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The problem of finding the explicit Plancherel formulas for semi-
simple Lie groups has been solved completely in the case of complex
semisimple Lie groups (see [3 (b)]). Moreover Harish-Chandra showed
[3(f)] that the problem is solved also for a real semisimple Lie group
having only one conjugate class of Cartan subgroups. In the case of
real semisimple Lie groups with several conjugate classes of Cartan
subgroups, the problem is very difficult to attack. As far as the auther
knows, the problem was taken up and solved for SL(2y R) by V. Bargman,
[1], Harish-Chandra [3 (a)], R. Takahashi [9 (a)] and L. Pukanszky [7]
also for the universal covering group of SL(2, R) by L. Pukanszky.
In the previous note [6], we gave a method of finding the Plancherel
formula for the universal covering group of De Sitter group. The pur-
pose of this paper is to generalize this method and to obtain the ex-
plicit Plancherel formulas for simple Lie groups G which satisfy the
following conditions (A. 1)~(A. 5).

(A. 1) There exists a simply connected complex simple analytic group
Gc containing G as a real analytic subgroup corresponding to a real
form of the Lie algebra of Gc.

(A. 2) G has a compact Cartan subgroup.
(A. 3) G has two conjugate classes of Cartan subgroups.
(A. 4) Every Cartan subgroup of G is connected (c.f. Proposition 7).
(A. 5) Let TA be the invariant distribution defined by the formula (3. 8)

in § 3. Then there exists a finite number of irreducible unitary
representations ω^, •••> ω"} of G such that the character of the
representation ω ^ φ θ ω ^ coincides with the distribution TΛ

(c.f. Remark 1).

The Plancherel formula for such a group G, which is our main
result, will be given in Theorem 2 in § 4 and Theorem 2' in § 5.

We shall see that the assumptions (A. 1)^(A. 5) are satisfied by the
universal covering group of De Sitter group. We shall thus obtain the
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explicit Plancherel formula for this group in Theorem 3 in §6. This
formula was conjectured by R. Takahashi in [9 (b)].

The author wishes to express his sincere gratitude to Professor M.
Sugiura who has suggested him to attack the problem and encouraged
him with kind advices. The author expresses his hearty thanks also to
T. Hirai who kindly informed him of the character formulas for the
representations Un>3'2+i" and τn'°'pφT°'n'p defined in [9 (b)].

1. Preliminaries

Let G be a simple Lie group which satisfies the conditions (A. 1),
(A. 2) and (A. 3). We denote by g, gc the Lie algebras of G, Gc respec-
tively. Let K be a connected maximal compact subgroup of G and ϊ its
Lie algebra. We put

p = { l e g : B(X, Y) = 0 for all

where B denotes the Killing form of the Lie algebra QC. We have then

We take a maximal connected abelian subgroup Ax of K and fix it once
for all and let ^ denote its Lie algebra. Then from (A. 1) and (A. 2)
Aλ is a Cartan subgroup of G corresponding to Ê  i.e.

A = {gtΞG : Ad (g)H = H for all i/el j j ,

where Ad denotes the adjoint representation of G. For any subspace I
of cj, we denote its complexification by Ic. Let Σx denote the set of all
non zero roots of gc with respect to f)f. Let σ be the conjugation of
gc with respect to
space %ξ of ξ)f defined by

(VΛ)(J/)=Λ(σJf) (i/etf)

for any ΛE^f.
Since *σ induces a substitution of roots, there exists a complex

number K^ for each α G ^ ! such that

σEa = κ:oΰEt(T(Λ .

It is well known that we can find a basis {Ea; α e Σ j of pc mod ίjf
satisfying the following conditions

(1.1) [ # , EΛ2 = a(H)Ea for all

(1.2) B(EayE_Λ)= - 1 ,
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(1.3) NΛfβ = N-a^β (real number),

(1.4) ' \ * a \ = l .

Since [Ijf, F ] c F and [ftf, p c ] c p c , it is clear that either Eaeίtc or
EΛ^pc. A root α e Σ i is called compact or non compact according to
Eaζ=lc or EΛt=pc.

For any α e X p let i/Λ denote the unique element in Ijf such that

£ ( # * , J/) = α(i/) for all

Put

(1. 5) t/β =

(1. 6) VΛ = V

Fix a non compact root α0 in Σx once for all. Then from (A. 2) and
(A. 3), a=y/^ΐRUβtQ is a maximal abelian subalgebra in p (see [8]).

We consider the automorphism ẑ  = exp {(7r/4)ad VΛQ} of gc where ad
denotes the adjoint representation of cjc. Then we have

(1.7) vW - Ί ) l/.o = Ho,

Put ή- = { f fe^ : [^, X ] = 0 for all I G Q } . Then ^ = α + ή- is a
Cartan subalgebra of g which is not conjugate to i)1 (see [8]). From
the above assumption (A. 3), every Cartan subalgebra of cj is conjugate
to either ϊji or Ij2. It is easy to see that

(1.8) v$ϊ) = W and v(H) = H for all H^ψ .

For any Λε§f, let A denote the linear form on fyξ defined by

(1.9) A(H) = A(vH) (HeΞtf).

Put Σ 2 = {«:: αGΣj}. Since z> is an automorphism of QC it follows
that Σ2 is exactly the set of all non zero roots of g c with respect to ΐ)^.
Select compatible orderings in the dual spaces of α and α + V ^ ϊ ΐ ) ' and
let #!, #2> •••>#/ be all the simple roots in Σ2 under this order. Since
{&iy&2> •"> δ/} is a fundamental root system of Σ2, {aiy a2y •••, α/} is a
fundamental root system of Σj. Hence we can define an order in Σ3 such
that {aiy a2, •••, α/} is exactly the set of all simple roots in this order.

