INFINITE OUTER GALOIS THEORY OF NON COMMUTATIVE RINGS

YASUJI TAKEUCHI

(Received August 26, 1966)

In [4], T. Nagahara presented infinite Galois theory of commutative rings with no non-trivial idempotent. On the other hand, Y. Miyashita studied in [3] finite outer Galois theory of non commutative rings.

We shall introduce the notion of infinite outer Galois extension of non commutative rings and obtain a generalization of the fundamental theorem of Galois theory.

In the first place, we recall the definition of finite Galois extension of non commutative rings. Let Γ be a ring with identity 1, Λ a subring with the same identity 1 and G a finite group of automorphisms of Γ . Then Γ is called a (finite) Galois extension of Λ relative to a group G if the following conditions hold:

(1) There exists an element z of Γ such that $t_G(z)=1$ where $t_G(x)=\sum_{\sigma\in\mathcal{G}}\sigma(x)$ for any element x of Γ .

(2) $\Lambda = \Gamma^G$ where Γ^G is the fixed ring of Γ by G, i.e. Γ^G is the set of all elements of Γ left invariant by G.

(3) There are elements x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n of Γ such that for all σ in G

$$\sum_{i=1}^{n} x_i \sigma(y_i) = \begin{cases} 1 & (\sigma=1) \\ 0 & (\sigma=1) \end{cases}$$

If Γ is a finite Galois extension of Λ relative to group G and $V_{\Gamma}(\Lambda)$ is the center C of Γ where $V_{\Gamma}(\Lambda)$ is the commutor ring of Λ in Γ , then Γ is called a finite outer Galois extension of Λ relative to a group G [cf. 3]. This notion will be extended to the following case.

Let Γ be a ring with identity 1, Ω a subring of Γ and σ , τ are two mappings of Ω to Γ . If there exists $\omega \in \Omega$ such that $\sigma(\omega)e \pm \tau(\omega)e$ for any central idempotent e of Γ , we say that the mappings σ and τ are strongly distinct. Moreover let G be a group of automorphisms of Γ (not necessarily finite). Then by G-strong subring we mean a subring Ω of Γ to which the restrictions of any two elements of G are either equal or strongly distinct as mappings

Y. TAKEUCHI

of Ω to Γ . Fixing a representative system $\{\sigma_1, \sigma_2, \dots, \sigma_n\}$ of the right cosets of Hin G for any finite index subgroup H of G, $t_{G/H}$ means $t_{G/H}(x) = \sum_{i=1}^n \sigma_i(x)$ for $x \in \Gamma$.

DEFINITION. Let Γ and G be as above and Λ a subring of Γ with the same identity 1. Then it is said that Γ is an outer Galois extension of Λ relative to a group G if the following conditions (from now on, we shall call them the outer Galois conditions) are satisfied:

(1) $t_{G/N^*}(\Gamma^N) = \Lambda$ for any finite index subgroup N of G where $N^* = \{\sigma | \sigma \in G, \sigma(x) = x \text{ for all } x \in \Gamma^N \}$.

(2) For any finite subset F of Γ , there exists a subring Ω of Γ containing Λ such that a) $F \subset \Omega$, b) Ω is a separable extension¹⁾ of Λ , c) Ω is G-strong, and d) H is a finite index subgroup of G where $H = \{\sigma | \sigma \in G, \sigma(x) = x \text{ for any } x \in \Omega\}$ and there exists an element ω_K of Ω such that $t_{K/H}(\omega_K) = 1$ for any subgroup K of G containing H.

(3) $V_{\Gamma}(\Lambda) = C$ where C is the center of Γ .

Throughout this paper, we assume that Γ is an outer Galois extension of Λ relative to a group G and Λ -module means right Λ -module.

First we shall present a characterization of outer Galois extensions.

From the Definition we obtain clearly next Lemma.

Lemma 1. $\#\{\sigma(\gamma) | \sigma \in G\}$ is finite for any $\gamma \in \Gamma$.

Corollary. If Ω is a subring of Γ finitely generated as Λ -module, then $\sharp(G|\Omega)$ is finite.

Lemma 2. Let Ω be a subring of Γ such that Ω is a separable extension of Λ and is G-strong. If $\#(G|\Omega)$ is finite, then the following statements hold: 1) $\Omega = \Gamma^{H}$ where $H = \{\sigma | \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega\}$. 2) Ω is a finitely generated projective Λ -module.

