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1. Introduction

In this Part IT of series of the present work, we discuss the construction of
irreducible representations of binary modular congruence group mod p*. The
method is analogous with that of Part I [6] where we discussed the construction
of discrete series of SL(2, K), where K is a non-discrete locally compact field.

There exists a homomorphism of SL(2, Z) into the symplectic group asso-
ciated with Z/(p*) x Z/(p) and the kernel of this homomorphism is the principal
congruence group mod p*. So we have a homomorphic imbedding of the
modular congruence group into the symplectic group associated with Z/(p") X
Z|(p"). A. Weil [7] constructed a natural projective unitary representation of
the symplectic group associated with a locally compact abelian group G on
LX(G). If we take G=Z/(p*)x Z/(p*) and restrict the projective representa-
tion to the modular congruence group, we can show that it is a representation in
the ordinary sense. The representation thus obtained conicide with the one
constructed by H. D. Kloosterman [3] who used the transformation formula of
theta functions. The decomposition into invariant irreducible subspaces and the
calculation of their traces were performed in detail in [3] and they give the greater
part (in fact, for the case A=1, all) of irreducible representations.

If we take G=Z/(p*) X Z/(p*"*) and apply the construction described above,
we also have a new representation of the modular congruence group. The com-
plete decomposition into irreducible representations is not undertaken in this
paper, and we only show for the special case A=2 that all irreducible represen-
tations absent in H. D. Kloosterman’s work are obtained as invariant subspaces
of this representation.

The traces of irreducible representations of the modular congruence group
mod p were calculated by G. F. Frobenius. E. Hecke, in connection with his
study of the general theory of modular functions, raised the problem of determin-
ing all irreducible representations and their traces of the modular congruence
group mod p*. The first contributions to this problem were published almost
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simultaneously by H. Rohrbach [5] and H. W. Praetorius [4], both of whom
claculated the traces for the special case A=2. The general problem was
attacked by H. D. Kloosterman as mentioned above.

This Part II is almost independent of Part I and follows directly from
§2 of Part I where we summarized the results in Chapter I of [7], In §2 of this
paper, we collect definitions and state the principle of our construction. The
reconstruction of the representation obtained by H. D. Kloosterman and the
construction of a new one are done in §3 and §4 respectively. Preliminary
results for the decomposition of the latter into invariant subspaces are contained
in §5. In Appendix we consider the special case A=2 and calculate the traces
of representations on some invariant subspaces. Comparing it with the results
in [5], we see that they are irreducible and fill up representations absent in H.D.
Kloosterman’s work.

Professor H. Yoshizawa informed the author that J. A. Shalika had obtained
analogous and, in some points, more explicit results by a different method.

2. Definitions and the principle of the construction

Let us fix an odd prime number p and a natural number A. For aeZ,
p”"lla implies that the highest power of p which divide « is p". For acZ
such that @0 (p), @™ is an integer which satisfies a-a™*=1(p*). For u=
(u, w)E Z X Z, we say u=0(p”) (or p*|u) if p*|u, and p*|u,. p”||lu implies that
u=0(p") and u==0(p**"). u mod p” are understood in the same way.

Put T'=SL(2, Z) and let us denote with T'(p*) the principal congruence
subgroup mod p*:

= {3 ers (1= (190

I'(p) is a normal subgroup of I" and we call G(p*)=T/T'(p*) the modular
congruence group mod p*. For g= <a '(;)er‘ let / be the integer such that
P'lly and put y=p'y,.

We shall apply the general theory of Chapter I in [7] (or see our Part I,
§2), taking G=Z/(p*)x Z/(p") in §3 and G=2Z/(p*)x Z/(p*"") in §4. They
are self-dual and an explicit identification of G* with G is given separately in §3
and §4.