Moreover we may assume αo>O. We put Hi = —ηjτ-\H06i (ι = l, •••,/).

Let P1 (resp. P2) be the set of all positive roots of Σx (resp. Σ2). We put
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Then P2 is the set of all compact positive roots in Σ 2 . Let %
(resp. %0) be the set of all integral (resp. dominant integral) forms on ϊ)f.
Then we have

/

, = 1

/

, = 1

where {Aiy Λ2, •••, Λ,} is the dual basis of {Hiy H2y •••, H^.
Since A1 is a connected abelian Lie group, the mapping H->

exp H(H^ΐ)i) is a homomorphism of ί)± onto Λj. Let Λ be a linear form
on £)x such that eMH^ = l for all i f e Γ ^ J , where

{#€==&: expH=e}.

Then we can define a function fΛ on A by

(1.10) ξΛ(exp tf) = ^ ^ (ffe 5X).

Moreover ξA is uniquely extended to a holomorphic function on Aξ=

Although the following proposition is well known, it is fundamental
in the present paper so that we shall give a proof of it.

Proposition 1, Let Aλ be the character group of At. Then
A

Proof. Put

Γ= { 2 ^ ^ Ϊ Σ ^ : , ( )}
1 = 1

Then, since ί)1/Γ(ϊ)1)^Aί9 the proposition follows immediately if we prove

Let J ϊ e Γ ί ^ ) . Then expi/=^, where 0 is the identity of G. Since
Λί(/ = 1, •••,/) is a dominant integral form, there exists an irreducible
finite dimentional representation τ, of QC with the highest weight Λ, .
Since Gc is simply connected, there exists a representation τ f of Gc such
that Jτ, = Ti. Let w, be a weight vector corresponding to Λ, . Then we
get

eKfmUi = exp (τiH)Ui = τ, (exp H)u£ = «t φ 0 .

Hence A t ( i / ) e 2 ^ v

/ : = : I ^ («= 1, 2, •••, /). This means i / e Γ .

Conversely let i /EΓ. Then H-=2πyy~^ϊ^ΣirniHi for some
1 = 1

(/=1, 2, •••, /). Let T be a faithful representation of G c on a finite di-
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mensional vector space V. It is known that every weight Λ of T is an
integral form on Ijf and that V is the direct sum of eigenspaces F Δ , Λ
being a weight of T. For any u^VA, we have

τ(exp H)u = exp (2π\Z^ϊ Σ

This is equal to w, since Λ is an integral form. Hence τ(expi/) is an
identity transformation. Since τ is a faithful representation, it follows
that expH=e. This implies i/eΓO^). Thus the proposition is proved.

2. Some results of Harish-Chandra

In this section we gather some results of Harish-Chandra which
will be used in this paper.

In this section we assume that G satisfies the conditions (A. 1)^(A. 4).
For any submanifold U of G, let C~{U) denote the set of all complex

valued C°°-functions on U with the compact supports. Then for any
f(ΞC?(G) and a fixed g^G, the function f8: x->f(gxg-χ)(x^G) is again
in C7(G\ and if T is a distribution on G, the mapping T8: f-^Tif8'1)
(/eCΓ(G)) is also a distribution. We say T is invariant if T8=T for
all g^G. Let 3 be the algebra of all differential operators on G which
are invariant under both left and right translations. We denote by D(x)
the coefficient of P in det ( ί+1 — Ad (x)) (ΛΓGG). Then D is an analytic
function on G and an element x^G is called regular if D(x)=tO. Let G'
be the set of all regular elements in G. Then G' is an open and dense
subset of G whose complement is of measure zero with respect to the
Haar measure of G. For any subset B of G, we define B' = BΓ\G'. A
distribution T on an open submanifold U of G is called an eigendistribu-
tion of 8 on U if it satisfies the equation AT = X(A)T for any Δ e 8 ,
where X denotes a homomorphism of 3 into C.

Lemma 1. Let T be an invariant eigendistribution of 3 on G. Then
T is a locally summable function (as distribution) which is analytic on G'.
(see [3(g)]).

Since Ak is connected by virtue of (A. 4), we can define a continous
function Ak on Ak by

(2.1) ΔΛA) = I Π (e«cm/2 - e~*cm/2) | Π (e«
cw/2 - e'acH'/2),

ΐ Ό

for all A =

Where P? (resp. Pf) is the set of all non compact (resp. compact) roots
in Σ2 and Pt=Pl = Φ (empty set). Let x-^x^ (jt<=G) be the canonical
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projection of G onto G/Ak (&=1, 2). For any /eCΓ(G), we put

(2.2) F?\h) = Δ^*) ( f(hxik')dx^

where rf#CA0 is the invariant measure on GjAk and hxίk^ =
Let S(f)f) be the universal enveloping algebra of ί)f. Let 5 be an

open subset of Ak. We regard it as an open submanifold of Ak and
consider the space ®(β) of all complex valued functions F on B of class
C°° satisfying the following two conditions.

(1) The closure in Ak of the support of F is compact.
(2) For every

= sup I F(h \u)\<oo where F(h «) - («F) (h).

Define a topology in 3)(fi) by means of the collection of seminorms
τu (weS(ί)f)). Then ®CB) is a locally convex space and the same holds
for C7(G) under its usual topology (introduced by Schwartz).

