Nagao, H. and Oyama, T. Osaka J. Math. 2 (1965), 319-326

ON MULTIPLY TRANSITIVE GROUPS III

HIROSI NAGAO and TUYOSI OYAMA

(Received May 17, 1965)

The main purpose of this paper is to improve Theorem 1 in [4]. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}, H = G_{1,2,3,4}$ the subgroup of G consisting of all the elements fixing the four letters 1, 2, 3 and 4, and let Δ be the totality of the letters fixed by H. Then the normalizer N of H in G fixes Δ . If we denote by N^{Δ} the restriction of N on Δ , then by the theorem of Jordan ([2]) and Witt ([5]) N^{Δ} is one of the following groups: S_4 , S_5 , A_6 or M_{11} .

In the first section, we shall consider the number of fixed letters of an involution. We shall prove especially that if N^{Δ} is A_6 or M_{11} then the number r of the fixed letters of any involution in G satisfies the relation

$$n = r^2 + 2$$

and consequently all involutions have the same number of fixed letters.

Now let P be a Sylow 2-group of H, Δ' the totality of the letters fixed by P and N' the normalizer of P in G. Then, by the theorem of M. Hall ([1], Theorem 5.8.1), $(N')^{\Delta'}$ is one of the following groups: S_4, S_5, A_6, A_7 or M_{11} . In the second section, we shall first consider the case in which $P \pm 1$ and P is transitive on $\Omega - \Delta'$ and we shall prove that if $n \ge 35$ $(N')^{\Delta'}$ must be S_4 or S_5 . As a corollary we have that if G is not alternating nor symmetric group and if $P(\pm 1)$ is transitive and regular on $\Omega - \Delta'$ then G is M_{12} or M_{23} . Since a transitive group which is abelian is regular, this gives an improvement of Theorem 1 in [4].

NOTATION. For a set X let |X| denote the number of elements of X. For a set S of permutations on Ω the totality of the letters fixed by S is denoted by I(S). If a subset Δ of Ω is a fixed block, i.e. if $\Delta^S = \Delta$, then the restriction of S on Δ is denoted by S^{Δ} . For a permutation group G the subgroup of G consisting of all the elements fixing the letters i, j, \dots, k is denoted by $G_{i,j,\dots,k}$.

1. Number of fixed letters of an involution.

Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, H the subgroup of G fixing four letters, $\Delta = I(H)$ and let N be the normalizer of H in G. Then N^{Δ} must be one of the following groups: S_4 , S_5 , A_6 or M_{11} .

Proposition 1. If $N^{\Delta} = A_6$ or M_{11} , then the number r of the fixed letters of any involution in G satisfies the relation

$$n=r^2+2.$$

Proof. (1) Suppose that $N^{\Delta} = A_{\delta}$. Let *a* be an arbitrary involution. Since *G* is 4-fold transitive, taking a conjugate of *a* if necessary, we may assume that

$$a=(1,2)\cdots$$
.

Let (k, l) be a 2-cycle of *a* different from (1, 2). Then *a* normalizes $G_{1,2,k,l}$ and by assumption *a* is an even permutation on $\Delta_1 = I(G_{1,2,k,l})$. Therefore we have

$$a^{\Delta_1} = (1, 2)(i)(j)(k, l).$$

Thus at least two letters are fixed by *a*. Now for a subset $\{i, j\}$ of I(a), *a* normalizes $G_{1,2,i,j}$, therefore for $\Delta_2 = I(G_{1,2,i,j})$ we have

$$a^{\Delta_2} = (1, 2) (i) (j) (k, l)$$

Thus $\{i, j\}$ determines uniquely a 2-cycle (k, l) of a, and then $G_{1,2,i,j} = G_{1,2,k,l}$ and $\{i, j\} = I(a) \cap I(G_{1,2,k,l})$. We consider the map $\varphi : \{i, j\} \rightarrow (k, l)$ from the family of all subsets of I(a) consisting of two letters into the family of all 2-cycles of a different from (1, 2). From above φ is onto. To show that φ is one to one, suppose that $\varphi(\{i, j\}) = \varphi(\{i', j'\}) = (k, l)$. Then $I(a) \cap I(G_{1,2,k,l}) = \{i, j\} = \{i', j'\}$. Hence φ is one to one and the number of 2-cycles of a different from (1, 2) is ${}_{r}C_{2}$. Thus we have

$$n = 2 + r + 2 \cdot C_2 = r^2 + 2$$
.

