ON MULTIPLY TRANSITIVE GROUPS III

Hirosi NAGAO and Tuyosi OYAMA

(Received May 17, 1965)

The main purpose of this paper is to improve Theorem 1 in [4].
Let G be a 4 -fold transitive group on $\Omega=\{1,2, \cdots, n\}, H=G_{1,2,3,4}$ the subgroup of G consisting of all the elements fixing the four letters $1,2,3$ and 4 , and let Δ be the totality of the letters fixed by H. Then the normalizer N of H in G fixes Δ. If we denote by N^{Δ} the restriction of N on Δ, then by the theorem of Jordan ([2]) and Witt ([5]) N^{Δ} is one of the following groups: S_{4}, S_{5}, A_{6} or M_{11}.

In the first section, we shall consider the number of fixed letters of an involution. We shall prove especially that if N^{Δ} is A_{6} or M_{11} then the number r of the fixed letters of any involution in G satisfies the relation

$$
n=r^{2}+2
$$

and consequently all involutions have the same number of fixed letters.
Now let P be a Sylow 2 -group of H, Δ^{\prime} the totality of the letters fixed by P and N^{\prime} the normalizer of P in G. Then, by the theorem of M. Hall ([1], Theorem 5.8.1), $\left(N^{\prime}\right)^{\Delta^{\prime}}$ is one of the following groups: $S_{4}, S_{5}, A_{6}, A_{7}$ or M_{11}. In the second section, we shall first consider the case in which $P \neq 1$ and P is transitive on $\Omega-\Delta^{\prime}$ and we shall prove that if $n \geq 35\left(N^{\prime}\right)^{\Delta^{\prime}}$ must be S_{4} or S_{5}. As a corollary we have that if G is not alternating nor symmetric group and if $P(\neq 1)$ is transitive and regular on $\Omega-\Delta^{\prime}$ then G is M_{12} or M_{23}. Since a transitive group which is abelian is regular, this gives an improvement of Theorem 1 in [4].

Notation. For a set X let $|X|$ denote the number of elements of X. For a set S of permutations on Ω the totality of the letters fixed by S is denoted by $I(S)$. If a subset Δ of Ω is a fixed block, i.e. if $\Delta^{S}=\Delta$, then the restriction of S on Δ is denoted by S^{Δ}. For a permutation group G the subgroup of G consisting of all the elements fixing the letters i, j, \cdots, k is denoted by $G_{i, j, \cdots, k}$.

1. Number of fixed letters of an involution.

Let G be a 4 -fold transitive group on $\Omega=\{1,2, \cdots, n\}, H$ the subgroup of G fixing four letters, $\Delta=I(H)$ and let N be the normalizer of H in G. Then N^{Δ} must be one of the following groups: S_{4}, S_{5}, A_{6} or M_{11}.

Proposition 1. If $N^{\Delta}=A_{6}$ or M_{11}, then the number r of the fixed letters of any involution in G satisfies the relation

$$
n=r^{2}+2
$$

Proof. (1) Suppose that $N^{\Delta}=A_{6}$. Let a be an arbitrary involution. Since G is 4 -fold transitive, taking a conjugate of a if necessary, we may assume that

$$
a=(1,2) \cdots
$$

Let $(k, l$) be a 2 -cycle of a different from (1, 2). Then a normalizes $G_{1,2, k, l}$ and by assumption a is an even permutation on $\Delta_{1}=I\left(G_{1,2, k, l}\right)$. Therefore we have

$$
a^{\Lambda_{1}}=(1,2)(i)(j)(k, l)
$$

Thus at least two letters are fixed by a. Now for a subset $\{i, j\}$ of $I(a), a$ normalizes $G_{1,2, i, j}$, therefore for $\Delta_{2}=I\left(G_{1,2, i, j}\right)$ we have