For a=Z, define homomorphism a of G by ua=(au,, ou,). This
establishes a homomorphism of T into Sp(G) and the kernel of this homo-
morphism is T'(p*). So G(p") is imbedded homormophically into Sp(G), so into
B,(G). The image of g G(p") in B(G) by above imbedding is simply denoted

Added in proof

Professor M. Kuga informed the author that J. A. Shalika, in 1965, had stated the connec-
tion of these problems with the work of A. Weil.
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with g.

It is known that the natural homomorphism 7z, of B(G) (a group of unitary
operators in L¥(G)) to By(G) is surjective and its kernel is the group of constant
multiples of the identity. Let us fix a mapping r from By(G) to B,(G) such
that 7z or is the identity. If s, s and s in B,(G) satisfy ss’=¢", then there esists
a constant ¢(s, s’) such that r(s)r(s’)=c(s, s')r(s”).

Let $=L*G) and V and V’ be operators on . We shall mean with the
notation V®(u)~V'®(u) (P9, u=G) that there exists a non-zero constant C
such that V'=CV’. We mostly use this notation as

VoW ~ 3 K 0)®(),

where V"’ is defined by V'®(u)=>" K(u, v)®(v).
VEG

Now consider the sum
2

Fin)= 37 eicps

x mod p»
where o is an integer such that 030 (p). F(1) is ordinary Gaussian sum and

F,,(l):p‘/"'(%)eo, where (%) is the Legendre symbol and &=1 or ¢ accord-

ing as <—%1>=1 or <_T1>=—1. It is known

— " — pnt1/2 o
(1) F2m) =p", F(2nt1)=p" (5 )e,
(see [2, pp. 227-228]).

3. Reconstruction of the representation of G(p*) obtained by H.D.
Kloosterman

Take G=Z|(p*)x Z/(p"). Let A be an integer which is without square
factor and A=%0 (p). For ”=<Zl> v-——(:‘)EG, put

G oy = o[ MR (o] = e,
10

where Q—-—(O A). {, > defines a selfduality of G.

In this case, for y=£0(p) and ® 9,
(2) r(o9) 2@ ~owe|22Lom| (©r = uou
and

(3) r() 3 )R ~ 2 o) <—uy, v,
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For g= (a ﬁ)EG( ") with v=£0(p), by the identity

<a B) (I 20 .-1)(0 ,,—])(] 8 ._1)

( 4) r(g)CD(u) Née[z_la'y_lQ[u]+2—1§)2’_1Q[u]_'7_””Q‘U]q;(,v) .

Now let y=0(p) and y=p*y, v,%£0(p). «a=x0(p) in this case and
(7 5)=(-% -8)(:=( 7))
So
r(@y2) ~ror( _Y _S)ow
~3 e[ uQv] 3 e[—2‘l'ya‘lQ[-v]+2“Ba“1Q[w]—1—a‘”va]¢(w) )

IEG wea p"

Let us evaluate the summation over ». Put

P — é{};e [_‘upQ}\v]_e[—Z“'ya‘lQ?[‘f]—{—a'“va] .

Then
p=2e [—%{Z‘I'yQ[W]—I—'(ua—w)Qv}] .

So we have

ol® =MZEG"[“%_Tl{z-w@[v']—Q[v])+‘<ua—w>9<v'—”>}] :
=3 e[~"%{Z‘WQ[t]+'Y’7)Qf+‘(”“—w)9’}].

v, tEG

Summation over v is 0 unless p*~*|2. Therefore

TN _a“’(ua——w)Qt
lpl"=p teG’Zﬂ_me[ R ]

So @ is 0 unless p*|uac—w. Now let p’|ua—w and put wa—w=ap’, then
» =S| -5 @ QI+ a0q |
— e[ -2 Qi —2 v 0la) |
= e[2r ol e [ -2 500 |
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So we have
e ~, 31 e[25E opu)| [0 Olua—u] | o(w),
or
(5) r(g)d(u) ~ 2 kg|u, w)d(w),
where
(6) kglu, 2))_3[2 aya 1Q[u]+2!‘)B'Y(»‘Q[v] 7o uQv] i plua—o,

=0, otherwise.