Lemma 2. The mapping f^F(

f

k) is a continuous mapping of C~(G)
into ©CAί). Moreover, for any relatively compact open subset U of Gy

there exists an open subset B of A'k such that B is compact and that Frk)

is zero outside B for every f^C^(U).
For the proof, see [3 (f)].
Let A" be the set of all points h = exp H^A1 such that

Lemma 3. (1) Let B be any connected component of A[. Then
uFf1^ (^eS(ξ)f)) can be extended to a continuous function on the closure of
B in Ax with the compact support which is of class C°° on A".

(2) F(

f

2) can be extended to a function of class C°° on A2 with the
compact support.

For the proof, see [3 (f)].
Let 11 be the universal enveloping algebra of g-. Let Wk be the Weyl

group of QC with respect to £)f (&=1, 2). For any s<^Wk, let u-*su
(weSOfjί7)) denote the automorphism of Sφξ) which coincides with 5 on
ί)ξ (k=l, 2). Let 3fΛ be the subalgebra of all elements weS(IjJF) such that
su = u for all s^Wk.

Lemma 4. There exists an algebraic isomorphism j k : Δ->γ^(Δ) ( Δ e 8 )
of 8 onto %>k which satisfies the following conditions (k=l, 2)

(1) Let u-->u* (well) denote the anti-automorphism ofU which maps
X on -X (X(ΞQC). Then
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(Δe=3).

(2) F£ = Ύk(A)F^ for all f^C:{G) and Δ G 3 .

For the proof of this lemma, see [3 (d), (f)]. One should notice
that our definition of F?" is a little different from the one given in
[3 (f)] and consequetly (2) in Lemma 4 is a slight modification of [3 (f)].

Lemma 5. For arbitrarily normalized Haar measures dg and dh> the
invariant measures dxCk^ can be normalized so that we have

f(g)dg = H\ Ak(h)Fγ\k)dh for all /eCΓ(G).
JG k=ι J Afg

This lemma is proved in the same way as [3 (b)].
Now we fix the normalizations of the Haar measures of G and A2

arbitrarily. As for the Haar measure of A19 we normalize the measure
dh such that

(2. 3) ( dh = 1.

After this, we normalize the invariant measure dxck^ so that the equality
in Lemma 5 holds.

Now let S($ίO be the symmetric algebra over $f, where $f is the
vector space of all linear forms on Ijf (£=1,2). For any λe$f, we
denote by Hλ the unique element of f)f such that B(Hλ, H) = \(H) for
all i/ef)f. Then the mapping λ-*ffλ (λG§f) can be uniquely extended
to an isomorphism of S($f) onto S(ί)f) which we denote by 9. Put
πk= Π a and pk = h Σ a- We also put π = π1 and p = p1. Then

Lemma 6. For any /eCΓ(G), d(π)Fγ^ can be extended to a continuous
function on Aλ. Moreover, there exists a positive number c independent
of f such that

lim Fγ\h d{π)) = c(-l)n+gf(e) (h^A[),

for all f<=C~(G), where n (resp. q) is the number of the elements of Px

{resp. P?).

For the proof, see [3(f), (h)], and notice that Δ1(A) = (-1)"Δ1(A).

3. Definition and Properties of TA

In this section we shall define a distribution TΛ for ΛGg and get
some formulas on TA under the additional assumption (A. 5). Let G
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be a simple Lie group which satisfies the conditions (A. 1)~(A. 4).
S(t)f) can be regarded as the algebra of all polynomial functions on

f)£. For any λe$f and p<=S(tyk), let <λ, ^>=<λ, d(p)> denote the value
of patHλ. Let %' be the set of all elements Λ e g such that <Λ + P, τr>Φθ.
We put W= W1 and for any 5G W define s by

(3.1)

For any Λe

(3-2)

(3.3)

'-%' we

+A

.A

SH =

put

Λ = {h

Λ = {h

s(vH) for all

= expH^A2:

= exp H<EL A2:

< 1}

Now we define a bounded continuous function f^ on Λ2 as follows

if Λ = exp
(3.4) I ? (A) = I e,Cλ+Pχm {ί h eχpHEΞ A

where s0 denotes the Weyl reflexion H-^H-2(aQ{H)la0{Hoύ))Hoύ() on £)f.
We put

(3. 5) ξ^ = ? Λ + P .

For any 5G TF, we put

= ε(s) ,
—ε(s) if <5p, α 0 > > 0 ,

ε(s) if

where ε(s) denotes the constant which is uniquely determined by

A, (exp sH) = ε(s) A, (exp H) for all H<= ̂  .

For any Λ e S 0

 w e define

(3.7) vT(h) = Έ£k(s)ξ%(h) for

where As = s(A + p) — p.

Proposition 2.

(3.8) Γ
* = i

T Λ /5 an invariant distribution on G. Moreover TA is an eigendis-
tribution of $ on G\
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Proof. Since rf£ is continuous on Ak, making use of Lemma 2, we
can easily show that TA is a distribution. Moreover, from the definition
of Fcf, we have

for all /eCr(G).
Therefore from (3. 8) we have

TΛfg)= TA(f)
for all /eCΓ(G). Hence T Λ is an invariant distribution. For any
and /eCΓ(G'), we have

(3.9) (ΔΓ A )(/)= ΓA(Δ*/)

v?(h)Fι

r

n(h

= (~l)9Έ\AkVT(h; Ύk(A))F^(h)dh.

In the above deduction, we made use of Lemma 3 and 4. From Lemma
4, we can easily deduce that

(3.10) * 7,(Δ)f# = <Λ + P, 7i(Δ)>lϊi for all s e l f .