$$
a^{\Delta_{2}}=(1,2)(i)(j)(k, l)
$$

Thus $\{i, j\}$ determines uniquely a 2 -cycle $\left(k, l\right.$) of a, and then $G_{1,2, i, j}=$ $G_{1,2, k, l}$ and $\{i, j\}=I(a) \cap I\left(G_{1,2, k, l}\right)$. We consider the $\operatorname{map} \varphi:\{i, j\} \rightarrow(k, l)$ from the family of all subsets of $I(a)$ consisting of two letters into the family of all 2-cycles of a different from (1,2). From above φ is onto. To show that φ is one to one, suppose that $\varphi(\{i, j\})=\varphi\left(\left\{i^{\prime}, j^{\prime}\right\}\right)=(k, l)$. Then $I(a) \cap I\left(G_{1,2, k, l}\right)=\{i, j\}=\left\{i^{\prime}, j^{\prime}\right\}$. Hence φ is one to one and the number of 2 -cycles of a different from (1,2) is ${ }_{r} C_{2}$. Thus we have

$$
n=2+r+2 \cdot{ }_{r} C_{2}=r^{2}+2 .
$$

(2) Suppose that $N^{\Delta}=M_{11}$ and let a be an arbitrary involution. As in (1), we may assumed that $a=(1,2) \cdots$, and we can easily see that at least two letters are fixed by a. If $\left\{i_{1}, i_{2}\right\}$ is a subset of $I(a)$, then a normalizes $G_{1,2, i_{1}, i_{2}}$ and for $\Delta_{1}=I\left(G_{1,2, i_{1}, i_{2}}\right) a^{\Delta_{1}}$ is, being an involution of M_{11}, of the following form:

$$
a^{\Lambda_{1}}=(1,2)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(k_{1}, l_{1}\right)\left(k_{2}, l_{2}\right)\left(k_{3}, l_{3}\right)
$$

Then $G_{1,2, i_{\mu}, i_{\nu}}=G_{1,2, k_{\rho}, l_{\rho}}$ and thus $\left\{i_{1}, i_{2}\right\}$ determines uniquely a set of three 2 -cycles $\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right),\left(k_{3}, l_{3}\right)$. Now consider the map

$$
\varphi:\left\{i_{1}, i_{2}\right\} \rightarrow\left\{\left(k_{1}, l_{1}\right),\left(k_{2}, l_{2}\right),\left(k_{3}, l_{3}\right)\right\}
$$

from the family of all subsets of $I(a)$ consisting of two letters into the family of the sets of three 2 -cycles of a different from (1, 2). If a 2 -cycle (k, l) of a different from (1,2) is given, then a normalizes $G_{1,2, k, l}$ and for $\Delta_{2}=I\left(G_{1,2, k, l}\right) a^{\Delta_{2}}$ has, being an involution of M_{11}, just three fixed letters $\left\{i_{1}, i_{2}, i_{3}\right\}$. Then $I(a) \cap I\left(G_{1,2, k, l}\right)=\left\{i_{1}, i_{2}, i_{3}\right\}$ and $\varphi\left(\left\{i_{1}, i_{2}\right\}\right)$ $=\varphi\left(\left\{i_{1}, i_{3}\right\}\right)=\varphi\left(\left\{i_{2}, i_{3}\right\}\right) \supset(k, l)$. Now, from the definition of $\varphi, \varphi\left(\left\{i_{1}, i_{2}\right\}\right)$ $\supset(k, l)$ if and only if $G_{1,2, i_{1}, i_{2}}=G_{1,2, k, l}$, i.e. $\left\{i_{1}, i_{2}\right\} \subset I(a) \cap I\left(G_{1,2, k, l}\right)$. Hence the set of 2 -cycles of a different from (1,2) is the disjoint union of the images of φ and each inverse image of φ consists of three subsets. Therefore the number of 2 -cycles of a different from (1,2) is ${ }_{r} C_{2}$ and we have

$$
n=2+r+2 \cdot{ }_{r} C_{2}=r^{2}+2 .
$$

Proposition 2. If $N^{\Delta}=S_{5}$, then the number r of the fixed letters of any involution in G satisfies the following relation:

$$
r(r-1) \equiv 0 \quad(\bmod 3)
$$

Proof. We may assume that $r \geq 2$ and the given involution is $a=(1,2) \cdots$. If $\left\{i_{1}, i_{2}\right\}$ is a subset of $I(a)$, then a normalizes $G_{1,2, i_{1}, i_{2}}$ and for $\Delta_{1}=I\left(G_{1,2, i_{1}, i_{2}}\right)$ we have

$$
a^{\Delta_{1}}=(1,2)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right),
$$