(2) Suppose that $N^{\Delta} = M_{11}$ and let *a* be an arbitrary involution. As in (1), we may assumed that $a = (1, 2) \cdots$, and we can easily see that at least two letters are fixed by *a*. If $\{i_1, i_2\}$ is a subset of I(a), then *a* normalizes $G_{1,2,i_1,i_2}$ and for $\Delta_1 = I(G_{1,2,i_1,i_2}) a^{\Delta_1}$ is, being an involution of M_{11} , of the following form:

$$a^{\Delta_1} = (1, 2) (i_1) (i_2) (i_3) (k_1, l_1) (k_2, l_2) (k_3, l_3).$$

Then $G_{1,2,i\mu,i\nu} = G_{1,2,k\rho,l\rho}$ and thus $\{i_1, i_2\}$ determines uniquely a set of three 2-cycles (k_1, l_1) , (k_2, l_2) , (k_3, l_3) . Now consider the map

$$\varphi: \{i_1, i_2\} \rightarrow \{(k_1, l_1), (k_2, l_2), (k_3, l_3)\}$$

from the family of all subsets of I(a) consisting of two letters into the family of the sets of three 2-cycles of a different from (1, 2). If a 2-cycle (k, l) of a different from (1, 2) is given, then a normalizes $G_{1,2,k,l}$ and for $\Delta_2 = I(G_{1,2,k,l}) a^{\Delta_2}$ has, being an involution of M_{11} , just three fixed letters $\{i_1, i_2, i_3\}$. Then $I(a) \cap I(G_{1,2,k,l}) = \{i_1, i_2, i_3\}$ and $\varphi(\{i_1, i_2\}) = \varphi(\{i_1, i_3\}) = \varphi(\{i_2, i_3\}) \supset (k, l)$. Now, from the definition of φ , $\varphi(\{i_1, i_2\}) \supset (k, l)$ if and only if $G_{1,2,i_1,i_2} = G_{1,2,k,l}$, i.e. $\{i_1, i_2\} \subset I(a) \cap I(G_{1,2,k,l})$. Hence the set of 2-cycles of a different from (1, 2) is the disjoint union of the images of φ and each inverse image of φ consists of three subsets. Therefore the number of 2-cycles of a different from (1, 2) is $,C_2$ and we have

$$n = 2 + r + 2 \cdot {}_{r}C_{2} = r^{2} + 2$$
.

Proposition 2. If $N^{\Delta} = S_5$, then the number r of the fixed letters of any involution in G satisfies the following relation:

$$r(r-1) \equiv 0 \qquad (mod \ 3) \, .$$

Proof. We may assume that $r \ge 2$ and the given involution is $a = (1, 2) \cdots$. If $\{i_1, i_2\}$ is a subset of I(a), then a normalizes $G_{1,2,i_1,i_2}$ and for $\Delta_1 = I(G_{1,2,i_1,i_2})$ we have

$$a^{\scriptscriptstyle \Delta_1} = \left(1,\,2
ight)\left(i_{\scriptscriptstyle 1}
ight)\left(i_{\scriptscriptstyle 2}
ight)\left(i_{\scriptscriptstyle 3}
ight),$$

and $G_{1,2,i_1,i_2} = G_{1,2,i_1,i_3} = G_{1,2,i_2,i_3}$. Now consider the map

 $\varphi: \{i_1, i_2\} \rightarrow G_{1,2,i_1,i_2}$

from the family of all subsets of I(a) consisting of two letters into the family of the subgroups of G. Then each inverse image of φ consists of three subsets and hence we have

$$_{r}C_{2}=rac{r(r-1)}{2}\equiv 0 \pmod{3}.$$

2. Main theorem.

Let G be again a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$. It is known that the only 4-fold transitive (not alternating nor symmetric) groups on less than 35 letters are the four Mathieu groups M_{11}, M_{12}, M_{23} and M_{24} . Therefore in the following we may assume that $n \ge 35$. Now let $H=G_{1,2,3,4}$, $\Delta=I(H)$ and let P be a Sylow 2-group of H, $\Delta'=I(P)$. Then $\Delta'\supset\Delta$. We denote the normalizers of H and P by N and N' respectively. Then $(N')^{\Delta'}$ is one of the following groups: S_4 , S_5 , A_6 , A_7 or M_{11} . We first prove the following

Proposition 3. If P is transitive on $\Omega - \Delta'$ and $n \ge 35$, then $(N')^{\Delta'}$ must be S_4 or S_5 .

Proof. We first remark that if $i \in \Delta' - \Delta$ the length of the set of transitivity of H containing i is odd since the subgroup of H fixing i cantains a Sylow 2-group P of H.

The proof in the following is by contradiction.

