VANISHING THEOREMS FOR COHOMOLOGY GROUPS ASSOCIATED TO DISCRETE SUBGROUPS OF SEMISIMPLE LIE GROUPS

M. S. RAGHUNATHAN

(Received May 20, 1966)

Introduction. The aim of this paper is to prove two vanishing theorems for cohomology groups related to discrete uniform subgroups of semisimple Lie groups.

Let ρ be a representation of a real linear semisimple Lie group G and Γ a discrete subgroup of G such that $\Gamma \setminus G$ is compact. Assume that Γ contains no elements of finite order. In §1 we give a criterion in terms of the highest weight of ρ for the vanishing of $H^{p}(\Gamma, \rho)$, the p^{th} cohomology group of Γ with coefficient in ρ . This criterion is a generalisation of a theorem of Matsushima and Murakami [3].

In §2 we prove the following theorem (Corollary to Theorem 3). Let G be a complex semisimple Lie group without any simple component of rank 1. Then for any discrete subgroup Γ such that $\Gamma \setminus G$ is compact, the canonical complex structure on the space $\Gamma \setminus G$ is rigid. (This question whether these complex structures are rigid was raised by Professor Matsushima).

1. A vanishing theorem for the cohomology of discrete uniform subgroups

Let G be a connected real linear semisimple Lie group and Γ a discrete subgroup such that the quotient $\Gamma \setminus G$ is compact. Let \mathfrak{g}_0 be the Lie algebra of left-invariant vector-fields of G and $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$ a Cartan-decomposition of \mathfrak{g}_0 , \mathfrak{k}_0 being the algebra. Let K be the (compact) Lie subgroup corresponding to \mathfrak{k}_0 and X=G/K the corresponding symmetric space. To every representation of G in a finite dimensional real (or complex) vector space F, Matsushima and Murakami [2] have associated certain cohomology groups: we follow their notation and denote these groups by $H^p(\Gamma, X, \rho)$. (In the case when Γ has no elements of finite order Γ acts freely on X and $H^p(\Gamma, X, \rho)$ is isomorphic to the p^{th} cohomology group of Γ with coefficients in the restriction ρ_{Γ} of ρ to Γ). In the same article, they prove moreover the following result (see in particular $\S6, \S7$). (Proposition 1 below). The vectorfields in \mathfrak{g}_0 project under the natural map $G \to \Gamma \backslash G$ into vectorfields on $\Gamma \backslash G$. We will from now on identify \mathfrak{g}_0 with this algebra of vectorfields on $\Gamma \backslash G$. Let φ be the Killing form on \mathfrak{g}_0 and $\{X_i\}_{1 \leq i \leq N}$ and $\{X_{\alpha}\}_{N+1 \leq \alpha \leq n}$ be bases of \mathfrak{p}_0 and \mathfrak{k}_0 such that $\varphi(X_i, X_j) = \delta_{ij}$ and $\varphi(X_{\alpha}, X_{\beta}) = -\delta_{\alpha\beta}$. Let $A_0(\Gamma, X, \rho)$ be the vector space of C^{\sim} -p-forms η on $\Gamma \backslash G$ satisfying i) $i_X \eta = 0$ and ii) $\theta_X \eta = \rho(X)\eta$ for every $X \in \mathfrak{k}_0$ where i_X (resp θ_X) denotes interior derivation (resp. Lie derivation) of η with respect to the vectorfield X. Because of i) and ii) η is determined by its values $i_1 \cdots i_p = \eta(X_{i_1} \cdots X_{i_p})$. Finally, let Δ^p be the operator

$$\Delta^{p} \colon A^{p}_{0}(\Gamma, X, \rho) \to A^{p}_{0}(\Gamma, X, \rho)$$

defined by

$$\Delta^{p} \eta(X_{i_{1}} \cdots X_{i_{p}}) = \sum_{k=1}^{N} (-X_{k}^{2} + \rho(X_{k})^{2}) \eta_{i_{1} \cdots i_{p}}$$
$$+ \sum_{k=1}^{N} \sum_{u=1}^{p} (-1)^{u-1} \{ (-[X_{i_{u}}, X_{k}] + \rho([X_{i_{u}}, X_{k}])) \} \eta_{ki_{1} \cdots \hat{i}_{u} \cdots i_{p}} \}$$

With this notation, we have

Proposition 1. $H^{p}(\Gamma, X, \rho)$ is canonically isomorphic to the vector space $\{\eta | \eta \in A_{0}^{p}(\Gamma, X, \rho); \Delta^{p}\eta = 0\}.$

Again, following [2], we define two operators Δ_D^p and Δ_ρ^p as follows:

$$\Delta_{D}^{n}\eta(X_{i_{1}}\cdots X_{i_{p}}) = -\sum_{k=1}^{N} X_{k}^{2}\eta_{i_{1}\cdots i_{p}} + \sum_{k=1}^{N} \sum_{u=1}^{p} (-1)^{u}[X_{i_{u}}, X_{k}]\eta_{ki_{1}\cdots i_{u}\cdots i_{p}}$$
$$\Delta_{\rho}^{n}(X_{i_{1}}\cdots X_{i_{p}}) = +\sum_{k=1}^{n} \rho(X_{k})^{2}\eta_{i_{1}\cdots i_{p}} - \sum_{k=1}^{N} \sum_{u=1}^{p} (-1)^{u}\rho([X_{i_{u}}, X_{k}])\eta_{kki_{1}\cdots i_{u}\cdots i_{p}}$$

Then $\Delta^{p} = \Delta^{p}_{D} + \Delta^{p}_{\rho}$. In §7 [2], it is moreover proved that

$$\sum_{i_1 < \cdots < i_p} \int_{\Gamma/G} \langle (\Delta_D^p \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F \ge 0$$

where \langle , \rangle_F is a positive definite scalar product on F for which $\rho(X)$ is (hermitian) symmetric (resp. skew-symmetric (hermitian)) for $X \in \mathfrak{p}_0$ (resp. \mathfrak{k}_0). It follows therefore that if $\Delta^p \eta = 0$,

$$\sum_{i_1 < \cdots < i_p} \int_{\Gamma/G} \langle (\Delta_{\rho}^{p} \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F \ge 0$$

We obtain therefore

Proposition 2. If the quadratic form on the space of exterior p-forms on \mathfrak{p}_0 with values in F defined by

$$\eta \rightarrow \sum_{i_1 < \cdots < i_p} \langle (\Delta_{\rho}^{p} \eta)_{i_1 \cdots i_p}, \ \eta_{i_1 \cdots i_p} \rangle_F$$

is positive definite, then $H^{p}(\Gamma, X, \rho)=0$.

In the main result of this section we give a sufficient criterion in terms of the "highest weight" of ρ with respect to a suitable Cartan-subalgebra of g_0 in order that Δ_0^n define a positive definite quadratic form.