and $G_{1,2, i_{1}, i_{2}}=G_{1,2, i_{1}, i_{3}}=G_{1,2, i_{2}, i_{3}}$. Now consider the map

$$
\varphi:\left\{i_{1}, i_{2}\right\} \rightarrow G_{1,2, i_{1}, i_{2}}
$$

from the family of all subsets of $I(a)$ consisting of two letters into the family of the subgroups of G. Then each inverse image of φ consists of three subsets and hence we have

$$
{ }_{r} C_{2}=\frac{r(r-1)}{2} \equiv 0 \quad(\bmod 3)
$$

2. Main theorem.

Let G be again a 4 -fold transitive group on $\Omega=\{1,2, \cdots, n\}$. It is known that the only 4 -fold transitive (not alternating nor symmetric) groups on less than 35 letters are the four Mathieu groups M_{11}, M_{12}, M_{23} and M_{24}. Therefore in the following we may assume that $n \geq 35$.

Now let $H=G_{1,2,3,4}, \Delta=I(H)$ and let P be a Sylow 2-group of H, $\Delta^{\prime}=I(P)$. Then $\Delta^{\prime} \supset \Delta$. We denote the normalizers of H and P by N and N^{\prime} respectively. Then $\left(N^{\prime}\right)^{\Delta^{\prime}}$ is one of the following groups: S_{4}, S_{5}, A_{6}, A_{7} or M_{11}. We first prove the following

Proposition 3. If P is transitive on $\Omega-\Delta^{\prime}$ and $n \geq 35$, then $\left(N^{\prime}\right)^{\Delta^{\prime}}$ must be S_{4} or S_{5}.

Proof. We first remark that if $i \in \Delta^{\prime}-\Delta$ the length of the set of transitivity of H containing i is odd since the subgroup of H fixing i cantains a Sylow 2-group P of H.

The proof in the following is by contradiction.
(1) Suppose that $\left(N^{\prime}\right)^{\Delta^{\prime}}=A_{6}$ and $\Delta^{\prime}=\{1,2,3,4,5,6\}$.

Then N^{Δ} must be A_{6}, S_{5} or S_{4}.
(1.1) Suppose $N^{\Delta}=A_{6}$ and let a be a central involution of P. Then, by Lemma 2 in [3], $|I(a)|=6$ and, by Proposition 1, we have

$$
n=6^{2}+2=38
$$

Consider the map $\varphi: i \rightarrow G_{1,2,3, i}$ from the set $\{4,5, \cdots, 38\}$ into the family of subgroups of G. If $I\left(G_{1,2,3, i}\right)=\{1,2,3, i, j, k\}$ then $\varphi^{-1}\left(G_{1,2,3, i}\right)$ consists of the three letters i, j, k. Hence we have

$$
38-3=35 \equiv 0 \quad(\bmod 3)
$$

which is a contradiction.
(1.2) Suppose that $N^{\Delta}=S_{5}$ and $\Delta=\{1,2,3,4,5\}$. By the quadruple transitivity G contains an involution $a=(1,2)(3)(4) \cdots$. Since $H=G_{1,2,3,4}$ is normalized by a, Δ is fixed by a and hence a fixes the letter 5 , i.e.

$$
a=(1,2)(3)(4)(5) \cdots
$$

Now the number of Sylow 2-groups of H is odd. Therefore there is a Sylow 2-group of H which is normalized by a. We may assume that it is P. Then Δ^{\prime} is fixed by a and we have

$$
a^{\Delta^{\prime}}=(1,2)(3)(4)(5)(6) .
$$

But this is a contradiction since $a^{\Delta^{\prime}}$ must be an even permutation.
(1.3) Suppose that $N^{\perp}=S_{4}$ and let $\Gamma=\Omega-\Delta^{\prime}$. Then the sets of transitivity of H on $\Omega-\Delta=\{5,6\} \cup \Gamma$ can be assumed to be one of the following :
(i) $\{5,6\}$ and Γ,
(ii) $\{5,6\} \cup \Gamma$.

Since Γ is a set of transitivity of the 2 -group $P|\Gamma|$ is a power of 2 .