We have assumed that y=0(p) i.e. />1, however (5), (6) are valid for all
geG(P).
Now let gg’=g"’, where

. o IB , a/ Bl) yo (a// Bl’)
£= (7 8>, £ —<'Y' A A L
with y=ply,, v’=p"v4 and v"’=p!" 4’ (v,£0(p) etc.). There exists a constant
c=c(g,g’) such that

v;ﬂk(glu, v)k(g’' | v, w) = ck(g" |u, w) .
Putting u=w=0 in this identity, we have

on S €| ot | e [27 o

—10 7 ny =12 "L
LLVO Yo Q[‘ZJ]]

4 /7
veG,pilv, bV |va’ [ prite

C =

Assume [>1', then
-1

e[2 v vatve

c=_2 [ roe Q[v]]
= B [BET o).

v mod pA—I
Let first k=n—/+1'—1">0. Writing v=1v"+4-v"/p*, where v’ and v”” run through
a complete system of residues mod p* and p*"'~* respectively. Then

c:qu"—m N [2 ')’oj’))’o Yo Q[T)’]] .

v/ mod pk

By (1),

(7) c :P’wl—l’ﬂ" (___A>)\_1_"" v .

p
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Next, let A</H1”—0. In this case ¢=p**». [=I implies I”=n. If
1<V'<l, then by ya'-+8y'=v", p’|lva’ and p¥||8y’, we have I’=1’ and I=nx.
Remaining case 0=10/"<] (recall we have assumed /’<</) can be discussed
analogously and implies /=0, I=X. So (7) is valid even in the case A< I4-1"—1'.

Put

Kglu, o) = p () kgl o),
and define operator T(g) by
T(e)(w) = 3 K(glu, 0)9()

Then we have T(g)T(g’)=T(gg’) if I>V’, in particular, T(g)T(g")=1. So
T(g)T(¢')= T(gg’) without restriction />/. 'The obtained representation is
unitary because T(g™")=T(g)*, which can be verified directly.

4. Construction of a new representation of G(p*)

Put G=Z/(p") x Z|(p*™*) (.=>2). Let A be an integer without square factor
such that A=pA’, A’%=0(p) and o be an integer such that o=%0(p). For

o=(8), =)<,
u,v> = e, [Z’u? v] (es[x] = &),

P
where Q:(é g) G is self-dual with respect to <, >.

In this case, for a, v=£0(p) and ® =H=L*G),
0
r (g a“) D(u) ~ d(ua)

r(o9) @0 ~owe.[ Som] (@6 = uQw
and

r (3 —g_l) D(u) N,,;G D(v)—uy™, v>.

For g:(fyt [g)EG(p") with y=£0(p), we have

r(g)q)(u) N,,%;} ew[aV~IQ[u]+87_;?[v] _2')'_”1497)] D(v) .

Now let y=0(p) and y=p’y,, v,=0(p) with 1<I<A—1. We have
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r@@w ~r@r(_7 _S)ow
g [ 2L g [ G e 00 207 0 gy

p)\ weg
Let us evaluate the summation over v. Put

@ — ,,EEG e, [ _ Zt:gv] e [—")loz'lQ[vl)—k{—Za‘v1 ’va]

Then
? = Do~ QI 2/ wa—w)00} |
So
21° = 33 e~ Q1 Qo)+ 2 (ia—w)Q( )} |
= z[ L QI+ 2700t + 2ua—w) Q8 |

Summation over v is 0 unless p*~?(¢, and p*~/7*|¢,. Therefore

_2a‘”(ua—w)Qt]

2 2\ —1
H— e
W)I P teG,pA~l[ty, pA-i-1|ty G[ P)\

So @ is 0 unless p?|ucc—w. Now let p?|ua—w and put ua—w=ap’, then
? =3 e, |~ (1 Q1+ 2001 |
— &[22 Ola)| G| -2 0101

So we have

r(@®w) ~ >

weG, pl|lua—w

8 ot | e, |40 Qlua—] | (e

or

(8) r(&)P(u) ~ 2 k(glu, w)P(w),

where

(9) kglu, o) = e, [avalQ[u]Jer;:g[@]—2“/o‘“uQv], it plua—o,
=0, otherwise.