Proof. Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be elements of Ω satisfying the separability conditions. If we write e the image of $\sum_{i=1}^{n} x_i \otimes y_i$ by the natural mapping of $\Omega \bigotimes_{\Lambda} \Omega$ to $\Omega \bigotimes_{\Lambda} \Gamma$ and set $e_{\sigma} = (1 \otimes \sigma)(e)$ for $\sigma \in G$, it is clear that xe = ex and $xe_{\sigma} = e_{\sigma}\sigma(x)$ for any $x \in \Omega$. Let φ be a mapping of $\Omega \bigotimes_{\Lambda} \Gamma$ onto Γ by $\varphi(x \otimes y) = xy$ for any $x \otimes y \in \Omega \otimes \Gamma$. Then $\varphi(e_{\sigma})$ belongs to the center C of Γ

196

¹⁾ Let Γ be a ring with identity 1, Λ a subring of Γ . Γ is called a separable extension of Λ if there exist x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n of Γ such that $\sum_{i=1}^n x_i y_i = 1$ and $\sum_{i=1}^n x_i \otimes y_i = \sum_{i=1}^n x_i \otimes y_i z_i$ for any $z \in \Gamma$ where $\sum_{i=1}^n x_i \otimes y_i \in \Gamma \otimes \Gamma$. In this case, we shall say that x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n satisfy the separablity conditions.

since $x\varphi(e_{\sigma}) = \varphi(e_{\sigma})\sigma(x)$ for any $x \in \Omega$. We have that $\varphi(e_{\sigma}) = (\sum_{i=1}^{n} x_i y_i)\varphi(e_{\sigma}) = (\sum_{i=1}^{n} x_i \sigma(y_i))\varphi(e_{\sigma}) = \varphi(e_{\sigma})^2$. Therefore for all $\sigma \in G$

$$\sum_{i=1}^{n} x_i \sigma(y_i) = \begin{cases} 1 & (\sigma \in H) \\ 0 & (\sigma \in H) \end{cases}$$

since Ω is G-strong. Since the index of H in G is finite, we have $\omega = \sum_{i=1}^{n} x_i t_{G/H}$ $(y_i \omega)$ for any $\omega \in \Omega$. Thus Ω is a finitely generated projective Λ -module. The remaining part is trivial from the fact that $\gamma = \sum_{i=1}^{n} x_i t_{G/H}(y_i \gamma)$ for any $\gamma \in \Gamma^H$.

Lemma 3. Let F be any finite subset of Γ . Then there exists a normal subgroup N of G such that the index of N in G is finite, $F \subset \Gamma^N$ and Γ^N is a (finite) outer Galois extension of Λ relative to G/N.

Proof. If $F^* = \{\sigma(x) | \sigma \in G, x \in F\}$, F^* is finite. Let Ω be a subring of Γ satisfying the outer Galois conditions (2) for a finite subset F^* of Γ . Then $\Omega = \Gamma^H$ where $H = \{\sigma | \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega\}$. If N is the normal subgroup of G generated by H, we have $F \subset \Gamma^N$. Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be elements of Ω satisfying the separability conditions. Then we have already known

$$\sum_{i=1}^{n} x_i \sigma(y_i) = \begin{cases} 1 & (\sigma \in H) \\ 0 & (\sigma \notin H) \end{cases}$$

for all $\sigma \in G$. Since there exists $\omega_N \in \Omega$ such that $t_{N/H}(\omega_N) = 1$, we obtain

$$\sum_{i=1}^{n} t_{N/H}(\omega_N x_i) \sigma(t_{N/H}(y_i)) = \begin{cases} 1 & (\sigma \in N) \\ 0 & (\sigma \in N) \end{cases}$$

for all $\sigma \in G$. Hence $N = \{\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Gamma^N\}$, so that there exists $\gamma_N \in \Gamma^N$ such that $t_{G/N}(\gamma_N) = 1$. Since $V_{\Gamma^N}(\Lambda)$ is clearly the center of Γ^N , Γ^N is a (finite) outer Galois extension of Λ relative to G/N.

Lemma 4. (cf. [3]). Let Γ be a finite outer Galois extension of Λ relative to G. Then if H is any subgroup of G, Γ^{H} is a separable extension of Λ finitely generated as Λ -module and G-strong. Moreover if H is a normal subgroup of G, Γ^{H} is a (finite) outer Galois extension of Λ relative to G/H.

Proposition 2. If H is a subgroup of G such that the index of H in G is finite, then we obtain that Γ^{H} is a separable extension of Λ finitely generated as Λ -module and G-strong.