Hence in both cases the length of the set of transitivity containing the latter $5\left(\in \Delta^{\prime}-\Delta\right)$ is even. This is a contradiction by the first remark.
(2) Suppose that $\left(N^{\prime}\right)^{\Delta^{\prime}}=A_{7}$ and $\Delta^{\prime}=\{1,2, \cdots, 7\}$. Then N^{Δ} must be A_{6}, S_{5} or S_{4}.
(2.1) Suppose $N^{\Delta}=A_{6}$ and let a be a central involution of P. Then $|I(a)|=7$ and we have by Proposition 1

$$
n=7^{2}+2=51
$$

Since P is transitive on $\Omega-\Delta^{\prime}$ and $\left|\Omega-\Delta^{\prime}\right|=51-7=44$ is not a power of 2 we have a contradiction.
(2.2) Suppose that $N^{\Delta}=S_{5}$ and $\Delta=\{1,2,3,4,5\}$. Then the sets of transitivity of H on $\Omega-\Delta=\{6,7\} \cup \Gamma$ may be assumed to be one of the following :
(i) $\{6,7\}$ and Γ,
(ii) $\{6,7\} \cup \Gamma$.

But in both cases the length of the set of transitivity containing the letter $6\left(\in \Delta^{\prime}-\Delta\right)$ is even. This is a contradiction by the first remark.
(2.3) Suppose $N^{\Delta}=S_{4}$ and let $\Gamma=\Omega-\Delta^{\prime}$. Then the sets of transitivity of H on $\Omega-\Delta=\{5,6,7\} \cup \Gamma$ may be assumed to be one of the following :
(i) $\{5,6,7\}$ and Γ,
(ii) $\{5,6\}$ and $\{7\} \cup \Gamma$,
(iii) $\{5,6,7\} \cup \Gamma$.

The case (ii) does not occur since the length of the set of transitivity containing the letter $5\left(\in \Delta^{\prime}-\Delta\right)$ is even in this case. In the case (iii), H is transitive on $\Omega-\Delta$. Hence G is 5 -fold transitive and then the subgroup G_{1} fixing the letter 1 is 4 -fold transitive on $\{2,3, \cdots, n\}$ and satisfies the assumption in (1). Thus as in (1) we have a contradiction.

We shall now consider the case (i). Let P^{\prime} be an arbitrary Sylow 2-group of H. Then there is an element x of H such that $x^{-1} P x=P^{\prime}$. Since $\{5,6,7\}$ is a set of transitivity of H, it is fixed by x. Therefore $H_{5,6,7} \supset P$ implies $x^{-1} H_{5,6,7} x=H_{5,6,7} \supset P^{\prime}$ and hence we have $I\left(P^{\prime}\right)=\{1,2$, $\cdots, 7\}$. This shows that $I\left(P^{\prime}\right)$ is independent of the choice of Sylow 2group P^{\prime} of H and is uniquely determined by H. Let $a=(1,2) \cdots$ be an involution of G which is conjugate to a central involution of P. Then $|I(a)|=7$. If $\left\{i_{1}, i_{2}\right\}$ is a subset of $I(a)$, then $G_{1,2, i_{1}, i_{2}}$ is normalized by a. Therefore there is a Sylow 2-group $P^{\prime \prime}$ of $G_{1,2, i_{1}, i_{2}}$ which is normalized by a. Let $I\left(P^{\prime \prime}\right)=\left\{1,2, i_{1}, i_{2}, i_{3}, k, l\right\}$. Since a is an even permutation on $I\left(P^{\prime \prime}\right)$, we may assume

$$
a=(1,2)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)(k, l) \cdots
$$

Now $I\left(P^{\prime \prime}\right)$ is uniquely determined by $G_{1,2, i_{1}, i_{2}}$, therefore $\left\{i_{1}, i_{2}\right\}$ determines uniquely a 2 -cycle (k, l) of a and we have the map