We have assumed y=0(p) i.e. I>1, however (8), (9) are valid for g G(p*) with
I<A—1. Ifl=)x, then
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H()P() ~ 3 k(g )b(e)
where
Melw ) =e,[SR0M] it plan—v. plan—o,
=0, otherwise,

which can be shown directly.
Now let gg’=g"”, where

/ / 74 /7
e=(55), ¢ =(55) = #=(3 %)
with y=p’y,, v'=p'v4 and v"=p" ' v4’ (v,%£0(p) etc.). There exists a constant
c=c(g, g’) such that

ék(gl u, V)k(g' | v, w) = Ck(g” lu, w) .
Assuming I'<ISKA—1, put u=w=0 in this identity. We have
— 8va? a'v4
e [ o [ ou]
Y'va e Q[‘U]]

= o
veG,pllv [ )‘+1+’,

Yo e /o Q[w]]

[
v mod pA~¢, vy mod pA—¢-1 [P)‘ =

Let first k=N—I{+1'"—1">0. Then

VAT oy

¢ = p*d’-ih e [
o
1/ mod pki o’ mod pk-1 p"

Using (1), we have

P N R Ve, <é:>>x—u -1 <')’o')'1,)')'(,;,0j> c
y —_— 0
P p

Next, let A<I+/”—0V. This occurs only if /=10’ and =\ and ¢=p**~»"' in
this case.
Put

K(g|u,v) = p-ri+ve <%’>A_I_l<%’> &'k(glu,v), if I<a—1,

- (%) kKglu,v), if I=nx

and define operator T(g) by
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T(g)P(u) = 2 K(glu, 2)@(2) -
T(g) is a unitary representation of G(p*)

5. Preliminary results for the decomposition of the representation
in §4 into invariant subspaces.

5.1. Automorphism of Q.

Let us consider the set of all matrices

V= <x1 —sz)
o x2 xl
with x,, x, satisfying
(10) x+Ax3 = 1(pY) .

We introduce in this set following equivalence relation:

1 —Ax, 1 —A 2 1 3 : —
<;2 x, 2> and <; , yly ) are equivalent if an only if x,=y,(p")

and x,=y,(p"). Then it form a group & of order 2p* with ordinary multiplica-
tion rule of matrices. V' &€® induces an automorphism of G defined by G=

a= (a‘>—>V (Zl> It is shown that

(11) VOV = O(p") for Ve®.

5.2. Stationary subgroups. Let us determine the stationary subgroup of & at
a=(a., a,)=G 1i.e. the elements of & which statisfy

{ xa,—Ax,a, = a, (P)‘)

xa,+ xa,=a,(p).

(12)

Put for k=1 S,={a=(a, a,)=G; p* *|a}. For acS,, if we write a=p*~*a",
(12) reduces to

x,—1)a}— Ax,a = 0(p*
(12y {( \—1at 2= 0(p")

x,a] + (x,—1)a3 = 0(p*™).
x,, x, with (10) satisfy (12)” if and only if
(13) x, = 1(p%), x=0(p*"),

which is verified by considering the case a}==0(p) and a=0(p) separately. We
will denote with &, the subgroup of elements of & which satisfy (13).
The order of the group /S, is 2p*/p* #t'=2p*~*. Number of elements
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of G which are contained in S, is p**%(p—1) if k>2 and p—1 if k=1. So
numbers of &/S-transitive parts of S, are 27'p¥*(p*—1) if k>2 and 27'(p—1)
if k=1.

®,/®, is isomorphic to Z/(p**). For the case A=2, explicit form of the
isomorphism is found in Appendix.