Since <A+p, γ2(Δ)> = <Λ + p, T^Δ)) and sγ^ΔHγ^Δ) (5G T7). It follows
from (3. 7), (3. 9) and (3.10) that

(3.11) ΔTΛ(/) =

Hence TΛ is an eigendistribution on G'.
This completes the proof of the proposition.

Now we assume that G satisfies the additional condition (A. 5) (see
Introduction).

Proposition 3. The series

converges absolutely.

Proof. By the assumption (A. 5), there exists for any Λ e S 0 a
finite number of irreducible unitary representations ω(^}, •••, ω^ of G such
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that

k=ι

where T^ denotes the character of ω^ (k=l> •••, s). We may assume
that ω(Λ), •••, ω^} are not mutually equivalent.

Take any /eCΓ(G r) Then from Proposition 2, there exists a homo-
morphism %Λ of 3 in C such that

(3.13) TA(Δ*/) = XΛ(Δ)TΛ(/)

On the other hand, we have

(3.14) 7T(Δ*/) = X^(Δ)7T(/) ( Δ G 8 ) ,

where %̂ *' is the infinitesimal character of &>"'.
From (3.12), (2.13) and (3.14) we get

Σ (%i"(Δ)-xΛ(Δ))TH/) = o (Δ(=3)

Therefore from Lemma 1, we can show (see [3 (c)]) that

X?(A) = %Λ(Δ) ( Δ G 3 ) (*=1, - , s).

Now let / be an element of CΓ(G). Then we have

(3.15) ΔΓΛ(/) = ΓA(Δ*/) = Σ 7T(Δ*/) = Σ %
1 l

= Σ XA(Δ)ΓkM(/) = %A(Δ)TA(/).

Hence TΛ is an eigendistribution of B on G.

Let C be the Casimir operator on G. Then from (3.11) and (3.15)
we have

(3.16) %Λ(C)

On the other hand from (3. 8) we have

| T Λ ( / ) K Σ (

\F?\h)\dh<oo,

k

where w is the order of the Weyl group W.
The convergence of the integral follows from (1) in Lemma 3. Put
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Then Mf is independent of Λ and

(3.17) \TA(f)\<Mf.

Since y^C) is a differential operator of elliptic type, we can find integers
/, m such that

(3.18) \<A + p,πy\<KA + P, 7,(0)1' and

where § = {Λeg 0 : <Λ + p, Ύl(C)>Φθ} .

Therefore, from (3.15)—(3.18) we have

TA{C'+mf)
(3.20) \<A + p, τr>| I Γ A ( / ) | = |<Λ + p, τr> |

^

It is easy to see that So—§ is a finite set. It follows from (3.19) and
(3.20) that

p,7r>|TΛ(/)|<oo.

Thus the proposition is proved.

Now we shall define TΛ also for any Λ G S as follows.
First we define f (

A

1}, vA

λ) also by (3. 5), (3. 7) respectively.
Then we have

v%\h) = 0 for all h^A, if

Put

For any Λ G § such that <Λ + p, αo> = O, we define

+AA = +A2 and _AA - _A .

On the other hand, for any Λ e g such that <Λ + p, αo>φθ, we define

+AA, _AA again by (3. 2), (3. 3) respectively. We define |k2) also by (3. 4).
For any Λ e g such that Λ + ρ<=g0 we define y^ and TΛ again by (3.7),
(3.8) respectively. Finally for any Λ<=$ we define
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τA = τAl

where Λx is a unique element of S such that

A^pefJo and Λ5 = Λ2 for some

It is easy to see that

TAs=TA for all seTF and

The following proposition is a direct consequence of Proposition 3.

Proposition 3'. The series

Σ

converges absolutely.
For the proof, we have only to notice that %'= {A8: Λ G § 0 , 5G

and that <Λ + p, τr>=0 for all Λ e S - g ' .
Now for any ΛeS> we define

(3.21) £?>(*) = I { ^ *
( — ξh;(A) if

and

(3.22) ^"(A) = Σ f M for

where &1} = ξΛ+p.

Theorem 1. For #/y> Λ G § ,

(3. 23) I<Λ + P, π> \ TA(f) = (-1)"+* Σ ( tft\h)Fγ\h d{πk))dh .

A proof of this theorem will be given in §7.
We shall now prove some formulas which will be needed in the

next section.

Σ ί

Proposition 4. The notation being as in Lemma 6, we have

\k; d(π))dh = wc(-l)n+«f{e)

for all ft=C7(G),

where w is the order of the group W.

Proof. In the proof of Proposition 1, we have shown that f)jΓ^A19

the isomorphism being induced by the exponential mapping. Hence if
we
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F(θly θ2, •••, θt) = F^iexp (ΣV-lθiHi) d(π)),

then F is periodic in each of the variables with period 2zr. Therefore

if we put Λ = Σ ίw* Λf , then we have

(h d(π))dh

From (1) in Lemma 3, we easily see that F is piecewise smooth in each
of the variables 0, ( ί = l , 2, •••, /). It follows from the theory of Fourier
series and Lemma 6 that the series

Σ ί
<3'24)

converges absolutely to

lim F(θί9 -.-, θt) = lim F?\h 9(τr))

Therefore from the absolute convergence of (3.24) we have

vT(h)Fγ\h d(π))dh
i

= Σ Σ ( ^{h)Fγ\h\ d(π))dh
ΛeS'eτr Jii!

= Σ ( Σ ( ξsc,Uh)Fr(h; d(π))dh)

= Σ f Σ ( ^(A^^CA S

= wc(-ϊ)n+qf(e).

