set defined by

F={xeR"t(x)=0D W’
then, for some positive 3,
ip) < dist(p, F)6 and FcCV.
() for any EET,(R"),
10g(p)| < a1 E1/3
where «, is the constant of (1.2)' of [S].
Proof. Take an open set V, so that
Ocv,, V,cV,
and define u(p) by
u(p) = min (1, dist (p, V')/dist (V,, V")),
then u(p) is continuous and is such that
O<u@p)<1, u@p)=1 on V, u(p)=0 onlyon V'.
Let #(p) be the ¢p-average of u(p) (see §1 of [S]):

t(p) = { g, Plulx)do
where §>0 is given by
8 = min (dist (U, V'), dist (V,, V"), dist(V, W")).
Then 0<#(p)<1 and hence ,if p U, then Car ¢4(x, p)C V,, therefore
u(x) =1 on Car ¢4, p) -
Consequently #(p)=1 on U. In case of p= W’, Car ¢4(x, p) V', therefore

o ux) =0 on Car ¢yx, p)
Hence H(p)=0 on W'and similarly FcV.

In order to prove assertion (2), we prove first

# dist (p, F)=dist (x, V')  for any x for which dist (x, p)<8.
In case of x= V, let f = F be a point such that

dist (p, f) = dist (p, F),
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and let the line ;c_} cross 0V at y. Then it is easy to see the following:

dist (x, f) = dist (x, y)+dist (y, f) ,
dist (x, f) < dist (x, p)+dist (p, /),
dist (x, y) = dist (x, V'), dist(y,f) = dist(V,f) =8.
Therefore
dist (x, V') < dist (%, y) = dist (x, f)—dist (y, f)
= dist (x, p) — dist (y, f)-+dist (p, f)
< dist(p, F).

And if x& V, (4) is obvious, since dist (x, V')=0, finishing the proof of (4).
Now (4) yields that

u(x) < dist (v, V')/5 < dist (p, F)/5  on Car ¢y, ),
therefore, taking ¢-average,
() < dist (p, F)/5 .
Thus (2) is proved, and (3) is proved as follows:

104t(p) | = || Ger, pYu(w)do
< 4(n)o" max| u(x)| €] Je(n)o""
< alt1/3,

where a,=4(n)/x(n) (see (1.2)" of [S]).
Let U, V, W, §, t(p), F be as in Lemma 1 and assume there given a Lip-
schitz homeomorphism 4 of Winto R¥. Define (modified) ¢-average ¢k of & by

LC (p<FN W),
PO (b e (pF ),

where K is a positive <1.
Obviously ¢k is smooth on F’ and because of (1.6) of Part II of [S], ¢k

satisfies
) [ ph(p)—h(P)| = n(1-+N)KS2(P),

provided % is of A*-Lipschitz condition.
This particularly implies the continuity of ¢p# on W and yields

Lemma 2. If A<], then for K <min (1, 1/4p,),
PR(F YN P F) = 0.
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Proof. Suppose ¢ph(p)=¢h(q) with peF’, g F, then
|(p)—h(g) | = h(p)—h(p)| = dist (p, F)[2,
On the other hand
|h(p)—h(g)| = dist (p, g)/(1+1)> dist (p, 9)/2 .
Therefore we should have
dist (p, F)/2 < dist (p, g)/2 <dist (p, F)/2,
which is a contradiction.
Lemma 3. For 0<K<K, and A<\, ph is non degenerate in F’.

Proof. Set £&=K3§ and let 8'¢,e, 0", denote the differential of ¢,, keep-
ing ¢ fixed and the differential only in ¢, respectively. Then

oeph= | 0'suhdv- | "puhdo

As for 9’ type differential we have ((1.7) of Part II of [S])

©) || 0'tbulr, 0II—h(B)] < r
for a simplex o at p of diameter 6. And we get easily,

0"epse = (— ' |x—p| €™ "2 —ncp[kE™1")(Dgt)
Therefore

= VN (44+n)(14+1) [ 02| [«
= aK|E|.

j SG";(j)nhdv

Thus
I aﬁd)h—ho‘(g)l é (/‘517\'+a1K) ]E ' ’

and an arguement similar to that in §3 of [S] yields the conclusion.
A calculation similar to that in p. 68 [S] gives an evaluation of |k (€)| —|&]|
and therefore gives

Corollary 1. With a constant p= u(n), 0gph satisfies
[10sph| — |E] | = (ur+a,K)|E].

2. Smoothing of homeomorphism

Let M be a smooth manifold (not necessarily closed) isometrically imbed-
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ded in RY with tubular neighbourhood T(M) of sufficiently small diameter.
Then for any x€ T(M) and for any y =M, we may assume

1) |y—n(*)| /4 < x—y].
where 7 denotes the projection of T(M) onto M.