(1) Suppose that $(N')^{\Delta'} = A_6$ and $\Delta' = \{1, 2, 3, 4, 5, 6\}$. Then N^{Δ} must be A_6 , S_5 or S_4 .

(1.1) Suppose $N^{\Delta} = A_{6}$ and let *a* be a central involution of *P*. Then, by Lemma 2 in [3], |I(a)| = 6 and, by Proposition 1, we have

$$n=6^2+2=38$$

Consider the map $\varphi: i \to G_{1,2,3,i}$ from the set $\{4, 5, \dots, 38\}$ into the family of subgroups of G. If $I(G_{1,2,3,i}) = \{1, 2, 3, i, j, k\}$ then $\varphi^{-1}(G_{1,2,3,i})$ consists of the three letters i, j, k. Hence we have

$$38-3 = 35 \equiv 0 \pmod{3}$$
,

which is a contradiction.

(1.2) Suppose that $N^{\Delta} = S_5$ and $\Delta = \{1, 2, 3, 4, 5\}$. By the quadruple transitivity G contains an involution $a = (1, 2)(3)(4)\cdots$. Since $H = G_{1,2,3,4}$ is normalized by a, Δ is fixed by a and hence a fixes the letter 5, i.e.

$$a = (1, 2) (3) (4) (5) \cdots$$

Now the number of Sylow 2-groups of H is odd. Therefore there is a Sylow 2-group of H which is normalized by a. We may assume that it is P. Then Δ' is fixed by a and we have

$$a^{\Delta'} = (1, 2) (3) (4) (5) (6)$$
.

But this is a contradiction since $a^{\Delta'}$ must be an even permutation.

(1.3) Suppose that $N^{\Delta} = S_4$ and let $\Gamma = \Omega - \Delta'$. Then the sets of transitivity of H on $\Omega - \Delta = \{5, 6\} \cup \Gamma$ can be assumed to be one of the following:

- (i) $\{5, 6\}$ and Γ ,
- (ii) $\{5, 6\} \cup \Gamma$.

Since Γ is a set of transitivity of the 2-group $P |\Gamma|$ is a power of 2.

Hence in both cases the length of the set of transitivity containing the latter $5 (\in \Delta' - \Delta)$ is even. This is a contradiction by the first remark.

(2) Suppose that $(N')^{\Delta'} = A_7$ and $\Delta' = \{1, 2, \dots, 7\}$. Then N^{Δ} must be A_6 , S_5 or S_4 .

(2.1) Suppose $N^{\Delta} = A_{\epsilon}$ and let *a* be a central involution of *P*. Then |I(a)| = 7 and we have by Proposition 1

$$n = 7^2 + 2 = 51$$
.

Since P is transitive on $\Omega - \Delta'$ and $|\Omega - \Delta'| = 51 - 7 = 44$ is not a power of 2 we have a contradiction.

(2.2) Suppose that $N^{\Delta} = S_{5}$ and $\Delta = \{1, 2, 3, 4, 5\}$. Then the sets of transitivity of H on $\Omega - \Delta = \{6, 7\} \cup \Gamma$ may be assumed to be one of the following:

- (i) $\{6,7\}$ and Γ ,
- (ii) $\{6, 7\} \cup \Gamma$.

But in both cases the length of the set of transitivity containing the letter $6 (\in \Delta' - \Delta)$ is even. This is a contradiction by the first remark.

(2.3) Suppose $N^{\Delta} = S_4$ and let $\Gamma = \Omega - \Delta'$. Then the sets of transitivity of H on $\Omega - \Delta = \{5, 6, 7\} \cup \Gamma$ may be assumed to be one of the following:

- (i) $\{5, 6, 7\}$ and Γ ,
- (ii) $\{5, 6\}$ and $\{7\} \cup \Gamma$,
- (iii) $\{5, 6, 7\} \cup \Gamma$.

The case (ii) does not occur since the length of the set of transitivity containing the letter $5 (\equiv \Delta' - \Delta)$ is even in this case. In the case (iii), H is transitive on $\Omega - \Delta$. Hence G is 5-fold transitive and then the subgroup G_1 fixing the letter 1 is 4-fold transitive on $\{2, 3, \dots, n\}$ and satisfies the assumption in (1). Thus as in (1) we have a contradiction.