Let g denote the complexification of \mathfrak{g}_0 and \mathfrak{k} and \mathfrak{p} those of \mathfrak{k}_0 and \mathfrak{p}_0 . We identify \mathfrak{k} and \mathfrak{p} with subspaces of g. Let $\mathfrak{h}_{\mathfrak{k}_0}$ be a Cartan-subalgebra of \mathfrak{k}_0 and \mathfrak{h}_0 a Cartan-subalgebra of \mathfrak{g}_0 such that $\mathfrak{h}_0 \supset \mathfrak{h}_{\mathfrak{k}_0}$. Let $\mathfrak{h}_{\mathfrak{p}_0} = \mathfrak{h}_0 \cap \mathfrak{p}_0$. Let $\mathfrak{h}_{\mathfrak{k}} \mathfrak{h}$ and $\mathfrak{h}_{\mathfrak{p}}$ denote respectively the complexifications of $\mathfrak{h}_{\mathfrak{k}_0} \mathfrak{h}_0$ amd $\mathfrak{h}_{\mathfrak{p}_0}$. Then \mathfrak{h} is a Cartansubalgebra of g. Let Δ be the system of roots of g with respect to \mathfrak{h} . For $\alpha \in \Delta$ let $H_{\alpha} \in \mathfrak{h}$ be the unique element such that $\varphi(H_{\alpha}, H) = \alpha(H)$ for all $H \in \mathfrak{h}$. Then, it is well known that the real subspace $\mathfrak{h}^* = \sum_{\alpha \in \Delta} RH_{\alpha}$ of g spanned by the $\{H_{\alpha}\}_{\alpha \in \Delta}$ is the same as $i\mathfrak{h}_{\mathfrak{k}_0} \oplus \mathfrak{p}_0$. Moreover if θ is the extension to g to the Cartan involution θ_0 denfied by the Cartan-decomposition $\mathfrak{g}_0 = \mathfrak{k}_0 \oplus \mathfrak{p}_0$, then θ is an automorphism of g leaving \mathfrak{h} invariant. Hence θ acts on the dual of \mathfrak{h} and permutes the elements of Δ . The set Δ may then be decomposed as the disjoint union $A \cup B \cup C$ of three subsets A, B and C

where

$$A = \{ \alpha | \alpha \in \Delta; \ \theta(\alpha) = \alpha; \ \theta(E_{\alpha}) = E_{\alpha} \}$$
$$B = \{ \alpha | \alpha \in \Delta; \ \theta(\alpha) = \alpha \}$$
$$C = \{ \alpha | \alpha \in \Delta; \ \theta(\alpha) = \alpha; \ \theta(E_{\alpha}) = -E_{\alpha} \}.$$

(In the sequel we sometimes write α^{θ} for $\theta(\alpha)$).

We introduce next a lexicographic order on the (real) dual of \mathfrak{h}^* as follows: let H_1, \dots, H_I be an orthonormal basis of \mathfrak{h}^* with respect to $\varphi(\varphi|_{\mathfrak{h}^*}$ is positive definite) chosen so that H_1, \dots, H_I form a basis of $\mathfrak{i}\mathfrak{h}_0$ and if the centre \mathfrak{c}_0 of \mathfrak{k}_0 is non-zero, of dimension r, then H_1, \dots, H_r belong to $\mathfrak{i}\mathfrak{c}_0$; for α, β in the (real) dual of \mathfrak{h}^* , $\alpha > \beta$ if the first non-vanishing difference $\alpha(H_i) - \beta(H_i)$ is greater than zero. Let Δ^+ be the system of positive roots with respect to this order and let $A^+ = A \cap \Delta^+$, $B^+ = B \cap \Delta^{+1}$, $C = \cap C\Delta^+$. Then θ leaves A^+ , B^+ and C^+ invariant. Let $\sum_1 = A^+ U\{\alpha \mid \alpha \in B^+; \theta(\alpha) > \alpha\}$ and $\sum_2 = C^+ U\{\alpha \mid \alpha \in B^+; \theta(\alpha) > \alpha\}$.

Theorem 1. Let ρ denote a finite dimensional representation of G in a complex vector-space F, as also the induced representation of g. Let Λ_{ρ} be the highest weight of ρ with respect to the above defined Cartan-subalgebra and the order on the dual of \mathfrak{h}^* . Then if $\sum_{\rho} = \{\alpha \mid \alpha \in \sum_2, \varphi(\Lambda_{\rho}, \alpha) \neq 0\}$ contains more than q elements, then the Hermitian quadratic form Q_{ρ} defined by

$$\eta \to \sum_{i_1 < \cdots < i_p} \langle (\Delta_{\rho}^{p} \eta)_{i_1 \cdots i_p}, \eta_{i_1 \cdots i_p} \rangle_F$$

is positive definite for $p \le q$. Hence $H^{p}(\Gamma, X, \rho) = 0$ for $1 \le p \le q$.

Before we proceed to the proof of the theorem, we will make a few preliminary simplifications: M.S. RAGHUNATHAN

Lemma 1. Let E be the q^{th} exterior power of p and let α be the isomorphism onto $F \otimes E$ of the space of exterior q-forms on p with values in F defined by

$$\eta \to \sum_{i_1 < \cdots < iq} \eta_{i_1 \cdots i_q} \otimes (X_{i_1} \wedge \cdots \wedge X_{i_q})$$

Then

$$T^{\mathbf{q}}_{\rho} = 2\alpha \circ \Delta^{\mathbf{q}}_{\rho} \circ \alpha^{-1} = 2(\rho \otimes 1)(c) + (1 \otimes \sigma)(c') - (\rho \otimes 1)(c') - (\rho \otimes \sigma)(c')$$

where

$$c = \sum_{i=1}^{N} X_{i}^{2} - \sum_{\alpha = N+1}^{n} X_{\alpha}^{2}$$

and $c' = -\sum_{\alpha=N+1}^{n} X_{\alpha}^{2}$ are elements of the enveloping algebras of g and t and σ denotes the adjoint representation of t in E. Hence T_{ρ}^{q} is a symmetric endomorphism of $F \otimes E$ with respect to the scalar product

$$\langle \sum_{i_1 < \dots < i_p} \eta_{i_1 \dots i_p} \otimes X_{i_1} \wedge \dots \wedge X_{i_p}, \sum_{j_1 < \dots < j_p} \eta_{j_1 \dots j_p} \otimes X_{j_1} \wedge \dots \wedge X_{j_p} \rangle$$

$$= \sum_{i_1 < \dots < i_p} \langle \eta_{i_1 \dots i_p}, \eta_{i_1 \dots i_p} \rangle_F$$