In the above deduction, we made use of the fact that p is a integral
form and that for any s^W the mapping Λ->sΛ ( Δ E § ) is a bijection
from S onto itself. Thus Proposition 4 is proved.

Now we consider the series

(3.25) Σ Ϊ ¥ΐt\h)F?{h;d(πz))dh,



260 K. OKAMOTO

It follows from Proposition 3', Theorem 1 and the absolute convergence
of (3. 24) that the series (3.25) converges absolutely. Since A2 is connect-
ed, if we put A = expa and A~ = expfy~, then we have A2 = AA~. Put
at = exp \Z^ltUaQ. Then any h^A2 is written uniquely in the form
h = ath~ (t<=R, h~^A~). Put ψ = va. Then we have ^ = ή+ + ή" (direct)
(see§l).A

Let ψy $~, $! denote the vector spaces of all pure imaginary valued
linear forms on f)+, ϊj~, £)j respectively. Since Ϊj1 = lj+ + Ir (direct), we can
consider ψ and $" as subspaces of %x so that ί)1=ί)+-}

Γt}~ (direct). For
any Λ E ^ we denote by Λ+, Λ~ the ψ, ^"-component of Λ respectively.
We put A+ = exp f)+. Then it is clear that A^A+A" and that D=A+ Π A~
is a finite group. Let Ao be a closed subgroup of Ax. Then it is well
known that the character group Ao of Ao is given by

where ξ\A0 is the restriction of ξ to Ao.
For any fGi4t it is clear that

Conversely for ξ+^A+, ξ-^Λ~ such that ξ+\D^=ξ~\Dy there exists a
unique element ξ^A1 such that

ζ\A+ = e and f|i4" = r .

Put

g + = {Λ+ : ΛEg} and %~ - {A" :

Then

A+ = {ξA+ : Λ+Eδ+} and A' = {fA- :

Since A+ is a one dimensional torus, D is a cyclic group. Let m be
the order of D and let γ be a generator of D. Select Γ+<=ίj+ and Γ~eίj~
such that γ = exp Γ+ = expΓ~. For any integer k (0<&<m), we put

Then we have

δ = UKOSA (disjoint sum),

where %k - {Λ

For any Λeg, there exists.1 an integer r such that
where Λ0 = ̂ α 0 . It is clear that
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+A2 = {ath-£ΞA2: t>0,

_A2 = {ath~^A2: t<0,

For any h = ath~(=+A2,

Hence

(3.26) ξ?(flth-) = β-iriί+CΔ-+p-κif-3 ( Λ ί A - e + i 4 2 ) .

Similarly we have

(3.27) fΔ2)(«,A")= - e 1 " " - ^ " - " " ^ " " 5 (α,A-e_Λ).

Now we need the following Lemma 7, a proof of which will be
given at the end of the present section.

Lemma 7. Ff\a_th~ d(π2))= -Ff\ath~ d(π2)) (h

Making use of this lemma and (3.27) we have

f m)?{h d(π2))dh
J-A2

= - f ( e]rιt+CA~+ί>~XH~Ψ(

f

2\ath- d{π2))dtdh-
J -oo J A

= - Γ ( sWi+tA~+f~XH~:>F?)(a.th- d{π2))dtdh'
Jo JA

= Γ [ β- | r | t + C Δ " + p " x ί Γ " ) F> a > (α / A- d(π2))dtdh' .
Jo J A~

In the above formula, dh~ denotes the Haar measure of A~ such that
dh = dt dh~, where dt is the canonical volume element in jR1. The above
formula and (3.26) give the equality

(3.28) ( ξ?(h)F?\h; d(π2))dh
J A2

= 2 Γ ( β-ι i'+cA-+p-κH-)F«>(β/A- . Q(π2))dtdh- .
Jo J A

It is easy to see that

where Λo = -g-

Hence from (3.28) we have
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(3. 29) Σ + \A ξf{h)Ff\h d(π2))dh

— Δ lllll /̂ , ι \ / \^t" > O\7ΐ2))Q,ΐUrl

q-+°°

= 2 lim I I —
P+°° Jo JA

•χFγ\ath-; d(π2))dtdh

n-kϊt

In the above deduction, we used the following fact.

Lemma 8. -γFψ{ath~ d(π2)) can be extended to a C°°-function with

the compact support on A2.

This lemma is an immediate consequence of (2) in Lemma 3 and

Lemma 7.

From the absolute convergence of the series (3.25), using (3.22)
and (3.29), we have

Σ ( rt\h)F?\h; d(π2))dh

Σ ( ξ2WF?Kh; d(π2))dh\

Σ { Σ ( ξ¥(h)F?\h;d(π2))dh\

Σ ί

In the above, we used Lemma 8 again. Thus we have obtained the
following result.

Proposition 5.

Σ ( vl\h)Ff\h d(π2))dh

where m is the order of the group D=A+ ΓϊA~.
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Now we come to the proof of Lemma 7. We put k0 —
exp((π/2W=ϊHQ). Then from (1.1), (1.2), (1.5) and (1.7) it follows
easily that

(3.30) ko^K, A

On the other hand, from (2.2) we have (FfYo'^Ff. From this and
(3.10) we have

F?\ath~ d(π2)) = (Ffy Xk^h-ko1 d(s0π2))

= -F?\a_th-\ d(π2)).

Thus Lemma 7 is proved.

REMARK 1. It is plausible that a simple Lie group G satisfies always
the condition (A. 5) whenever it satisfies the conditions (A. 1)~(A. 4).