$$
\varphi:\left\{i_{1}, i_{2}\right\} \rightarrow(k, l)
$$

from the family of all the subsets of $I(a)$ consisting of two letters into the family of 2 -cycles of a different from (1,2). By the definition of φ, it is easy to see that $\varphi\left(\left\{i_{1}, i_{2}\right\}\right)=(k, l)$ if and only if $G_{1,2, i_{1}, i_{2}}$ and $G_{1,2, k, l}$ have a Sylow 2-group in common, and φ is onto. Now suppose that $\varphi\left(\left\{i_{1}, i_{2}\right\}\right)=\varphi\left(\left\{j_{1}, j_{2}\right\}\right)=(k, l)$. Then $G_{1,2, i_{1}, i_{2}}$ and $G_{1,2, k, l}$ have a Sylow 2-group P_{1} in common, and $G_{1,2, j_{1}, j_{2}}$ and $G_{1,2, k, l}$ have a Sylow 2-group P_{2} in common. Since both P_{1} and P_{2} are Sylow 2-groups of $G_{1,2, k, l}$ we have $I\left(P_{1}\right)=I\left(P_{2}\right)$. Therefore $\left\{j_{1}, j_{2}\right\} \subset I(a) \cap I\left(P_{1}\right)=\left\{i_{1}, i_{2}, i_{3}\right\}$. Thus we have that each inverse image of φ consists of three subsets of $I(a)$ and hence the number of 2 -cycles of a different from $(1,2)$ is $\frac{1}{3}{ }_{7} C_{2}=7$. In this way we have

$$
n=2+7+14=23,
$$

which contradicts the assumption.
(3) Suppose that $\left(N^{\prime}\right)^{\Delta^{\prime}}=M_{11}$ and $\Delta^{\prime}=\{1,2, \cdots, 11\}$. Then N^{Δ} must be one of the following groups: M_{11}, A_{6}, S_{5} or S_{4}.
(3.1) Suppose $N^{\Delta}=M_{11}$ and let a be a central involution of P. Then $|I(a)|=11$ and by Proposition 1 we have $n=11^{2}+2=123$. Since P is transitive on $\Omega-\Delta^{\prime}$ and $\left|\Omega-\Delta^{\prime}\right|=123-11=112$ is not a power of 2, we have a contradiction.
(3.2) Suppose $N^{\Delta}=A_{6}$. In the same way as in (3.1) we have $n=123$, which is a contradiction.
(3.3) Suppose $N^{\Delta}=S_{5}$ and let a be a central involution of P. Then $|I(a)|=11$ and by Proposition 2 we have

$$
11(11-1)=110 \equiv 0 \quad(\bmod 3)
$$

This is a contradiction.
(3.4) Suppose $N^{\Delta}=S_{4}$. Since the length of a set of transitivity of H containing one of the letters in $\Delta^{\prime}-\Delta=\{5,6, \cdots, 11\}$ is odd, the sets of transitivity of H may be assumed to be one of the following :
(i) $\{5,6,7\},\{8,9,10\}$ and $\{11\} \cup \Gamma$,
(ii) $\{5,6,7,8,9,10,11\}$ and Γ,
(iii) $\{5,6,7,8,9,10,11\} \cup \Gamma$.

First consider the case (i). Since $\left(N^{\prime}\right)^{\Delta^{\prime}}=M_{11}$, there is an element x in N^{\prime} such that

$$
x^{\Delta^{\prime}}=(1,2,3,4)\left(i_{1}, i_{2}, i_{3}, i_{4}\right)(k)(l)(m) .
$$

Then x normalizes $H=G_{1,2,3,4}$. Hence x must fix two sets of transitivity $\{5,6,7\}$ and $\{8,9,10\}$ or interchange them. But, from the form of $x^{\Delta^{\prime}}$, this is impossible.

In the case (iii), G is 5 -fold transitive. Hence $X=G_{1}$ is 4 -fold transitive on $\{2,3, \cdots, n\}$ and P is a Sylow 2 -group of $X_{2,3,4,5}$. Since $|I(P)-\{1\}|=10$, we have a contradiction by the theorem of M . Hall ([1], Theorem 5.8.1).

Now consider the case (ii). If P^{\prime} is an arbitrary Sylow 2-group of H there is an element x of H such that $P^{\prime}=x^{-1} P x$. Since $\{5,6, \cdots, 11\}$ is a set of transitivity of H, it is left invariant by x. Therefore $H_{5,6, \cdots, 11} \supset P$ implies $H_{5,6, \cdots, 11} \supset P^{\prime}$ and we have $I\left(P^{\prime}\right)=\{1,2, \cdots, 11\}$. This shows that $I\left(P^{\prime}\right)$ is independent of the choice of P^{\prime} and is determined uniquely by H. We denote it by $J(H)$. Let $a=(1,2) \cdots$ be an involution which is conjugate to a central involution of P. We consider the map