Proof. Let γ_1 be one of generators of Γ^H as Λ -module. Then there exists a normal subgroup N_1 of G such that $\gamma_1 \in \Gamma^{N_1}$ and Γ^{N_1} is a Galois exten-

Y. TAKEUCHI

sion of Λ relative to G/N_1 . Assume that N_{k-1} exists. If we can take out γ_k being one of generators of Γ^H as Λ -module not included in $\Gamma^{N_{k-1}}$, N_k is a normal subgroup of G such that $\gamma_k \in \Gamma^{N_k}$, $\Gamma^{N_{k-1}} \subset \Gamma^{N_k}$ and Γ^{N_k} is a finite Galois extension of Λ relative to G/N_k . Then we have a chain

$$G \supset HN_1 \supset HN_2 \supset \cdots \supset HN_k \supseteq H.$$

Hence

$$[G:H] > [HN_1:H] > [HN_2:H] > \dots > [HN_k:H] \ge 1$$

Since [G:H] is finite, there is a rational integer k_0 such that $\Gamma^H \subset \Gamma^N k_0$. Γ^H is the fixed ring of $\Gamma^N k_0$ by HN_{k_0}/N_{k_0} , so that Γ^H is a separable extension of Λ finitely generated as Λ -module and G-strong.

Corollary. If N is a normal subgroup of finite index in G, Γ^N is a (finite) outer Galois extension of Λ relative to a factor group of G.

Proof. (cf. [3]).

Now we summarize a characterization of outer Galois extensions.

Proposition 3. Let $\tilde{\Gamma}$ be a ring with identity 1, $\tilde{\Lambda}$ a subring of $\tilde{\Gamma}$ with same identity 1 and G a group of automorphisms of $\tilde{\Gamma}$.

Then $\tilde{\Gamma}$ is an outer Galois extension of $\tilde{\Lambda}$ relative to G if and only if the following conditions hold:

(1) $\tilde{\Gamma}^{G} = \tilde{\Lambda}$.

(2) For any finite subset F of $\tilde{\Gamma}$, there exists a normal subgroup \tilde{N} of \tilde{G} such that $F \subset \tilde{\Gamma}^N$, the index of \tilde{N} in \tilde{G} is finite and $\tilde{\Gamma}^N$ is a finite outer Galois extension of $\tilde{\Lambda}$ relative to \tilde{G}/\tilde{N} .

Proof. Necessity. It is obvious from Lemma 3 and 4.

Sufficiency. It follows from the proof of Proposition 2 that Γ^H is finitely generated as Λ -module for any finite index subgroup H of G. Then there exists a normal subgroup N of G such that $\Gamma^H \subset \Gamma^N$ and Γ^N is a finite Galois extension of Λ relative to G/N. Hence we have $t_{G/\overline{H}}(\Gamma^H) = \Lambda$ where $\overline{H} = {\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Gamma^H}$. The remainder of the proof is obvious.

Lemma 5. Let Ω be a subring of Γ which is a separable extension of Λ finitely generated as Λ -module and G-strong. If M is a left free Γ -module $\sum_{i=1}^{n} \oplus \Gamma \sigma'_{i}$ where $G \mid \Omega = \{\sigma'_{1}, \sigma'_{2}, \dots, \sigma'_{m}\}$, we may regard M as a right Ω -module by $x \cdot \sigma'_{i} \cdot y = x\sigma'_{i}(y)\sigma'_{i}$ for $x \in \Gamma$, $y \in \Omega$.

Then if ψ is a mapping of M to Hom $(\Omega_{\Lambda}, \Gamma_{\Lambda})$ by $\psi(\sum_{i=1}^{m} \gamma_{i} \cdot \sigma'_{i})(y) = \sum_{i=1}^{m} \gamma_{i} \cdot \sigma'_{i}(y)$ for $\sum_{i=1}^{m} \gamma_{i} \sigma'_{i} \in M$, $y \in \Omega$, ψ is Γ - Ω -isomorphism.

198

Proof. (cf. [4]).

REMARK. In the above Lemma, if $\Lambda = \Gamma^G$ and $\#\{\sigma(\gamma) | \sigma \in G\}$ is finite for any $\gamma \in \Gamma$, we may omit the assumption that Γ is an outer Galois extension of Λ relative to G.

Proposition 4. Let G^* be the closure of G (with respect to the finite topology). Then Γ is an outer Galois extension of Λ relative to G^* .

Proof. For any finite subset F of Γ , there exists a normal subgroup N of G such that Γ^N is a finite outer Galois extension of Λ relative to G/N. Then we have $G|\Gamma^N = G^*|\Gamma^N$. Hence Γ^{N^*} is a finite Galois extension of Λ relative to G^*/N^* where $N^* = \{\sigma \mid \sigma \in G^*, \sigma(x) = x \text{ for all } x \in \Gamma^N\}$.

DEFINITION. Let Ω be a subring of Γ containing Λ . Then we shall call Ω is a locally separable G-strong extension of Λ if, for any finite subset F of Ω , there exists a subring Ω' of Ω containing F which is a separable extension of Λ finitely generated as Λ -module and G-strong.