We shall now consider the case (i). Let P' be an arbitrary Sylow 2-group of H. Then there is an element x of H such that $x^{-1}Px = P'$. Since $\{5, 6, 7\}$ is a set of transitivity of H, it is fixed by x. Therefore $H_{5,6,7} \supset P$ implies $x^{-1}H_{5,6,7}x = H_{5,6,7} \supset P'$ and hence we have $I(P') = \{1, 2, \dots, 7\}$. This shows that I(P') is independent of the choice of Sylow 2-group P' of H and is uniquely determined by H. Let $a=(1, 2) \cdots$ be an involution of G which is conjugate to a central involution of P. Then |I(a)| = 7. If $\{i_1, i_2\}$ is a subset of I(a), then $G_{1,2,i_1,i_2}$ is normalized by a. Let $I(P'') = \{1, 2, i_1, i_2, i_3, k, l\}$. Since a is an even permutation on I(P''), we may assume

$$a = (1, 2) (i_1) (i_2) (i_3) (k, l) \cdots$$

Now I(P'') is uniquely determined by $G_{1,2,i_1,i_2}$, therefore $\{i_1, i_2\}$ determines uniquely a 2-cycle (k, l) of a and we have the map

$$\varphi: \{i_1, i_2\} \to (k, l)$$

from the family of all the subsets of I(a) consisting of two letters into the family of 2-cycles of *a* different from (1, 2). By the definition of φ , it is easy to see that $\varphi(\{i_1, i_2\}) = (k, l)$ if and only if $G_{1,2,i_1,i_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group in common, and φ is onto. Now suppose that $\varphi(\{i_1, i_2\}) = \varphi(\{j_1, j_2\}) = (k, l)$. Then $G_{1,2,i_1,i_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group P_1 in common, and $G_{1,2,j_1,j_2}$ and $G_{1,2,k,l}$ have a Sylow 2-group P_2 in common. Since both P_1 and P_2 are Sylow 2-groups of $G_{1,2,k,l}$ we have $I(P_1) = I(P_2)$. Therefore $\{j_1, j_2\} \subset I(a) \cap I(P_1) = \{i_1, i_2, i_3\}$. Thus we have that each inverse image of φ consists of three subsets of I(a)and hence the number of 2-cycles of *a* different from (1, 2) is $\frac{1}{3} {}_{7}C_{2} = 7$. In this way we have

$$n = 2 + 7 + 14 = 23$$
,

which contradicts the assumption.

(3) Suppose that $(N')^{\Delta'} = M_{11}$ and $\Delta' = \{1, 2, \dots, 11\}$. Then N^{Δ} must be one of the following groups: M_{11} , $A_{\mathfrak{s}}$, $S_{\mathfrak{s}}$ or $S_{\mathfrak{s}}$.

(3.1) Suppose $N^{\Delta} = M_{11}$ and let *a* be a central involution of *P*. Then |I(a)| = 11 and by Proposition 1 we have $n = 11^2 + 2 = 123$. Since *P* is transitive on $\Omega - \Delta'$ and $|\Omega - \Delta'| = 123 - 11 = 112$ is not a power of 2, we have a contradiction.

(3.2) Suppose $N^{\Delta} = A_{\epsilon}$. In the same way as in (3.1) we have n=123, which is a contradiction.

(3.3) Suppose $N^{\Delta} = S_{5}$ and let *a* be a central involution of *P*. Then |I(a)| = 11 and by Proposition 2 we have

$$11(11-1) = 110 \equiv 0 \pmod{3}$$
.

This is a contradiction.

(3.4) Suppose $N^{\Delta} = S_4$. Since the length of a set of transitivity of H containing one of the letters in $\Delta' - \Delta = \{5, 6, \dots, 11\}$ is odd, the sets of transitivity of H may be assumed to be one of the following:

- (i) $\{5, 6, 7\}, \{8, 9, 10\}$ and $\{11\} \cup \Gamma$,
- (ii) $\{5, 6, 7, 8, 9, 10, 11\}$ and Γ ,
- (iii) {5, 6, 7, 8, 9, 10, 11} $\cup \Gamma$.

First consider the case (i). Since $(N')^{\Delta'} = M_{11}$, there is an element x in N' such that

$$x^{\Delta'} = (1, 2, 3, 4) (i_1, i_2, i_3, i_4) (k) (l) (m).$$

Then x normalizes $H=G_{1,2,3,4}$. Hence x must fix two sets of transitivity $\{5, 6, 7\}$ and $\{8, 9, 10\}$ or interchange them. But, from the form of $x^{\Delta'}$, this is impossible.

In the case (iii), G is 5-fold transitive. Hence $X=G_1$ is 4-fold transitive on $\{2, 3, \dots, n\}$ and P is a Sylow 2-group of $X_{2,3,4,5}$. Since $|I(P) - \{1\}| = 10$, we have a contradiction by the theorem of M. Hall ([1], Theorem 5.8.1).