$$
\varphi:\left\{i_{1}, i_{2}\right\} \rightarrow J\left(G_{1,2, i_{1}, i_{2}}\right)
$$

which assigns $J\left(G_{1,2, i_{1}, i_{2}}\right)$ to a subset $\left\{i_{1}, i_{2}\right\}$ of $I(a)$. Since a normalizes $G_{1,2, i_{1}, i_{2}}$, there is a Sylow 2-group $P^{\prime \prime}$ of $G_{1,2, i_{1}, i_{2}}$ such that $a^{-1} P^{\prime \prime} a=P^{\prime \prime}$. Let $\Delta^{\prime \prime}=I\left(P^{\prime \prime}\right)=J\left(G_{1,2, i_{1}, i_{2}}\right)$. Then $a^{\prime \prime}$ is an involution of M_{11}. Hence we have

$$
a^{\Delta^{\prime \prime}}=(1,2)\left(i_{1}\right)\left(i_{2}\right)\left(i_{3}\right)\left(k_{1}, l_{1}\right)\left(k_{2}, l_{2}\right)\left(k_{3}, l_{3}\right)
$$

and $I(a) \cap J\left(G_{1,2, i_{1}, i_{2}}\right)=\left\{i_{1}, i_{2}, i_{3}\right\}$. Now it is easy to see that the inverse image $\varphi^{-1}\left(J\left(G_{1,2, i_{1}, i_{2}}\right)\right)$ consists of three subsets $\left\{i_{1}, i_{2}\right\},\left\{i_{1}, i_{3}\right\},\left\{i_{2}, i_{3}\right\}$. Therefore we have

$$
{ }_{11} C_{2}=\frac{11 \cdot 10}{2} \equiv 0 \quad(\bmod 3)
$$

which is a contradiction.
From Proposition 3 we have easily an improvement of Theorem 1 in [4].

Theorem. Let G be a 4-fold transitive group on $\Omega=\{1,2, \cdots, n\}$, excluding S_{n} and A_{n}. If a Sylow 2-group P of the subgroup fixing four letters is not trivial, and transitive and regular on $\Omega-I(P)$, then G must be M_{12} or M_{23}.

Proof. We use the same notations as before. For $n<35$ the theorem is trivial. Therefore we may assume $n \geq 35$, and then, by Proposition 3, we need consider only the case in which $\left(N^{\prime}\right)^{\Delta^{\prime}}=S_{4}$ or S_{5}.
(1) Suppose $\left(N^{\prime}\right)^{\Delta^{\prime}}=S_{4}$. Then G is 5-fold transitive. Hence $X=G_{1}$
is 4-fold transitive on $\{2,3, \cdots, n\}$. Since $X_{2,3,4}=H$ and a Sylow 2-group P of H is regular on $\{5,6, \cdots, n\}, X_{2,3,4,5}$ is of odd order. Therefore, by the theorem of M. Hall, X must be one of the following groups : S_{4}, S_{5}, A_{6}, A_{7} or M_{11}. But this contradicts the assumption $n \geq 35$.
(2) Suppose $\left(N^{\prime}\right)^{\Delta^{\prime}}=S_{5}$ and let $\Delta^{\prime}=\{1,2,3,4,5\}$. Then $N^{\Delta}=S_{4}$ or S_{5}. If $N^{\Delta}=S_{4}$, then H is transitive on $\{5,6, \cdots, n\}$ and hence G is 5fold transitive. Then $X=G_{1}$ is 4 -fold transitive on $\{2,3, \cdots, n\}$ and satisfies the assumption in (1). Therefore as in (1) we have a contradiction. On the other hand, if $N^{\Delta}=S_{5}$ then by Proposition 2 we have

$$
5(5-1) \equiv 0 \quad(\bmod 3)
$$

since for a central involution a of $P|I(a)|=5$. But this is a contradiction.

Osaka City University
Nara Technical College

References

[1] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
[2] C. Jordan: Recherches sur les substitutions, J. Math. Pure Appl. (2) 17 (1872), 371-363.
[3] H. Nagao: On multiply transitive groups I, Nagoya Math. J.
[4] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math. 2 (1965), 129-136.
[5] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.