Proof. We have

$$(\Delta_{\rho}^{q})_{i_{1}\cdots i_{q}} = \sum_{k=1}^{N} \rho(X_{k})^{2} \eta_{i_{1}\cdots i_{q}} + \sum_{k=1}^{N} \sum_{u=1}^{q} (-1)^{u-1} \rho([X_{i_{u}}, X_{k}]) \eta_{ki_{1}\cdots \hat{i}_{u}\cdots i_{q}}$$

For every q-tuple $I_q = (i_1 < \cdots < i_q)$, we write X_{Iq} for $X_{i_1} \land \cdots \land X_{iq}$. In this notation,

$$\begin{aligned} \alpha(\eta) &= \sum_{I_q} \eta_{I_q} \otimes X_{I_q} \\ \frac{1}{2} T^{q}{}_{\rho} \alpha(\eta) &= \sum_{I_q} \{ \sum_{k=1}^{N} \rho(X_k)^2 \eta_{I_q} + \sum_{k=1}^{N} \sum_{u=1}^{q} (-1)^{u-1} \rho([X_{i_u}, X_k]) \eta_{ki_1 \cdots \hat{i}_u \cdots i_q} \} \otimes X_{I_q} \\ &= \sum_{I_q} \{ \sum_{k=1}^{N} \rho(X_k)^2 \eta_{I_q} + \sum_{J_q \Delta I_q = i_u j_v} (-1)^{u+v} \rho([X_{i_u}, X_{j_v}]) \eta_{J_q} \} \otimes X_{I_q} \\ &= \sum_{I_q} \{ \sum_{k=1}^{N} \rho(X_k)^2 \eta_{I_q} + \sum_{J_q \Delta I_q = i_u j_v} (-1)^{u+v} c^{\omega}_{i_u j_v} \rho(X_{\omega}) \eta_{J_q} \} \otimes X_{I_q} \end{aligned}$$

On the other hand,

$$\sigma(X_{\alpha})X_{Jq} = \sum_{k=1}^{n} \sum_{u=1}^{q} (-1)^{v-1} c_{\alpha j_{v}}^{k} (X_{k} \wedge X_{j_{1}} \cdots X_{j_{v}} \cdots \wedge X_{j_{q}})$$
$$= \sum_{Iq \Delta Jq = j_{v}i_{u}} (-1)^{u+v} c_{j_{v}}^{i_{u}} X_{Iq}$$

It follows that

$$\frac{1}{2}T_{\rho}^{q}\alpha(\eta) = \sum_{Iq}\sum_{k=1}^{N}\rho(X_{k})^{2}\eta_{Iq}\otimes X_{Iq} + \sum_{Jq}\rho(X_{a})\eta_{Jq}\otimes\sigma(X_{a})X_{Jq}$$
$$= \{\sum_{k=1}^{N}\rho(X_{k})^{2}\otimes 1 + \sum_{j}\rho(X_{a})\otimes\sigma(X_{a})\}\alpha(\eta)\}$$

Now the required result follows from the fact

$$2\rho(X_{\alpha}) \otimes \sigma(X_{\alpha}) = \{\rho(X_{\alpha}) \otimes 1 + 1 \otimes \sigma(X_{\alpha})\}^{2} - \rho(X_{\alpha})^{2} \otimes 1 - 1 \otimes \sigma(X_{\alpha})^{2} \\ = (\rho \otimes \sigma)(X_{\alpha})^{2} - \rho(X_{\alpha})^{2} \otimes 1 - 1 \otimes \sigma(X_{\alpha})^{2}$$

That T^{q}_{ρ} is a hermitian symmetric endomorphism follows from the facts that $\rho(X_{i})$ and $\sigma(X_{i})$ are hermitian symmetric while $\rho(X_{\omega})$ and $\sigma(X_{\omega})$ are skew-hermitian with respect to \langle , \rangle_{F} and the extension to E of the Killing form on \mathfrak{p}_{0} .

Lemma 2. a) If Λ is the highest weight of an irreducible representation ρ of \mathfrak{g} induced by a representation ρ of G, then

$$\rho(c) = \{\varphi(\Lambda, \Lambda) + \sum \varphi(\Lambda, \alpha)\}.$$
 Identity

b) when restricted to the (irreducible) K-subspace generated by the eigen-space corresponding to the highest weight Λ ,

$$\rho(c') = \left\{ \frac{1}{4} \varphi(\Lambda + \Lambda^{\theta}, \Lambda + \Lambda^{\theta}) + \sum_{\alpha \in \Sigma_1} \varphi\left(\Lambda, \frac{\alpha + \alpha^{\theta}}{2}\right) \right\}.$$
 Identity.

For a proof see [4]: Lemmas 4 and 16(c).

Lemma 3. If Λ_1 and Λ_2 are the highest weights of two irreducible representations ρ_1 , ρ_2 of \mathfrak{g} , such that $\Lambda_1 - \Lambda_2$ is a non-negative linear combination of simple roots of \mathfrak{g} , then $\lambda_1 \geq \lambda_2$ where $\rho_k(c) = (\lambda_k$. Identity) (k=1, 2). Equality can occur only if $\Lambda_1 = \Lambda_2$.

The same conclusions hold for \mathfrak{k} and c' instead of \mathfrak{g} and c provided that Λ_1 and Λ_2 coincide on the center of \mathfrak{k} .

For the proof see Lemma 5 [4].

Proof of Theorem 1. We obtain the eigen-values of T_{ρ}^{q} as follows: Let

$$E = \sum_{\mu \in \mathcal{M}} E_{\mu}$$
 and $F = \sum_{\lambda \in \mathcal{L}} F_{\lambda}$ and $F_{\lambda} \otimes E_{\mu} = \sum_{\nu \in \mathcal{M}_{\lambda\mu}} V_{\lambda\mu}^{\nu}$

be the decomposition of E, F and $F_{\lambda} \otimes E_{\mu}$ into irreducible \mathfrak{k} -modules indexed by the highest weights (for the order defined by H_1, \dots, H_p on \mathfrak{ih}_k). Since ρ is an irreducible representation of \mathfrak{g} and c is a central element of $U(\mathfrak{g})$, $\rho(c)$ is a scalar operator. Similarly, since c' is central in $U(\mathfrak{k})$, $\rho(c') \otimes 1$, $1 \otimes \sigma(c')$ and $(\rho \otimes \sigma)(c')$ are scalars on $F_{\lambda} E$, $F \otimes E_{\lambda}$ and $V_{\lambda\mu}^{\nu}$. Hence $T_{\rho}^{\mathfrak{g}}$ acts as a scalar on each $V_{\lambda\mu}^{\nu}$. We denote the corresponding eigen-value by $a(\lambda, \mu, \nu)$. Among $V_{\lambda\mu}^{\nu}$ there is a unique irreducible component with highest weight $\nu = \lambda + \mu$ we denote the corresponding scalar $a(\lambda, \mu, \nu)$ by $a(\lambda, \mu)$ with this notation, we have

Assertion I. $a(\lambda, \mu, \nu) \ge a(\lambda, \mu)$; equality occurs only if $\nu = \lambda + \mu$.