In general, the isomorphism is established by the aid of the theory of
p-adic exponential function (see for instance [1, pp. 177-179]) with the ad-
ditional assumption that p>3.

5.3. A quadratic number field. Let d’ be an integer without square factors
such thatd’= — A/, d'=2(4) (see [3, p. 377]) and put d=pd’, then d is square free
and d=—A(p*), d=2(4). Consider the quadratic number fileld Q(w), where
W=+/d. By natural homomorphism from integers of Q(w) to G defined
by a=a,+wa,—>(a,, a,), G can be identified with the residue classes of integrs
of Q(w) with respect to the following equivalence relation: a,=a+wa, and
b,=b-+wb, are equivalent if and only if 4,=b,(p") and a,=b,(p**). The
equivalence class containing a=a,+wa, is also denoted with a. We write
a=b(p"), if a,=b,(p*) and a,=b,(p*) for I<A—1.

x, —Ax,
xZ xl
a—Ea (€ = x,+wx,) by the above identification. Thus & is identified with
multiplicative group of all integers &=ux,+wx, in Q(+), x,, x, satistying (10)
and determined mod p*.

The transformation of G induced by V=< )E@ is written as

5.4. Invariant subspaces corresponding to the primitive charactors. Let X(&)
be a character of &/&, such that its restriction to &,_,/&, is not trivial. We
call such character a primitive character. Now let us consider the subspace 9,
of § consisting of elements & which satisfy ®(Eu)=X(E)D(u) for all €. 9, is
invariant subspaces and let Ty(g)=T(g)|9y. If ®=9,, then ®()=0 unless
ucS,. Let 0 be a system of representatives of the &/&,-transitive parts of
S,. Then for ®€9,,

T(g)@(u) = 2 K(glu, 2)@(v)
=21 2 K(glu e)d(€v)

vel e€®/6)

=2 >3 Kglu, e0)X(E)]D(v) -
vel €6G/6)\

Therefore
T, Tyg) =2 2/ K(g|a, ca)X(€)

ach ec®/G,

1
= 2pr-i Z Z K(g!a: Ea)X(E) .
D" GES) eS®/G
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Let us write this formula more explicitly. First let /<A—1, then

e, [')’El(a—l'i:\ﬁ_g)zv(a)] X(€),

4 11,1 =5

ac S\ €€0/6,, ca=aa( p')

where

= ZP{‘”‘P_}\HH/Z (%)A_1_1<7}a>551 .

When /=0, the congruence a=aa(p’) is no restriction on & Now let />1
and let us only consider g with a=1(p’). If we put E=x,+wx,, then Ea=a(p’)
is equivalent to

c

{ (xl_l)al_AxZaZ = O(PI)
x,0,+(x,—a, = 0(p).

If a,=0(p), then & satisfies (15) if and only if €€®,,,. If a,=0(p) (in this case
a,%=0(p)), then & satisfies (15) if and only if E€®,. So (14) reduces to

, 1 0_1 —&—8&)N| .
4y S TT) = 3 ez(§:/@.e.,['y (“JFBPAE, £) (a)]X(e), i 1—0,

N e [751(a+8_6_g)N(a)]x(8)
aESN TEO(p) c€Cray/Cr 2
= [fygl(a+8—6—§)N(a)] X(€)
aESr a,=0(p) €€6,/6)\ 7 P}\H ’
if 1<Isn—1.

(15)

_|_

Next let /=2, then

ec, [0_“%’(1)] X&) .

1 a
0 - ()
x(g) pr P/ aEs) e€@/B)\, ca=aa

If we put E=x,+wx,, Ea=aa is equivalent to
{(xl_a)al_szaZ = O(PA)

20,4+ (%, —a)a, =0(p*).
If a,=0(p), then

(2,—a)(ai+Ad3) = 0(pY) .
So x,—a=0(p*) and x,=0(p*"!). It is necessary for the existence of such &
that a=+4+1(p"). If a=+1(p"), Ea=aca if and only if +6€&,. Now if
a,=0(p), then

x(ai+Aa3) = 0(p") .

