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M. Auslander and O. Goldman in [1] laid the foundation for the study of
separable extentions of a commutative ring. All unexplained conventions, ter-
minology and notation in this note are as in [1]. One of the most important
and difficult problems in this theory, even when the commutative ring is a field,
is the explicit computation of the Brauer group. Let K be a commutative ring.
Following [2] we call a commutative K-algebra .S strongly separable in case it is
separable, finitely generated, and projective over K; and we call a commutative
ring Q separably closed in case the only strongly separable () algebras are direct
sums of copies of Q. In [2] it is shown that if K is any commutative ring with
no idempotents but 0 and 1 then there is a separably closed K-algebra Q with no
idempotents but 0 and 1, called the separable closure of K, which contains an
isomorphic copy of every strongly separable K-algebra with no idempotents but
0 and 1, and with the property that any finite subset is contained in a strongly
separable K-algebra.

In analogy with the situation in fields, one would expect the Brauer group
of a separably closed ring to be trivial. However M. Auslander has discovered
a separably closed principal ideal domain whose Brauer group has order two.
If K is a commutative ring let B(K) denote the Brauer group of K and if S is a
strongly separable K-algebra let B(S/K) denote the kernal of map induced by
the correspondence A — S®xA where A is a central separable K-algebra. If
K is a semi-local noetherian ring we prove that B(K)= U B(S/K) where S ranges
over all strongly separable K-algebras. If moreover, K has no idempotents but
0 and 1 and Q is the separable closure of K then B(Q) is trivial.

I would like to acknowledge my indebtedness to E.C. Ingraham who
provided the proof of Proposition 3.

Let K be a semi-local ring (commutative ring with a finite number of maxi-
mal ideals). If {M,} 2, are the maximal ideals of K then N=N %, M; is the
radical of K. One can make K into a topological space and complete the space
where a neighborhood base for 0 consists of the powers of N. We refer the
reader to Chapter II of [4] for the facts about completeness we employ here.
We will also frequently make use of the fact that any strongly separable algebra
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over a semi-local ring is semi-local. Also we will employ the well known
Nakayama’s Lemma which asserts that if R is any ring with identity and [ is a
left ideal of R then I is contained in the radical of R if and only if for all finitely
generated left R modules M with N a submodule of M, if IM+N=M then
N=M. Our first result generalizes Theorem 6.3 of [1].

Theorem 1. Let A be a central separable algebra over the noetherian semi-
local ring K, then there is a strongly separable K-algebra S with SQxA in the
zero class of B(S). Moreover, if K has no idempotents but 0 and 1, we may choose
S with no idempotents but 0 and 1.

Proof. Any commutative semi-local ring is a finite direct sum of semi-local
rings without idempotents but 0 and 1. Because of this observation we may
assume K has no idempotents but 0 and 1.

Let A=A/NA=A,®---® A, with the center of A; equal to K/M;K which
we denote K;. Since K has no idempotents but 0 and 1, 4 is a free K-module
(Page 377 of [1]). Thus Rankg, (4;)= Rankyg (4)=m? for some integer m.
There is a commutative separable algebra F; over K; of dimension m which is
a maximal commutative subalgebra of A;. Moreover, there is a §; 4, so that
F,= K 0;) and 6, satisfies a monic polynomial P;(x) over K; of degree m. The
existence of such an F; and 6; can be seen in the following way. If K, is
finite, then there is a field extention of K, (necessarily separable) which can be
imbedded in A; as a maximal commutative subring. There is always a maximal
commutative separable subfield of the division algebra component of A; of the
form K@) and when K, is infinite, we can let F; be the diagonal matrix with
entries in K (), F; is generated over K; by a matrix 6, with distinct scalar
multiples of @ along the main diagonal.

Let 0=60,+---460,. K(f) is a maximal commutative separable subalgebra
of A and @ satisfies the monic polynomial p(x) € K[x] of degree m given by
p(x)=3;p;(x) where p,(x) are the minimum polynomials over K; of the §;. Let
S=K[x]/(P(x)) where P(x) is a monic polynomial in K[x] which maps onto p(x)
mod N. Since K has no idempotents but 0 and 1, S is a finitely generated free
K-algebra and S/NS=K(f) is separable so S is separable over K. Moreover
S®xA is in the kernal of the map from B(S)— B(S/NS), so we may from
now on assume that 4 is in the kernal of the map from B(K)— B(K/NK).

With all notation as before we find an element g= A with K(d) a maximal
commutative separable subalgebra of A and satisfying a monic polynomial of
degree m over K. Let B4 with 8 mapping to § under the map from 4 to
A. Let S=K-14+K-pB+---+K-B"*. Since {1, 6, ---,6™ "} is a free basis
for a K direct summand of A, Nakayama’s lemma (pg. 377 of [1]) implies that
{1, B, -+, ™'} is a free set of generators of S over K which extends to a free
set of generators of A over K so S is a K-direct summand of 4.
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We now show S is a subring of 4 by showing 8”S. Let K be the
completion of K and let A=K®x A. Then A|NA=A|N A so since K is a finite
direct sum of complete local rings by Corollary 6.2 of [1], 4 is in the zero class
of B(K ). Since 4 is a free K-module of rank m?, A:Hom,} (P, P) with P a
free K-module of rank . Since K is noetherian, we may assume 4 is a subring
of A so that ,BEA. By the Cayley-Hamilton Theorem, @ satisfies a monic
polynomial of degree m over K. But Sis a K-direct summand of 4 and since
B K®xS, < S.