Proof. We denote the representation in $V_{\lambda\mu}^{\nu}$ by $\rho_{\lambda\mu}^{\nu}$. Then since $(\rho \otimes 1)(c)$, $(\rho \otimes 1)(c')$ and $(1 \otimes \sigma)(c')$ all define the same scalar operator in $F_{\lambda} \otimes E_{\mu}$,

M.S. RAGHUNATHAN

$$a(\lambda, \mu) + a(\lambda, \mu, \nu) = \rho_{\lambda\mu}^{\lambda+\mu}(c') - \rho_{\lambda\mu}^{\nu}(c')$$

(Here we have let $\rho_{\lambda\mu}^{\nu}(c')$ stand for the scalar). Now any weight in $F_{\lambda} \otimes E_{\mu}$ has the form $\lambda_1 + \mu_1$ where λ_1 and μ_1 are weights of F_{λ} and E_{μ} ; on the other hand $\lambda - \lambda_1$ and $\mu - \mu_1$ are non-negative linear combination of simple roots of k; hence so is $(\lambda + \mu) - (\lambda_1 + \mu_1)$. It follows then from Lemma 3 that

$$a(\lambda, \mu) \ge a(\lambda, \mu, \nu)$$

Equality can occur only if $\lambda + \mu = \lambda_1 + \mu_1$ and there is only one component of $F_{\lambda} \otimes E_{\mu}$ with $\lambda + \mu$ as the highest weight. (Note that if \mathfrak{k} has a centre, then the central elements act as scalars on F_{λ} and E hence in all of $F_{\lambda} \otimes E_{\mu}$).

Assertion II. Let f_{λ} be a highest weight vector of F such that $||f_{\lambda}||_{F}^{2}=1$. For $\alpha \in \Delta$, let E_{α} be a root vector of α . Suppose that $E_{\alpha_{0}}f_{\lambda}=0$ for $\alpha \in A^{+}$. If there is an $\alpha_{0} \in B^{+}$ with $E_{\alpha_{0}}f_{\lambda} \neq 0$, then $E_{\alpha_{0}}f_{\lambda} \in F_{\lambda_{1}}$ for some λ_{1} and $a(\lambda, \mu) < a(\lambda_{1}, \mu_{1})$

Proof. Using the fact that θ is an involution, we have

$$\mathfrak{k} = \mathfrak{h}_{\mathfrak{k}} \oplus \sum_{\alpha \in \mathcal{A}^+} \left\{ CE_{\alpha} \oplus CE_{\alpha} \right\} \oplus \sum_{\substack{\alpha \in \mathcal{B}^+ \\ \alpha > \alpha \theta}} \left\{ C(E_{\alpha} + E_{\alpha}\theta) \oplus C(E_{-\alpha} + E_{-\alpha}\theta) \right\}$$

and the order chosen on $\mathfrak{h}_{\mathfrak{f}}^* = i\mathfrak{h}_{\mathfrak{f}_0}$ has precisely $\{\alpha \mid \alpha \in A^+\}$ and $\left\{\frac{\alpha + \alpha^{\theta}}{2} \mid \alpha \in B^+\right\}$

as the positive roots. The roots of \mathfrak{k} are necessarily zero on the centre of \mathfrak{k} . It follows that the weights λ and $\lambda + \alpha_0$ (which is the weight corresponding to $E_{\alpha_0}f_{\lambda}$) have the same values on the centre. On the other hand, since $\lambda + \alpha_0$ and λ_1 are weights of the same irreducible representation of \mathfrak{k} , λ_1 and $\lambda + \alpha_0$ have the same values on the centre of \mathfrak{k} . It follows that $\lambda_1 = \lambda$ on the centre of \mathfrak{k} . Now $\lambda_1 - \lambda = \lambda_1 - (\lambda + \alpha_0) + \alpha_0$ and $\lambda_1 - (\lambda + \alpha_0)$ is a non-negative linear combination of simple roots. Hence $\lambda_1 - \lambda$ is a non-negative linear combination of simple roots and $\lambda_1 \neq \lambda$. A similar remark holds for $\lambda_1 + \mu$ and $\lambda + \mu$. It follows then from Lemma 3 above that

$$\rho_{\lambda}(c') < \rho_{\lambda_1}(c')$$

and

$$\rho_{\lambda\mu}^{\lambda+\mu}(c') < \rho_{\lambda\mu}^{\lambda+\mu}(c')$$

The operators $(\rho \otimes 1)$ (c) and $(1 \otimes \sigma)$ (c') on the other hand are scalars on the whole of $F \otimes E$. Hence from the expression for T^q_{ρ} , the Assertion follows.

Assertion III. Suppose that $E_{\alpha}F_{\lambda}=0$ for $\alpha \in A^+ \cup B^+$ but that there is an $\alpha_0 \in C^+$ such that $E_{\alpha_0}f_{\lambda} \neq 0$. Then $a(\lambda, \mu) > 0$.

Proof. If $\{E_{\alpha}\}_{\alpha \in \Delta}$ are root vectors so chosen that $\varphi(E_{\alpha}, E_{-\alpha})=1$, then, it is well known that

VANISHING THEOREMS FOR COHOMOLOGY GROUPS

 $c = \sum_{\alpha \in \Delta^+} E_{\alpha} E_{-\alpha} + \sum_{\alpha \in \Delta^+} E_{-\alpha} E_{\alpha} + \sum_{i=1}^1 H_i^2$

It follows that

$$\rho(c)f_{\lambda} = \sum_{\alpha \in \Delta^{+}} \rho(E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha})f_{\lambda} + \sum_{i=1}^{1} \rho(H_{i})^{2}f$$

Using the facts, $E_{\omega}f_{\lambda}=0$ for $\alpha \in A^+ \cup B^+$ and that $[E_{\omega}, E_{-\omega}]=H_{\omega}$, we have

$$\rho(c)f_{\lambda} = \sum_{\boldsymbol{\omega} \in \mathcal{A}^+ \cup \mathcal{B}^+} \lambda(H_{\boldsymbol{\omega}})f_{\lambda} + \sum_{i=1}^{p} \wedge (H_{i})^2 f_{\lambda} + \sum_{\boldsymbol{\omega} \in C} \rho(E_{\boldsymbol{\omega}}E_{-\boldsymbol{\omega}} + E_{-\boldsymbol{\omega}}E_{\boldsymbol{\omega}})f_{\lambda} + \sum_{i=p+1}^{1} \rho(H_{i})^2 f_{\lambda}$$