Now consider the case (ii). If P' is an arbitrary Sylow 2-group of H there is an element x of H such that $P' = x^{-1}Px$. Since $\{5, 6, \dots, 11\}$ is a set of transitivity of H, it is left invariant by x. Therefore $H_{s,6,\dots,11} \supset P$ implies $H_{s,6,\dots,11} \supset P'$ and we have $I(P') = \{1, 2, \dots, 11\}$. This shows that I(P') is independent of the choice of P' and is determined uniquely by H. We denote it by J(H). Let $a=(1, 2) \cdots$ be an involution which is conjugate to a central involution of P. We consider the map

$$\varphi: \{i_1, i_2\} \to J(G_{1,2,i_1,i_2})$$

which assigns $J(G_{1,2,i_1,i_2})$ to a subset $\{i_1, i_2\}$ of I(a). Since a normalizes $G_{1,2,i_1,i_2}$, there is a Sylow 2-group P'' of $G_{1,2,i_1,i_2}$ such that $a^{-1}P''a=P''$. Let $\Delta''=I(P'')=J(G_{1,2,i_1,i_2})$. Then $a^{\Delta''}$ is an involution of M_{11} . Hence we have

$$a^{\Delta^{\prime\prime}}=\left(1,\,2
ight)\left(i_{_{1}}
ight)\left(i_{_{2}}
ight)\left(k_{_{3}}
ight)\left(k_{_{1}}
ight,\,l_{_{1}}
ight)\left(k_{_{2}}
ight,\,l_{_{2}}
ight)\left(k_{_{3}}
ight,\,l_{_{3}}
ight)$$

and $I(a) \cap J(G_{1,2,i_1,i_2}) = \{i_1, i_2, i_3\}$. Now it is easy to see that the inverse image $\varphi^{-1}(J(G_{1,2,i_1,i_2}))$ consists of three subsets $\{i_1, i_2\}, \{i_1, i_3\}, \{i_2, i_3\}$. Therefore we have

$$_{11}C_2 = \frac{11 \cdot 10}{2} \equiv 0 \pmod{3},$$

which is a contradiction.

From Proposition 3 we have easily an improvement of Theorem 1 in [4].

Theorem. Let G be a 4-fold transitive group on $\Omega = \{1, 2, \dots, n\}$, excluding S_n and A_n . If a Sylow 2-group P of the subgroup fixing four letters is not trivial, and transitive and regular on $\Omega - I(P)$, then G must be M_{12} or M_{23} .

Proof. We use the same notations as before. For n < 35 the theorem is trivial. Therefore we may assume $n \ge 35$, and then, by Proposition 3, we need consider only the case in which $(N')^{\Delta'} = S_4$ or S_5 .

(1) Suppose $(N')^{\Delta'} = S_4$. Then G is 5-fold transitive. Hence $X = G_1$

is 4-fold transitive on $\{2, 3, \dots, n\}$. Since $X_{2,3,4} = H$ and a Sylow 2-group P of H is regular on $\{5, 6, \dots, n\}$, $X_{2,3,4,5}$ is of odd order. Therefore, by the theorem of M. Hall, X must be one of the following groups: S_4 , S_5 , A_6 , A_7 or M_{11} . But this contradicts the assumption $n \ge 35$.

(2) Suppose $(N')^{\Delta'}=S_{\mathfrak{s}}$ and let $\Delta'=\{1, 2, 3, 4, 5\}$. Then $N^{\Delta}=S_4$ or $S_{\mathfrak{s}}$. If $N^{\Delta}=S_4$, then H is transitive on $\{5, 6, \dots, n\}$ and hence G is 5-fold transitive. Then $X=G_1$ is 4-fold transitive on $\{2, 3, \dots, n\}$ and satisfies the assumption in (1). Therefore as in (1) we have a contradiction. On the other hand, if $N^{\Delta}=S_{\mathfrak{s}}$ then by Proposition 2 we have

 $5(5-1) \equiv 0 \pmod{3},$

since for a central involution a of P |I(a)| = 5. But this is a contradiction.

Osaka City University Nara Technical College

References

- [1] M. Hall: The Theory of Groups, Macmillan, New York, 1959.
- [2] C. Jordan: Recherches sur les substitutions, J. Math. Pure Appl. (2) 17 (1872), 371-363.
- [3] H. Nagao: On multiply transitive groups I, Nagoya Math. J.
- [4] H. Nagao and T. Oyama: On multiply transitive groups II, Osaka J. Math.
 2 (1965), 129–136.
- [5] E. Witt: Die 5-fach transitiven Gruppen von Mathieu, Abh. Math. Sem. Univ. Hamburg 12 (1937), 256-264.