Lemma 4. Let h be a homeomorphism of a relatively compact open set W,
of R" into M and let U, V, W be open sets such that Uc'V, Vc W, WcC W,.
Then if h satisfies the \,* Lipschitz condition on W, there is a positive K, such that
for any K<K, the modified ¢x-average fx= ndpxh of h relative to U, V, W
followed by the projection = maps F' into h(F").

Proof. Suppose on the contrary fx(p)&A(F") for some p< F’, then obviously
P(h(P), fx(P)) = P(h(P), h(OF")) = p(h(p), h(9)),
for some point gE9F’. Since k is of A, ~Lipschitz,
P(h(p), fx(P)) = 1p—ql /14X, = dist (p, OF')[1+2,
On the other hand (see (1, 2) (1, 5)).

| ph(p)—h(D) | = o1+ No)KSL(P)
< u(14+2)K min (8, dist (p, F)).

Therefore, if K is small, we may assume that |h(p)—fx(p)| is small and
approximates p(k(p), fx(p)), in particular,

P(h(p), fx(P))2 = |h(p)—[x(P).
Thus we should have
dist (p, OF")[2(142g) < 4ug(1-+2,)K dist (p, F).
which yields a contradiction for K<1/8u(1-2,)-

Corollary 2. Be the notations same as in Lemma 4, then if K<K,, the map
h, defined by
fx(p), if 0<s=<1

h‘(P):{h(p), if s=0

gives a homotopy between fx and h as maps of F' into h(F') and therefore as maps of
W, into h(W,).

Lemma 5. Using the same notation as in Lemma 4, we can find a positive
K, (£K,) such that if K<K,, then fy=mn¢pgh is non degenerate on F'.
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Proof. The evaluation (1.7) and an arguement similar to that in the proof
of Proposition 3 of [S] yield easily the conclusion.

Lemma 6. Be the notation same as in Lemma 5, then if K<<K,, fx maps
F’ onto h(F").

Proof. Suppose on the contrary, A(p)e: fx(F') with pEF’, then the arc
hy(p) from A(p) to fx(p) should cross dfx(F’) at h(q) Eh(F') (see Lemma 4). Since

F' is compact and since fx is an open map (see Lemma 5), we get
h(q)0fx(F')C fx(0F") = h(3F"),
which is a contradiction. Combining Lemmas 5, 6 with Corollary 1, we get

Proposition 1. There exists a positive @ such that if a map h of an open
set W into a Riemannian manifold M has the Lipschitz size less than a, then for
any open set U for which Uc W, a homeomorphism f of W into M approximates h
in such a way that
1) f=h on W,

(2) f s differentiable on U,
(3) the differential df on U satisfies

I(df) = (W)
with a positive y=1y(n) depending on n=dim W.

3. Construction of a smooth manifold

Let C={(U;, h;)};er be a local coordinate system of a compact topological
manifold X consisting of a open covering U= {U,};c; of X and of a set of home-
omorphismus #; of discs in R” onto U;. We refer simply by I(4;) the Lipschitz
size of k; relative to a (fixed) distance d on X and the usual metric | | on R*

(see p. 66 [S]). Let I(C) denote the maximum of [(A;) and let m(?U) be the
multiplicity of the covering:

m(VU) = max,c, #{jEI|U;NU; = ¢}.
Then we define the size |C/d| of C relative to the distance d by
1Cld| = (8v)™ V) log 1(C) .

where y=(n) is the positive depending on n=dim X of Proposition 1. The
size | X/d| of the manifold is defined to be the infimum of the numbers |C/d|
taken over the set of the coordinate systems of finite coverings. Then the con-
dition |X/d|<€/2 implies that there exists a finite covering U= {U,};,c; of X
and a system of homeomorphismus %; of discs D; onto U; satisfying
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ACHE™ ) < exp () .

We now construct a smooth manifold under the condition above, provided
€ is sufficiently small.

Lemma 7. From a given finite open covering U of X, we can construct an
open covering {X,, ---, X,,} of X such that

(1) m=m(@)+1
(2) each open set X; is a disjoint union of some of open sets of U.
(3) every open set U; of U appears in only one open set X;.

Proof. Using a suitably defined order in the index set I, we classify [
into subsets I, -, I,, in the following way;

(1) 1€l and iel, 1< belongs I, if and only if for all j =1, j<i, it holds that
U,nU;=¢.

(2) min (I—L,U---Ul,)El,,, and iecI—(I,U---UI,), belongs I, if and
only if for all j&€1,,,, j<<i, it holds that U;N U;=4¢.

This process continues at most m=m(U)-+1 times, in fact, suppose on the
contrary that there is i€/ such that i€ [, U -+- UL, then U, N Uy, #+¢ with some
k;e1, for each k=1, .-+, m, indicating that #{j I,N U,+¢} =m=m(U)+1.

Hence letting X k:,-eu,, U;, we get the covering.