Hence

$$egin{aligned} &\langle
ho(c) f_{\lambda}, f_{\lambda}
angle_{F} = \sum_{arphi \in \mathcal{A}^{\perp} \cup B^{+}} \lambda(H_{arphi}) + \sum_{i=1}^{p} \lambda(H_{i})^{2} + \sum_{arphi \in C^{+}} \langle
ho(E_{arphi} E_{-arphi} + E_{-arphi} E_{arphi}) f_{\lambda}, f_{\lambda}
angle \ &+ \sum_{i=p+1}^{1} \langle
ho(H_{i})^{2} f_{\lambda}, f_{\lambda}
angle_{F} \end{aligned}$$

Now it is well known that F admits an orthogonal decomposition with respect to \langle , \rangle_F into irreducible representations of the algebra $g' = CE_{\alpha} \oplus CE_{-\alpha} \oplus CH_{\alpha}$ for $\alpha \in C^+$ so that to prove that $\langle \rho(E_{\alpha}E_{-\alpha} + E_{-\alpha}E_{\alpha})f_{\lambda}, f_{\lambda} \rangle \geq |\lambda(H_{\alpha})|$ equality occurring only if $E_{\alpha}f_{\lambda}=0$, we may assume that the g'-invariant subspace Wspanned by f_{λ} is *irreducible* with respect to the three dimensional algebra. Now by Lemma 2,

$$\rho\left\{E_{\omega}E_{-\omega}+E_{-\omega}E_{\omega}+\frac{H_{\omega}^{2}}{\varphi(H_{\omega}H_{\omega})}\right\}f_{\lambda}=\left\{\frac{(\lambda+k\alpha)(H_{\omega})^{2}}{\varphi(H_{\omega},H_{\omega})}+(\lambda+k\alpha)(H_{\omega})\right\}f_{\lambda}$$

where $\lambda + k\alpha$, $k \ge 0$ is the highest weight in W (of g'). Hence

$$\rho(E_{\omega}E_{-\omega}+E_{-\omega}E_{\omega})f_{\lambda}=\frac{k\alpha(H_{\omega})^{2}}{\varphi(H_{\omega},H_{\omega})}+(\lambda+k\alpha)(H_{\omega})f_{\lambda}$$

so that

$$<\!
ho(E_{a}E_{-a}+E_{-a}E_{a})f_{\lambda},\,f_{\lambda}\!>_{F}=(\lambda+klpha)(H_{a})\!+\!rac{lpha(H_{a})}{arphi(H_{a},\,H_{a})}\!\geq\!|\,\lambda(H_{a})|$$

(It is well known that $(\lambda + k\alpha)(H_{\alpha}) \ge |\lambda(H_{\alpha})|$ since $\lambda + k\alpha$ is the highest weight). Moreover equality occurs only if k=0; if k=0, however, λ is the highest weight so that $E_{\alpha}f_{\lambda}=0$. We have thus shown that

$$<\!
ho(E_{a}E_{-a}\!+\!E_{-a}E_{a})\!f_{\lambda},\,f_{\lambda}\!\!>\!\geq\!|\,\lambda(H_{a})|$$

equality occurring only if $E_{\alpha}f_{\lambda}=0$. We have therefore,

$$\langle \rho(c)f_{\lambda}, f_{\lambda} \rangle \geq \sum_{\alpha \in \mathcal{A}^+ \cup B^+} \lambda(H_{\alpha}) + \sum_{i=1}^{j} \lambda(H_i)^2 + \sum_{\alpha \in \mathcal{C}^+}^{p} |\lambda(H_{\alpha})| + \sum_{i=p+1}^{1} \langle \rho(H_i)^2 f_{\lambda}, f_{\lambda} \rangle_F$$

equality occurring only if $E_{\alpha}f_{\lambda}=0$ for all $\alpha \in C^+$. Moreover $S=\sum_{i=\ell+1}^{1}\rho(H_i)^2$ is

a non-negative symmetric operator so that

$$\rho(c)f_{\lambda}, f_{\lambda} \geq \sum_{\alpha \in \mathcal{A}^+ \cup \mathcal{B}^+} |\lambda(H_{\alpha})| + \sum \lambda(H_i)^2 + \langle Sf_{\lambda}, f_{\lambda} \rangle + \sum_{\alpha \in \mathcal{C}^+} |\lambda(H_{\alpha})|$$

with $S \ge 0$ (Note that for $\alpha \in A^+ \cup B^+$, $E_{\alpha}f_{\lambda} = 0$ so that $\lambda(H_{\alpha}) \ge 0$). Using b) of Lemma 2, we have also

$$\rho(c') \otimes 1 \Big|_{F_{\lambda \otimes E}} = \{ \sum_{i=1}^{p} \lambda(H_i)^2 + \sum_{\alpha \in \Sigma_1} \lambda(H_{\omega} + H_{\omega}\theta)/2 \}. \quad \text{Identity}$$
$$(\rho \otimes \sigma)(c') \Big|_{V_{\lambda \mu}^{\lambda + \mu}} = \sum_{i=1}^{p} (\lambda + \mu)(H_i)^2 + \sum_{\alpha \in \Sigma_1} (\lambda + \mu)(H_{\omega} + H_{\omega}\theta)/2 . \quad \text{Identity}$$

and

$$(1 \otimes \sigma)(c') \Big|_{F \otimes E_{\mu}} = \sum_{i=1}^{p} \mu(H_i)^2 + \sum_{\sigma \in \Sigma_1} \mu(H_{\sigma} + H_{\sigma} \theta)/2$$
. Identity

so that if $e_{\mu} \otimes E_{\mu}$ is a unit weight vector of weight μ ,

$$\langle T^{q}_{\rho}(f_{\lambda} \otimes e_{\mu}), f_{\lambda} \otimes e_{\mu} \rangle \geq 2 \sum_{\substack{\alpha \in B^{+} \\ \alpha > \alpha \theta}} |\lambda(H_{\alpha} + H_{\alpha}\theta)/2| + 2 \sum_{\alpha \in C^{+}} \lambda(H_{\alpha})$$
$$+ 2 \langle S(f_{\lambda}), f_{\lambda} \rangle - 2 \sum_{i=1}^{p} \lambda(H_{i})\mu(H_{i})$$

Now μ being a weight of σ_q it is the sum of q of the weights of the adjoint representation of k_0 in p_0 . Hence

$$\mu = \sum_{i=1}^{q} (\alpha_i + \alpha_2^{\theta})/2$$

where all the α_i belong to $\sum_{i=1}^{n} \alpha_i$. Hence

$$\langle T^{q}_{\rho}(f_{\lambda}\otimes e_{\mu}), f_{\lambda}\otimes e_{\mu}\rangle \geq 2\sum_{\alpha\in\Sigma_{2}}\lambda(H_{\alpha}+H_{\alpha}\theta)/2-2\sum_{i=1}^{q}\lambda(H_{\alpha_{i}}+H_{\alpha_{i}}\theta)/2$$

Here equality can occur only if $E_{\alpha}f_{\lambda}=0$ for $\alpha \in \Delta^+$ and $\langle Sf_{\lambda}, f_{\lambda} \rangle = 0$. It follows therefore that $a(\lambda, \mu) > 0$ if there exists $\alpha_0 \in C^+$ with $E_{\alpha_0}f_{\lambda} \neq 0$.