REMARK 2. We shall prove in §5 that the order m of the cyclic
group D=A+ΠA~ is equal to 2.

4. Main theorem

Let m be the centralizer of α in ϊ and let M be the corresponding
analytic subgroup of kG. Then it is easy to see that ή" is a Car tan
subalgebra of m and that A~ is a Cartan subgroup of M. Pr is naturally
identified with the set of all positive roots of m c with respect to (§~)c

under some linear order.
For any Λ~eg~ we put

K J

f 1 if

1 - 1 if

where p" = | Σ f t a n d π~= U a. Take a Λ ' G g " such that

φO. Then it is known that there exists an irreducible unitary represen-
tation δΛ- of M whose character ζA- is given by the following formula

^^γΈ Φ K ( Λ + r x i / } (h~ = exp

where

= Π

For each α e P 2 let XΛ be an element of gc such that XΛφ0 and
[//, XΛ"\ = a(H)XΛ for all H^ί)ξ. Then from the assumption for the
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order intronduced in Σ2, we can show that

is a nilpotent Lie algebra. Let N be the analytic group corresponding
to n. Then Iwasawa has shown that

(4.1) G = KAN,

(4.2) Q = ϊ + α + tt (direct sum as a vector space).

It is easy to show that MAN is an analytic subgroup of G. For a non
zero real number λ and Λ"Gg" such that <Λ~+/Γ, τr~>Φθ, we define
the irreducible unitary representation Lλ Λ- of the group MAN by

LKA-(matn) = e^*8A-(m).

Let ωλ Λ- denote the unitary representation of G induced by the re-
presentation Lλ Λ- of MAN (see [2]). The following formula for the
character TKA- of the representation ωλ Λ- is due to Harish-Chandra
(see [3(b)]).'

Lemma 9. Tλ A -(/)= ( f(g)Xλ A-(g)dg for all /€=Ce~(G),

where %λ Λ- is the invariant analytic function on G' defined by

I 0 if h^Aί,
Xχ,A-{h)= 2£(A-)cos\t

I Δ2(A)
if h = at exp

To prove this lemma, we have only to notice that ζ'CΛ-/o = ξ'Λ- and
c = l in Theorem 2 of [3 (b)].

For any real number λ we put

Γ 1 if λ > 0 ,
s g n ( λ ) = l - i if x<o.

We define 7\A-(/) = 0 for all /eCΓ(G) if

Proposition 6. ^ r any real number λ,

Σ A

= 4n;.(-1)"""1 sgn (λ) Π Σ ( e^-+p^H~Ψf\ath- d(π2))dhΛ
Jo U - e g j J^~ J

x sin λ/Λ /<9τ all / e CC°°(G),
where w_ is the order of the group W_.
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Moreover this series converges absolutely and uniformly with respect to λ.

Proof. Put Wσ={s^W2: sϊ)2 = §2}. Then it is easy to see that
Wσ={l, so}W_ (direct). For any ί e l ^ we have

Δ2(exp sH) = S 0O)Δ2(exp H)

where €0(s) = l or —1.
We define S0(s) ( se W9) by this formula. From Lemma 5 and 9 we

have

TXA-( / )=

(4.3) = ( 5£χ A-(A) I A2(h) I *dh \ f(h*ίn)dx™
JA2 ' JG/A2

= £(Λ")f v, Λ-(h)Ff\h)dh .
JA2 '

In this formula we put

(4.4) VK A-(A) = Σ £0(sKC Δ + p2χ ί O (h = exp

where Λ + p2 = y/'ΞΓjL\&0 +A~ + p~ .

Making use of (2) in Lemma 3, for each a^P2 we get

<Λ + p2, α

= \
v A2

= _ ( (f^+wnψfXh d(sa))dh .
JA2

Applying this formula repeatedly we conclude that

<Λ + P2, π2y [ eSCA+WHψ?\h)dh
J A2

= (-1)" { ^^"ψfXh d{sπ2))dh
J A2

= (-l)"e(j) ( ^ ^
J A2

Hence from (4. 3) and (4.4) we have

(4. 5) <Λ + P2, τr2>Tλ Λ - ( / ) = (-l)"e(Λ-) ( ηx A-(h)F?(h d(π2))dh
JA '
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where %A-W= Σ Φ W 4 ^ " ' (/? = exp # e A) >

= 2 V

/ : = I sin Xt Σ β^A-+p-χH-j (^ = a t e x p H

By a complex root α, we mean a root a in Σ2 such that a(ά) φ(0) and
α(§~)Φ(0). It is easy to see that for any « G P 2

+ , *σa = a if and only if
α = α0. Since /c7P2

+ = P2

+, it follows that the number r of all complex
roots in P2 is even. Moreover there exists a subset Pi of P i — {#0}
such that *σPί Γ\Pί = φ and P2

+ - {tf0} = 'σi^ Π Pi.
Now we shall prove that

(4.6) l + yr = ί

Clearly we have

dim g = /+2w , dim ϊ =

dimα = l and

It follows from (4.2) that

l+2n =

Hence we have l + ̂ r = #. Thus our assertion is proved. Since

—Λ~ —p~, we have

, 7Γ2>

x Π {<v

-, τr_> Π { - K x / ^ λ ^ + Λ'+p-, α>|2}

Π

It follows that

(4. 7) <Λ + P2, π2y = χ / ^ 1 (-l) r / 2 sgn (\)S(Λ")|<A + P2, τr2>|.