So x,=0(p*"") and »,—a=0(p*""). It is necessary for the existence of such &
that a=4+1(p*""). If a4-=1(p*"), éa=aca if and only if +6=&,. We
have thus obtained
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1) T,70) = e XED(S) 3 e [ENO] it a= 210,
ZP“X(il)(%LesAE o e[ a=t1),

=0, otherwise.

Appendix Discussion of the case M=2.

In this appendix we calculate traces of representations T in §5.4. explicitly
for the case A=2 and see that they are irreducible and together with irreducible
representations constructed by H.D. Kloosterman [3] exhaust all irreducible rep-
resentations of G(p?). For calculation of traces we use the representative of

conjugate classes in G(p?) introduced in [5]. Note that if g:<3 ’g) then
g= sgs”‘:( _% _Z()(s: <(1) _(1)>> and T, T,(g)=T,T(g’). We write H instead

of o and use the notation 3} moda 5 instead of 37, mod p,x=0(p) -
Let first I=2. If a=41(p%), then we have the following results by (16):

1,10 = 5 (£ (- 1+p(B5H) &) it B0,
=g (-1 (BR)e) i B=ps, 8 00),
= T (), it 2 =0(p),

where (—1)/=X(—1) <—_p—1> Traces corresponding to the representatives E,

F, A, B, P and Q are obtained.

Trace of D*(I=2 and p|la—1) is also calculated by (16) and is equal to
2(p—1).

Next, let I=1. 7—&(n)=1—2"An"+ wn establishes the isomorphism
between Z/(p) and &,/&,, so the primitive charcater X is written as X(&(7))=

[1%] K=#0(p)). By (14,

£ T = A+B (=7 (2 )e&5t)
where
A= B ()
and ’
B =

e[l_@]e [751(a+8—2+A7i2)N(a)]
aeSy GE0p) gmods L p 47H ?
We have
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B— . I_Qv] en [751(a+8~2+An2) (a%p+A’a§)]

ay,azmod p, a2%0(p) pmod p [

b P
= 3 e Yo (a+8—2)a} SV ¢ K7 ¢ ’Y(TlA'(a+3—2—2+A772)a§
a; mod p H['yn—l(a_l_PS_Z)a%]azlzodﬁ nmod p [? ] H[ o_lAl(a_l_Sp_z)ag ]
:algdpeH[ P ]P < y4 >Ea2§)dp < pz )

% e[_avoaz’ 2]
? ’

where 0=2"K*H 'A%, If a+8—2=p (r=£0(p)), we have A=0 and

32 Yo ’ HT'Y(_)-IA,ag_O"Yoaz—Z]
B P ( P )8 a2§)dp [ P
We have , for example,
T,T(P™) = L SV e[Pa§+0'76152]
az mod p p )
where p=—HA'. If a+4-6—2=1p* (r%0(p)),
_ 1/ T
TrTX(g)—7< 1+P<p>>.

Finally, let /=0. Additional assumption (a4 8)* — 4 == 0(p) implies that
T,T,(g)=0. The results are as following table, where 7 is an integer such

that n3 0(p) and (%): 1.

Representative U T, TH(U)
E=(} ?) ” 3 (2=
F——E (=1 (p2-1)
(9 b
“(p 1) 2 (195 )%0)
"y 1) a2t | 30
ey > 30
SRR
| Qm:c ‘;n+lrj;) 01 pt [nx2+arn“1x—2:|
Gmf(i ) _121155;32@)1 7077
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So they coincide with characters X§'*(G) in [5]. There it is shown that they
are irreducible and that there exist 4(p—1) different characters obtained, for exam-

ple, for p=1, 2, -+, p—1; (%): 4+1; f=0,1. Corresponding Tx(g) are ex-
actly those irreducible representations absent in the construction of [3].
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