In view of Assertions I, II and III, we see that T is positive definite if and only if $a(\lambda_0, \mu) > 0$ where λ_0 is the greatest of the dominant weights $\{\lambda \mid \lambda \in L\}$: this follows from the fact that $E_{\alpha}f_{\lambda_0}=0$ for all $\alpha \in \Delta^+$ if and only if f_{λ_0} is the highest weight vector for ρ ; it follows that any weight of $\rho \mid_k$ is of the form $\lambda_0 - \sum m_i r(\alpha_i)$ where $m_i \ge 0$ and $r(\alpha_i)$ are the restriction of positive roots of g; finally $r(\alpha_i) \neq 0$ hence greater than zero (see Lemma 16 (f) [4]).

Thus to complete the proof of the Theorem, we need only prove

Assertion IV. If λ_0 is the restriction $r(\Lambda)$ of the highest weight Λ of ρ , then $a(\lambda_0, \mu) > 0$ for all $\mu \in M$ provided there are at least (q+1) roots $\alpha \in \sum_2$ such that $\Lambda(H_{\alpha}+H_{\alpha}\theta) > 0$.

Proof. By evaluation on the highest weight $f_{\lambda_0} \otimes e_{\mu}$ we have (Lemma 2)

$$\begin{split} T_{\rho}(f_{\lambda_{0}}\otimes e_{\mu}) &= \{2\sum_{\alpha\in\Sigma_{2}}\Lambda(H_{\alpha}+H_{\alpha}\theta)/2+2\sum_{i=1}^{p}\Lambda(H_{i})^{2}-2\sum_{i=1}^{p}\Lambda(H_{i})\mu(H_{i})\}(f_{\lambda_{0}}\otimes e_{\mu})\\ &= \{2\sum_{\alpha\in\Sigma_{2}}\Lambda(H_{\alpha}+H_{\alpha}\theta)/2-2\sum_{i=1}^{q}(H_{\alpha i}+H_{\alpha i}\theta)/2+2\sum_{i=1}^{q}\Lambda(H_{i})^{2}\}(f_{\lambda_{0}}\otimes e_{\mu})\\ \text{where} \qquad \mu &= r(\sum_{i=1}^{q}(\alpha_{i}+\alpha_{i}^{\theta})/2). \text{ It follows that}\\ &a(\lambda_{0}, \mu) > 0 \quad \text{under our hypothesis,}\\ \text{since} \qquad \sum_{i=1}^{p}\Lambda(H_{i})^{2} \ge 0 \,. \end{split}$$

since

This completes the proof of the Theorem.

REMARK 1. Theorem 1 generalises Theorem 12.1 of [3] where only the case when G/K is hermitian symmetric, is considered. In fact, the present theorem is more general than Theorem 12.1 of [3] even in this case: $H^{n}(\Gamma, X, \rho)$ admits a type decomposition (see [3])

$$H^{n}(\Gamma, X, \rho) \simeq \prod_{r+s=n} H^{rs}(\Gamma, X, \rho)$$

so that under the hypothesis of Theorem 1, we have

$$H^{rs}(\Gamma, X, \rho) = 0$$

for $r+s \le q$. Theorem 12.1 of [3] is the special case $q = \dim G/K$. In section §2, we will give an interpretation of the groups $H^{rs}(\Gamma, X, \rho)$. In [4] all the representations for which T^{1}_{ρ} is positive definite are determined.

REMARK 2. The author has checked in a number of classical cases, that if G is simple and non-compact and ρ is any nontrivial irreducible representation, then the number of elements in \sum_{ρ} is greater than or equal to the rank of the associated symmetric space.

Compact quotients of complex semisimple Lie groups 2.

Let X be a complex manifold and $\tilde{X} \xrightarrow{\pi} X$ be the universal covering of X. Let Γ be the fundamental group of X acting fixed point free on \tilde{X} . Let ρ be a representation of Γ in a finite dimensional complex vector space. Let L_{ρ} denote the local system associated to ρ and W_{ρ} the holomorphic vector bundle associated to ρ . Let \underline{L}_{ρ} and \underline{W}_{ρ} denote respectively the sheaf of germs of sections of L_{ρ} and holomorphic sections of W_{ρ} . By the de Rham theorem, the cohomology groups $H^{p}(X, L_{\rho})$ of X with coefficients in the local system L_{ρ} are the cohomology groups of the complex

$$A = \sum_{p} A^{p}(\Gamma, \tilde{X}, \rho)$$

defined as follows: $A^{p}(\Gamma, X, \rho)$ is the vector space of C^{∞} -exterior p-forms η on X with values in F satisfying the condition

M. S. RAGHUNATHAN

$$\eta(\gamma_{*}(t_{1}), \gamma_{*}(t_{2}), \cdots, \gamma_{*}(t_{p})) = \rho(\gamma)^{-1}\eta(t_{1}, \cdots, t_{p})$$

where t_1, \dots, t_p are tangent vectors to \tilde{X} and $\gamma_*(t)$ denotes the image by γ of the tangent vector t to X; the boundary operator in the complex is the exterior differentiation of F-valued forms on \tilde{X} . The complex structure on X gives a decomposition of each of the space $A^p(\Gamma, \tilde{X}, \rho)$ as a direct sum $\sum_{r+s=p} A^{rs}(\Gamma, \tilde{X}, \rho)$ according to the bidegree. Moreover d=d'+d'' where d' and d'' are of bidegree (1, 0) and (0, 1) respectively. This gives A a structure of a double complex. The term E_1^{pq} of the spectral sequence associated to this double complex is clearly the q^{th} cohomology of the complex

$$0 \to A^{p,0}(\Gamma, \tilde{X}, \rho) \to A^{p,1}(\Gamma, \tilde{X}, \rho) \to \dots \to A^{p,n}(\Gamma, X, \rho) \to 0$$

 $(n = \dim X)$. Again, by the Dolbeault theorem, the q^{th} cohomology of this complex is $H^q(X, \underline{\Omega}^p \otimes \underline{W}_p)$ where $\underline{\Omega}^p$ is the holomorphic bundle of holomorphic p-forms, and $\underline{\Omega}^p \otimes \underline{W}$ is the sheaf of germs of holomorphic p-forms on X with coefficients in W. Moreover, the derivation d_1 in the term E_1 is clearly the map induced by the exterior differentiation

$$d: \ \underline{\Omega}^{p} \underset{\mathcal{O}}{\otimes} \underline{W}_{\rho} \to \underline{\Omega}^{p+1} \underset{\mathcal{O}}{\otimes} \underline{W}_{\rho}$$

(since we have $\underline{\Omega}^{p} \bigotimes_{\mathcal{O}} \underline{W}_{p} \simeq \underline{\Omega}^{p} \bigotimes_{\mathcal{C}} \underline{L}_{p}$, the operator d above makes sence: $\underline{\Omega}^{p} \bigotimes_{\mathcal{O}} \underline{L}_{p} \rightarrow \underline{\Omega}^{p+1} \bigotimes_{\mathcal{C}} \underline{L}_{p}$).