From (4. 5)~(4. 7), noticing that <Λ + ρ2, τr2>=<v/:==ΐλA0+Λ~+P", τr>, we
get

(4.8) |<V"^ΐλλo + Λ- + p-, τr>|Tλ)Λ-(/)

= 2(-l)"+ f f-1sgn(λ) Γ ( sinXt Σ et^"+p~XH''

(ath-; d(π2))dtdh~ .
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From Lemma 7, the right hand side of this equation is equal to

4 ( _ !)«+«-! s g n ( λ ) Γ f s i n x t Σ eSCA~+p-χH-ψf\ath- d(π2))dtdh~ .

Jo JA~ s ε r .

Since Ff\ath~ 3(τr2)) is clearly invariant by the operation of any s e ΫF_,

we have

+p~XH'Ψf\ath- d(π2))dh~

(4.9) = ( e^-+s>-^-lH')Ff\ath- d(π2))dh'
J A

From the well known fact about Fourier series, making use of (2) in
Lemma 3 we can show that the series

(4.10) Σ ( es^~+p-χH-ψc

r

2\ath- d(π2))dh~

is convergent absolutely and uniformly with respect to the variable t.

Therefore from (4. 9) we get

Γ t s i n λ ' Σ es^-+p~XH~Ψ^(ath- d{π2))dtdh~

= Σ Π Σ [ eSCA~+p~XH~Ψ'/\ath~ a(τr2))^-) sinλ/rfί
«evτ_ Jo l\-^%J J A J

= Σ Π Σ ( e^-+p-χH-ψ?Xath- 8(
Jew- Jo iΛ-eg^ j A

= ^ Γ ί Σ ( eCA~+p~XH'Ψf(ath- 8(τr2))rfA-) sinλίΛ .
Jo U-eδ7 J A " J

From this and (4. 8) our proposition follows immediately.

Lemma 10. Let a be a real number such that 0<a<m. Then

r ch((m-2a)t/2) s i n χ f d t = π_ sh(2π\/m) ^

Jo sh (mt/2) m ch (2τrλ/m) — cos (2πa/m)'

For the proof, see [5] (p. 147).

Making use of this lemma and Proposition 6, from the well known

theory of Fourier transforms we have

sinλίΛ
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(4.11) Γ ί Σ ( e^-^™-ψ?\ath- d(π2))dh-} ^^JβJ^ dt

= —λ— (_iy+«-* Γ sh(2ττλ/m)
Jo ch(2π\/nή — cos(2πa/m)

+ Λ- + p-, π>\TλA-(f)]d\.

This formula is valid for a real number a such that 0<a<m, in par-

ticular for a = k (0<k<m). Since Tλ Λ-(/) is a Fourier transform of a

function of class C°° with the compact support, it follows that the integral

on the right hand side in (4.11) is convergent uniformly for sufficiently

small a. In view of Lemma 8 similar statements hold for the left hand

side in (4.11). Tending a to zero, we conclude that the equality (4.11)

is valid also for a = 0. Hence the equality (4.11) is valid for all integers

a = k such that 0<fe<ra. Therefore from Proposition 5 we have

d{π2))dh

r
ch (2τrλ \m) — cos {2πkjm)

^ί_ e_i\*+*-iyi yi Γ°° sh (2π\/m)

From this, Theorem 1, Proposition 3' and Proposition 4, we have

Σ |<Λ + p, τr>|TΛ(/)
Λ<Ξg

bj Jo ch (2π
sh(2τrλ/m)

j (2π\/m)~cos (2πk/m)

X K^IλΛ 0

+ + Λ- + p-, τr> |T λ > Λ -(/)Jλ.

We put

for all 5 G ΪF_} and (SiΓ)o = 8*

Then clearly g^= U(8ϊ")o (disjoint sum). It is easy to see that

* + P, π>\ TAf) = KΛ + P, π>\ ΓA(/) ( jε W),

Therefore noticing that |<Λ + p, r̂>| =<Λ + p, τr> (Λeg0), from (4.12) we
have
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cf(e)= Σ <Λ + P,7Γ>TΛ(/)

+ l _ y j Σ Γ sh(2τrλ/m)
m *^oΛ-^(g-)o Jo ch (2πX/m) — cos2πk/rn)

X l<v/^ϊλΛ0

+ + Λ- + p-, πy\TKA-(f)d\.

Now let Ω denote the set of all equivalence classes of irreducible uni-

tary representations of M. Then it is well known that the correspond-

ence Λ"->δΛ- (Λ"~eSiΓ) is a bijection of gj7 onto Ω.

We put

Then Ω=UΓ=Γo1Ωife (disjoint sum). When Λ~e$fr corresponds to
, we put

(4. 14) dκ δ = -^^ -f-—ς- ^ .

And we also put

(4.15) dA -

Since c is a positive constant and <p, 7r>>0, we can normalize the Haar
measure of G such that

(4.16) c = <P,7r>.

Hence from (4.13) we finally get

Λe) = Σ dATA(f)
Λe80

sh(2ττλ/m) , Ύ

ch (2τrλ/m)-cos (2τr*/»ι) rf\^

under the above defined normalization of the Haar measure of G. Thus
we have obtained the following result.

Theorem 2. The Haar measure of G can be so normalized that

M = Σ dATA(f)

J l ^ 1 ^ f °° sh (2ττλ/m) , τ

m Uάάk Jo ch (2τrλ/m)-cos (2τr*/m) M
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REMARK 3. With a slight modification, our method can be applied
also to SL (2, R) which does not satisfy the condition (A. 4) (see § 5).

REMARK 4. It is instructive to compare (4.14), (4.15) with the
formula for the formal degree given by Harish-Chandra (see [3(e)] p. 612).