S is separable over K since S N NS=S N N4 and thus S/NS= K (d) which
is separable over K. Let S* be the commutant of .S in 4, by Theorem 2 of [3]
S* is a separable finitely generated projective K-algebra and the commutant in
A of S*is S. But S¥NNA is a two-sided ideal in S* so by Corollary 3.2
of [1] there is an ideal M < S with MS*=S*NNA. But MS*NS*=M=
(S*¥NNA)N S=NS so M=NS and S*=NS*+S. Therefore by Nakayama’s
lemma, S*=S, and by Theorem 5.6 of [1], S ®xA is in the zero class of B(S).

For the last statement of the theorem assume K has no idempotents but 0
and 1, then S—~Se;P---PDSe, with Se; a commutative finitely generated pro-
jective separable extention of Ke;~ K and with no idempotents but 0 and 1.
Since S®x A4 is in the zero class of B(S), there is a finitely generated projective
S-module P with Homs(P, P)=S®xA. Then Se;QxA=Homs.(Pe;, Pe;)
and Se;Qx A4 is in the zero class of B(Se;). This proves the theorem.

Corollary 2. If K is a semi-local noetherian ring then B(K)=UB(S|K)
where S ranges over all strongly separable K-algebras.

If K has no idempotents but 0 and 1 then by Corollary 2, Theorem A. 15
of [1] and the fact that any strongly separable K-algebra without idempotents
but 0 and 1 is contained in a Galois extention of K [2]; the computation of B(K)
is reduced to the computation of H*(G, U(S)) for each Galois extention S of K.
Here U(S) denotes the multiplicative units in .S, G is the Galois group of S
over K, -and H¥G, U(S)) is the second cohomology group of G acting on U(S).

We now give E. Ingraham’s proof of a module theoretic fact about the sepa-
rable closure of a semi-local ring which has no idempotents but 0 and 1.

Proposition 3. Let K be a semi-local ring with no idempotents but 0 and 1
and let Q) be the separable closure of K, then every finitely generated projective
Q-module is Q-free.

Proof. Let E be a finitely generated projective Q-module. Then there
exists an Q)-free module F of rank 7, and a finitely generated projective Q-module
L with EQL=F. Let x,---x, be a free bases for F' over Q, let y,,---,v,, be
a minimal set of generators for E over Q, and let y,,,,,**, y, be a minimal set
of generators for L over .
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To prove the Proposition we will show that if 3,7, p;y,=0 with p,€Q then
p;=0 for all 7.

Now there are o, ;€Q with y,=>1,21a,,%; and B;,;€Q with x,=31,4,8,,y;
since the y,---y, generate all of F. Let T={a;;, B;;, p;}. This is a finite set
so there is a strongly separable K-subalgebra S of Q with TCS. Let Fs=
Sx,+ - + Sx,,, Es=Sy,++-+Sy,, and Ls=S8y,,,,+-++Sy,. Fs is a free S-
module since the x; are linearly independent over () and hence over S. Fgs and
Lg are submodules of Fg since TCS. Since FsCE and Lgs< L, EsN Ls=0.
Again since TCS, Es+Ls=Fsso EsPLs=Fs. Thus Es is a finitely generated
projective S-module. But S is a strongly separable K-subalgebra of Q so Sisa
semi-local ring without idempotents but 0 and 1. Also y,---¥,, is a minimal set
of generators for Es over S since they were minimal for E over Q.

It is not a hard exercise using Nakayama’s lemma to show that in this situa-
tion y,---y,, must be free basis for Es over S. (see for example pg. 377 of [1]).
Thus y,--+y,, are linearly independent over S so all the p,=0 which is what we
wanted to show.

We can now prove out final result.

Theorem 4. If K is a semi-local noetherian ring without idempotents but 0O
and 1 and Q. is the separable closure of K, then B(Q) is trivial.

Proof. Let A4 be a central separable Q algebra. A is free as an Q-module
by Proposition 3, so let x,,---, x, be a free Q-basis for 4. Let {c};} be the
multiplication constants for the algebra A with respect to the basis x,,-:, x,.
That is, xx;=>", ci;x, with ¢i;&Q. Let.S be a strongly separable K-sub-
algebra of Q containing {c},}. Define the central separable S-algebra As by
letting As be the free S-module Sx, ---Sx, with multiplication constants {c},}.
Since K is a semi-local noetherian ring S is, so by theorem 1 there is a strongly
separable S-algebra 7" with no idempotents but 0 and 1 so that T®s4s is in
the zero class of B(T). But T is strongly separable over K so we may identify T
with a K-subalgebra of Q. Since 4=QQR (T RsA4s), we conclude 4 is in
the zero class of B(Q).
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