We have thus

Proposition 1. There is a convergent spectral sequence $\{E_r^{pq}\}_{c\leq r\leq \infty}$ converging to $H^*(\Gamma, \tilde{X}, \rho)$ such that $E_1^{pq} = H^q(X, \underline{\Omega}^p \otimes \underline{W}_{\rho})$ and d_1 is induced by the map $d: \underline{\Omega}^p \otimes \underline{W}_{\rho} \to \underline{\Omega}^{p+1} \otimes \underline{W}_{\rho}$.

Now let $\tilde{X}=G$ be a simply connected complex Lie group and $\Gamma \subset G$ a discrete subgroup; then $X=\Gamma \setminus G$. Let g be the Lie algebra of left invariant vectorfields on G. (Then elements of g may be regarded as vectorfields on $\Gamma \setminus G$ as well). Let g^c denote the complexification of g. Then $g^c \simeq \mathfrak{u}_1 \oplus \mathfrak{u}_2$ where \mathfrak{u}_1 and \mathfrak{u}_2 are respectively the complex ideals of holomorphic and antiholomorphic left-invariant vectorfields. The natural projections $g \to \mathfrak{n}_1$ and $g \to \mathfrak{u}_2$ define isomorphisms of g on \mathfrak{u}_1 and \mathfrak{u}_2 respectively.

Suppose now that ρ is the restriction of a representation of G in a finite dimensional vector space F. In this special case we can compute the term E_2 as well.

In the first place, there is a canonical (holomorphic) isomorphism of the vector bundle W_{ρ} on X with the trivial bundle. In fact the vector bundle W_{ρ} is obtained as follows: the group Γ acts $G \times F$ by diagonal action:

VANISHING THEOREMS FOR COHOMOLOGY GROUPS

$$\gamma(g, f) = (\gamma g, \rho(\gamma) f) \quad \text{for } \gamma \in \Gamma$$

This is an (holomorphic) automorphism of the vector bundle $G \times F$ on itself covering the left translation by γ and hence this action defines a vector bundle on $\Gamma \setminus G$. Now let $\Phi: G \times F \to G \times F$ be the isomorphism

$$\Phi(g,f) = (g, \rho(g)^{-1}f)$$

Then

$$\Phi(\gamma g, \rho(\gamma)f) = (\gamma g, \rho(g)^{-1}f)$$

Hence Φ defines an isomorphism Φ_0 of W_{ρ} on the trivial bundle $X \times F$.

Now, for left-invariant holomorphic vectorfields Z_1, \dots, Z_{p+1} and a holomorphic *p*-form η with values in *F*,

$$d\eta(Z_1, \cdots, Z_{p+1}) = \sum_{i=1}^{p+1} (-1)^{i+1} Z_i \eta(Z_1, \cdots, \hat{Z}_i, \cdots, Z_{p+1}) \\ + \sum_{i < j} (-1)^{i+j} \eta([Z_i, Z_j], Z_1 \cdots \hat{Z}_i \cdots \hat{Z}_j \cdots Z_{p+1})$$

It follows that

$$\begin{split} (\Phi d \, \Phi^{-1})(\eta)(Z_1, \cdots, Z_{p+1})_{g_0} &= \sum_{i=1}^{p+1} (-1)^{i+1} \{ \rho(g_0)^{-1} Z_i \rho(g) \eta(Z_1, \cdots, Z_i, \cdots, Z_{p+1}) \}_{g_0} \\ &+ \sum_{i < j} (-1)^{i+j} \{ \rho(g_0)^{-1} ([Z_i, Z_j], Z_1 \cdots Z_i \cdots Z_j \cdots Z_{p+1}) \}_{g_0} \\ &= \{ \sum_{i=1}^{p+1} (-1)^{i+1} \rho(Z_i) \eta(Z_1 \cdots \hat{Z_i} \cdots Z_{p+1}) \\ &+ \sum_{i=1}^{p+1} (-1)^{i+1} Z_i \eta(Z_1 \cdots Z_i \cdots Z_{p+1}) \\ &+ \sum_{i < j} (-1)^{i+j} \eta([Z_i, Z_j], Z_1 \cdots \hat{Z_i} \cdots \hat{Z_j} \cdots Z_{p+1}) \}_{g_0} \end{split}$$

(ρ has a natural extension to g^c hence to u_1)

It follows that if we identify germs of holomorphic *W*-valued forms on $\Gamma \setminus G$ with germs of holomorphic *F*-valued forms on $\Gamma \setminus G$ through the isomorphism Φ_0 , the operator *d* is transformed into the operator d_0 defined by

$$\begin{aligned} d_{0}\eta(Z_{1},\cdots,Z_{p+1}) &= \sum_{i=1}^{p+1} (-1)^{i+1} (Z_{i} + \rho(Z_{i}))\eta(Z_{1},\cdots,\hat{Z}_{i},\cdots,Z_{p+1}) \\ &+ \sum_{i < j} (-1)^{i+j} \eta([Z_{i},Z_{j}],Z_{1} \cdots \hat{Z}_{i} \cdots \hat{Z}_{j} \cdots Z_{p+1}) \cdots \cdots \cdots & \textcircled{1} \end{aligned}$$

Now the map which associates to each W_{ρ} -valued holomorphic *p*-form η , the *F*-valued holomorphic form $\Phi_0(\eta)$ defined by

$$(\Phi_0\eta)(Z_1,\cdots,Z_p)=\Phi_0(\eta(Z_1,\cdots,Z_p))$$

for every *p*-tuple (Z_1, \dots, Z_p) of projections of left invariant holomorphic vectorfields on *G*, defines an isomorphism Φ_p of the sheaf $\underline{\Omega}^p \bigotimes_{\mathcal{O}} \underline{W}_p$ on the sheaf Hom_{*C*} $(\bigwedge^p \mathfrak{u}_1, \mathcal{O} \bigotimes_{\mathcal{O}} F)$. Moreover clearly the diagram