Let E; denote the disjoint union of discs D, j €1, and let H; be the homeo-
morphism of E; onto X, which agrees with 4; on each component D; of E,.

Take concentric m discs DT ---c Djc D}c D, such that the images X*; of
E* = g D*; under the homeomorphism H; form a covering of X for each

i€l;
k=1, ---, m.

Each open set X; is obviously smoothable as an homeomorphic image of
a smooth manifolds E; having a naturally defined Riemannian metric d;. The
homeomorphism H,=H,"'H, is defined on E,=H, '(X,NX,) and has the
Lipschitz size less than [(H,)I(H,) (see (2.3) p. 66 [S]).

Therefore, if [(H,){(H,)<a on E,, (« of Proposition 1), then an applica-
tion of Proposition 1 to H,, and E,'=H, (X'NX,')CE,, yields that there
exists 2 homeomorphism #,, of E,, into E, which is diffeomorphic on E,'. By
the identification through 4,,, E;' UE,' (disjoint union) turns out to be a smooth
manifold C;' and then X'UX,'=Y,' to be a smoothable manifold by a homeo-
morphism F, of C,' onto Y,' defined by the following:

H,p,"'(x) if xEp(E))
Fz(x) = thlzpz— 1("c) lf X Epz(Elz N Ezl)
H, 2P2 l(x) ’f xE Pz(Ezl)—pz(E 12) .
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In order to make Y j?=X/UX,;?UX,” smoothable, consider the homeo-
morphism H,,=F,'H, of E,,=H,”*(Y,'NX,') into C,'. We may proceed as in
the same way above, if the Lipschitz size of H,, is sufficiently small relative to a
certain Riemannian metric p, on C,' and d; on E,. Define p, by the following
bilinear form < >, on the tangent space T,(C,) of C,';

<& mx = a,(%)<dp,"N(E), dpy (n)>+ax(x){dp,"(E)dp,'(n)> ,

where a; is a partition of unity associated to the covering {p,(E,)};,,. Then
an inequality

4) [1dh EI"—|EI*| < B°IEI7  (EET(EY)
yields that, for £ T (C,"),

ELL—1dp T (E)*] = ay(x)| |dhydp;(E)|*— | dpi ' (§)*]
= Blap)1°  (E=*))-

Therefore we easily see that under the inequality (4),
V1=Gd{p, 9) = Ppi(P); PAQ)) = V145°ddp, 9)
and we get the following:

Lemma 8. If V¥dh,)<4/3, then (p;) (rel. p,, d;)<V(dh,,).
Thus combining Lemma 7 with Proposition 1, (3), we get;

H,)(rel. p,, &) < P(H,)V(H,)EC) < 1(C) -

Therefore if [*(C) <o then we approximate H,, by k,, on E;'=H,'F,(C,") so as
to the identified manifold C=E;|)C,’ through h,, is a differentiable manifold
ka3

which covers Y by a suitably defined homeomorphism F,. We continue the
process and get manifolds C,,,* and homeomorphisms F,, covering Y, *=
Y*y--UY, *aslongas H,, ,=F,'H,,, satisfy

(Hy ) (tel. pyy dyy) < -
Since inductively we easily verify
UHpgs,) (rel. ppy dpsy) < 17%(C),
provided [®*"*7(C)<2/\/ 3, the assumption that
(©r*(€) = min (a, 2/V/3),

where M=m(U), yields that we can complete our construction.
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4, A remark in the differentiable case

We remark that if X is differentiable then |X|=0. In fact, take a
Riemannian metric 4 on X, then the exponential map exp, defined around pe X,
relative to d is such that if diam (U(p))—0, then I(exp,) (rel. 4, | |)—1 on U(p).
Thus to prove | X/d|=0, it is sufficient to show that for any §>0, there exists
an open covering U= {U,};c; of X such that diam (U;)<<§ and m(U)<M
(M is independent of §). Such a covering is constructed as follows; Take the
triangulation of X, described in [Wy. p. 124-135] or [S. p. 72], for é=1/4 §,
and let U(p)= {x X/d(p, x)<<§/2} for each p K", the 0-skelton of K. Then
since diam o<<€=1/48 for any o €K, {U(p)},cx° forms an open covering of X
and each open set of the covering has diameter less than §. To evaluate the
multiplicity, consider the volume of #n-simplex o in K which is estimated in
[S] as in the following form with positive functions 8(r), B(n) of n;

vol o = 1/4 0(n) diam” (o) = B(n)f(n)5"/4"+

provided § is sufficiently small. Therefore the maximal number of verteces
in U(p) is less than
vol (U(p))[vol ¢ < 4™*°I'(n)/B(n, N)9(n, N) = M,

where T'(n) is the ratio to the volume of z-sphere to its diameter, thus we see the
multiplicity is less than M.
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