Proposition 5. If H is a closed subgroup of G (with respect to the finite topology), then Γ^H is a locally separable G-strong extension of Λ and $H=H^*$ where $H^* = \{\sigma | \sigma \in G, \sigma(x) = x \text{ for all } x \in \Gamma^H \}$.

Proof. Let F be a finite subset of Γ^{H} . Then there exists a normal subgroup N of G such that the index of N in G is finite, $F \subset \Gamma^{N}$ and Γ^{N} is an outer Galois extension of Λ relative to G/N. Since $\Gamma^{H} \cap \Gamma^{N} = \Gamma^{HN} = (\Gamma^{N})^{HN/N}$, $\Gamma^{H} \cap \Gamma^{N}$ is a separable extension of Λ finitely generated as Λ -module and G-strong. Hence Γ^{H} is a locally separable G-strong extension of Λ . We shall show the remaining part. Let F be any finite subset of Γ . Then there exists a subring Ω of Γ which is a finite outer Galois extension of Λ relative to a factor group of G and contain F. Then $H \mid \Omega = H^* \mid \Omega$ by finite Galois theory (cf. [2]), so that $H \mid F = H^* \mid F$. Thus we have $H = H^*$ since H is dense in H^* .

Corollary 1. Let H_1 , H_2 be two closed subgroup of G. If $\Gamma^{H_1} \supset \Gamma^{H_2}$, we have $H_1 \subset H_2$.

Corollary 2. Let H_1 , H_2 be as above. If $H_1 \neq H_2$, then $\Gamma^{H_1} \neq \Gamma^{H_2}$. Now we may exhibit the fundamental theorem of outer Galois theory.

Theorem. 1) Let Γ be an outer Galois extension of Λ relative to a group G and assume that G is compact (with respect to the finite topology). Then there is one-to-one lattice-inverting correspondence between closed subgroups of G and subrings of Γ which are locally separable G-strong extension of Λ . If Ω is a locally separable G-strong extension of Λ , which is a subring of Γ , then the corresponding subgroup is $H_{\Omega} = \{\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega\}$.

Y. TAKEUCHI

2) A closed subgroup N of G is normal in G if and only if Γ^N is mapped onto itself by every elements of G, in which case Γ^N is an outer Galois extension of Λ relative to G/N.

Proof. 2) is obvious. We need only show that if Ω is a subring of Γ which is a locally separable G-strong extension of Λ , then $\Omega = \Gamma^H$ where $H = \{\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega\}$. Suppose that there exists $\gamma \in \Gamma^H$ such that $\gamma \notin \Omega$. If $C = \{\sigma \mid \sigma \in G, \sigma(\gamma) \neq \gamma\}$, C is closed in G. Let X be the set of subring Ω_{α} of Ω which is separable extension of Λ finitely generated as Λ module and G-strong (Let I be the set of suffixes of Ω_{α} 's). If $H_{\alpha} = \{\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega_{\alpha}\}$ for each $\Omega_{\alpha} \in X$, H_{α} is closed subgroup of G. Let $\{\Omega_{1}, \Omega_{2}, \dots, \Omega_{n}\}$ be any finite subset of X. Then there exists a subring Ω' of Ω such that $\Omega_{i} \subset \Omega'$ ($i=1, 2, \dots, n$), and Ω' is a separable extension of Λ finitely generated as Λ -module and G-strong. If $K = \{\sigma \mid \sigma \in G, \sigma(x) = x \text{ for all } x \in \Omega'\}$, $\Omega' = \Gamma^{K}$ and so $K \subseteq \bigcap_{i=1}^{n} H$. Since $C \cap K \neq \phi$, $\bigcap_{i=1}^{n} (C \cap H_i) = C \cap (\bigcap_{i=1}^{n} H_i) \neq \phi$. Furthermore we obtain $\bigcap_{\alpha \in I} (C \cap H_{\alpha}) \neq \phi$ since G is compact. Hence $C \cap H \neq \phi$. This is contradiction. Therefore $\Omega = \Gamma^{H}$, completing the proof.

Osaka Gakugei Daigaku

References

- [1] S.U. Chase, D.K. Harrison and A. Rosenberg: Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52, 1964.
- [2] M. Harada and T. Kanzaki: On the Galois extension of rings, Sugaku (in Japanese) (to appear).
- [3] Y. Miyashita: Finite outer Galois theory of non commutative rings, J. Fac. Sci. Hokkaido Univ. (to appear).
- [4] T. Nagahara: A note on Galois theory of commutative rings, (to appear).
- [5] Y. Takeuchi: On Galois extension over commutative rings, Osaka J. Math. 2 (1965), 137-145.