M. S. RAGHUNATHAN

where d_0 is defined by equation (1) above, is commutative. Now \mathcal{O} is a sheaf of \mathfrak{u}_1 -modules: the map $f \longrightarrow Zf$ for the projection on X of a left invariant holomorphic vectorfield Z on G defines a representation $\mathfrak{u}_1(\simeq \mathfrak{g})$ in the Lie algebra of endomorphism of \mathcal{O} . The stalks at a point $x \in X$ of the complex of sheaves

$$0 \to \mathcal{O} \underset{c}{\otimes} F \to \operatorname{Hom}_{c}(\mathfrak{u}_{1}, \mathcal{O} \underset{c}{\otimes} F) \to \cdots \to \operatorname{Hom}(\Lambda^{n}\mathfrak{u}_{1}, \mathcal{O} \underset{c}{\otimes} F) \to 0$$

from then clearly the standard complex of the Lie algebra u with values in $\mathcal{O}_x \otimes F$, where \mathcal{O}_x is the stalk at x of \mathcal{O} . Passing then to the q^{th} -cohomology groups of this sheaves, we see that, we obtain the standard complex

$$0 \to H^{q}(X, \mathcal{O}) \underset{c}{\otimes} F \to \operatorname{Hom}_{c}(\mathfrak{u}_{1}, H^{q}(X, \mathcal{O}) \underset{c}{\otimes} F) \cdots \operatorname{Hom}_{c}(\Lambda^{n}\mathfrak{u}_{1}, H^{q}(X, \mathcal{O}) \underset{c}{\otimes} F) \to 0$$

where $H^{q}(X, \mathcal{O})$ carries the \mathfrak{u}_{1} -module structure defined by the action of \mathfrak{u}_{1} on \mathcal{O} defined above and $H^{q}(X, \mathcal{O}) \otimes F$ is the tensor product of this representation and ρ .

Combining the preceding, with Proposition 1, we obtain

Theorem 2. Let G be a connected complex Lie group and Γ a discrete subgroup. Let \mathcal{O} be the sheaf of germs of holomorphic functions on $X = \Gamma \setminus G$. Let ρ be a representation of G in a finite dimensional complex vector space F and L_{ρ} the associated local system. Then there is a convergent spectral sequence $\{E_r\}_{0 \le r \le \infty}$ converging to $H^*(X, L_{\rho})$ such that $E_2^{pq} = H^p(g, H^q(X, \mathcal{O}) \bigotimes_{\sigma} F)$ where $H^q(X, \mathcal{O})$

and F are considered as g-modules as follows: a left-invariant vectorfield Y on G projects on X as a vectorfield whose 1-parameter group is a group of holomorphic automorphisms of X; hence $f \longrightarrow Xf$ defines an endomorphism of \mathcal{O} and hence a representation of g; in F we have the representation ρ .

Proof. The argument above is incomplete only in two details, under the isomorphism $g \xrightarrow{p_1} u_{i_1}$, we must show the following:

i) If ρ^c is the extension to g of ρ , then $\rho^c \circ p_1$ and ρ are equivalent.

ii) $Xf = p_1(X) \cdot f$

The former is a well known fact; the latter follows from the fact that if $p_2: g \to u_2$ is the projection onto antiholomorphic vectorfields, then, $p_2(X) f=0$ for holomorphic f.

A corollary is the following

Theorem 3. Let G be a connected complex semisimple Lie group and Γ a

discrete subgroup such that $\Gamma \setminus G$ is compact. Then, $H^1(\Gamma \setminus G, \mathcal{O})$ where \mathcal{O} is the sheaf of germs of holomorphic functions on $\Gamma \setminus G$ vanishes provided that G has no 3-dimensional components.

Proof. Since $\Gamma \setminus G$ is compact $H^q(X, \mathcal{O})$ are finite dimensional so that, in view of the Whitehead Lemma for semisimple Lie algebras, we have, for any finite dimensional representation ρ of G in a vector space F, in the spectral sequence of Theorem 2

$$E_2^{10} = E_2^{20} = 0$$
. On the other hand,
 $E_{\infty}^{01} = E_3^{01}$

is the homology of

$$0 \to E_{2}^{01} \to E_{2}^{20} = 0$$

Hence $E_{\infty}^{01} = E_{2}^{01} = H^{0}(\mathfrak{g}, H^{1}(X, \mathcal{O}) \underset{\sigma}{\otimes} F)$. Now if $H^{1}(X, \mathcal{O}) \neq 0$, and if we choose F to be the dual of this module, then, $H^{0}(\mathfrak{g}, H^{1}(X, \mathcal{O}) \otimes F) \neq 0$. On the other hand since the spectral sequence converges to $H^{*}(X, L_{\rho})$, this implies that $H^{1}(X, L_{\rho}) \neq 0$. But according to [1a] and [4] under the hypothesis of the theorem, viz., that G has no 3-dimensional components, $H^{1}(X, L_{\rho})=0$, a contradiction. Hence the theorem.

Corollary. If $\Gamma \subset G$ is a discrete subgroup of a connected complex semisimple Lie group G such that $\Gamma \setminus G$ is compact, then the natural complex structure on $\Gamma \setminus G$ is locally rigid.

Proof. $\Gamma \setminus G$ is holomorphically parallelisable. Hence the sheaf Θ of germs of holomorphic vectorfields is isomorphic to a direct sum of copies of \mathcal{O} . From Theorem 3, therefore, $H^1(\Gamma \setminus G, \Theta) = 0$. It is well known that this last implies that the complex structure is locally rigid.

REMARK. Reverting to the notation of §1, when $K \setminus G$ is hermitian symmetric, Matsushima and Murakami have given a type decomposition

$$H^{q}(\Gamma, X, \rho) \simeq \sum_{r+s=q} H^{rs}(\Gamma, X, \rho)$$

The groups $H^{r_s}(\Gamma, X, \rho)$ have an interpretation in terms of the spectral sequence of Proposition 1 of this section. In fact, according to proposition 1, there is a spectral sequence converging to $H^*(\Gamma, X, \rho)$ with E_1^{pq} as $H^q(X, \underline{\Omega} \bigotimes_{\mathcal{O}} \underline{W}_{\rho})$. A simple calculation using Lemma 4.1 of [3] shows that E_2^{pq} is isomorphic to $H^{pq}(\Gamma, X, \rho)$ and that the spectral sequence degenerates from the E_2 stage onwards.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH AND UNIVERSITÉ DE GRENOBLE

M. S. RAGHUNATHAN

Bibliography

- [1] Y. Matsushima: On the first Betti number of compact quotient spaces of higherdimensional symmetric spaces, Ann. of Math. 75 (1962) 312-330.
- [1a] Y. Matsushima: On the cohomology groups of locally symmetric compact, Riemannian manifolds, 'Differential Analysis', Papers presented at the Bombay Colloquium, 1964, 237-242.
- [2] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
- [3] Y. Matsushima and S. Murakami: On certain cohomology groups attached to hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1-35.
- [4] M.S. Raghunathan: On the first cohomology of discrete subgroups of semisimple Lie groups, Amer. J. Math. 87 (1965), 103-139.