5. Some consequences of (A. 1), (A. 2) and (A. 3)

In this section we shall make use of the notation of § 1 and [4]
without further comment.

Let G be a simple Lie group which satisfies the conditions (A. 1),
(A. 2) and (A. 3). It is known that the Lie algebra cj of such a group
is one of the types 8u(/, 1) (l>ΐ)9 So(2/, 1) (l>2\ 8t>(/-l, 1) (J>2) and
FII (see [8]). The diagrams of the complexifications gc of these Lie
algebras are as follows

ax a2 aι_1 at

at

aι

aA

In these diagrams the white vertex O denotes the unique non compact
simple root of gc with respect to ί)f under a certain linear order. From
these diagrams we see easily that

(5.1) a1(H2)= - 1 ,

if rank G>2.

Therefore the value of a± at H= 2π\J — l Σ a£Hi in ^ is equal to

a1(H) = 2π\/~^ΐ(2a1—a2). It follows that in the case of rank G>2,

^(5.2) H<=ΐ)~ if and only if 2aΎ = a27

where 5" =

( I )

(Π)

(III)

(IV)

βtt(/,

8o(2/

**»(/-

FII

1)

i)

-1,1)

α
o

d

d

tf2

α2

....φl—

α 3—

Put 52=v/^ϊ/?ί7Q>1-f5~. Then ξ2 is a Cartan subalgebra of g which
is not conjugate to ^ (c.f. § 1). Let A2 be the Cartan subgroup
corresponding to £)2 Then from (A. 3) A2 is connected if and only if
A, is connected.

Proposition 7. Let q be one of the above types (I), (II) and (III).
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Then every Cartan subgroup of G is connected if and only if rank G>2.

Proof. In view of (A. 1), in the cases (I), (III) we have G = SU(l, 1)
or Sp(l—1, 1). The proposition is verified immediately in these cases.
In the case (II), G is a proper covering group of the identity component
SOQ(2l, 1) of SO (21, 1) and

(5.3) G/Z^ SO0 (21, 1) (isomorphic)

where Z is the center of G.
We remark that every Cartan subgroup of SO0(2l, 1) (ί>2) is con-

nected. On the other hand it is clear that t̂~ = exp frc(Λ,)0, where (Ά2)0

is the connected component of Ά2. Therefore, if we show

(5.4)

it follows from (5.3) that Λ2 = (Ά2)0Z=(Λ2)0, which proves that A2 is
connected. Since compact Cartan subgroups are connected (see § 1), this
will prove Proposition 7.

Now we come to the proof of (5.4). Let zeZ. Then from the

definition of A1 we have z^Ax. Suppose H=2π\/~^ϊ"ΣiciHi^1 be such

that z=expH. Then ax{H) is an integral multiple of 2π\J~^Λ, that is,
there exists an integer / such that 2c1 — c2 = I (see (5.1)). Since
exp (2π\/~^ΐ H2) is the identity element of G (see § 1), it follows that

exp # = exp (2π\/'^ϊ(c1H1 + 2c1H2 + Σ!i CiHg)). In view of (5.2), the right
»=3

hand side belongs to Ά~ = expΐ)~. This proves (5.4) and so Proposition
7.

Proposition 8. Under the assumptions (A. 1), (A. 2) and (A. 3) put
f)+ = \/^lRHiy and ^4+ = expί)+. Then the order m of the cyclic group
D=A+Γ\A~ is equal to 2 if and only if rank G>2. Moreover, D consists
of the elements exp (kπ\/ — \H^) (k = 0, 1).

Proof. Since a0 was arbitrary fixed non compact root in 2 l y we
may assume aQ-=ax by changing the order introduced Σx if necessary.
"Only if" part of the proposition is trivial. So we assume that rank
G>2. Suppose that exp H+ = expH~ ( F e f , H~^-). Then H+-
(see § 1). On the other hand it follows from (5. 2) that

H+ - 2πχ/~^ϊ aH1, H~ =
, = 3

where a, alf a3, •••, at are real numbers (see § 3). Therefore, in order that
, it is necessary and sufficient that a — ax, 2ax, av •••, a( are
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integers. From this, it follows that D consists of the elements

exp (kπv7^! HJ (k=0, 1).

Thus Proposition 8 is proved.

Making use of Proposition 8, we obtain the following improved
version of Theorem 2.

Theorem 2'. Let G be a simple Lie group which satisfies the condi-
tions (A. 1)~(A. 5).

Then the Haar measure of G can be so normalized that

f(e) = Σ dATA(f)

iS Σ
Δ O 8ΩFor the proof of this theorem, we have only to notice that

sh zrλ
ch 7rλ — cos π(k+1)

= th (π(\ + ky/-l)/2) (* = 0, 1).

6. Universal covering* group of De Sitter group

In this section we shall prove that the formula of Theorem 2
actually gives the explicit Plancherel formula for the universal covering
group G of De Sitter group. Let Q be the usual quaternion field. For
any q^Q let q denote the conjugate quaternion of q. The field of
complex numbers C can be canonically identified with a subfield of Q.
Let G be the group of all matrices g of degree 2 with coefficients in the
quaternion field, satisfying the condition

gag* = σ ,

where σ = (\ _J) and £* = (f f) if g=(% J) Then G is isomorphic to

the universal covering group of De Sitter group (see [9 (b)]). It follows
that G satisfies the conditions (A. 1)—(A. 4) (see § 5). We put

/ch ί/2 sh t/2\ feiθ/2 0 \ fe'9/2 0

where i is the imaginary unit of C. Let

Ax = {uθmφ: θy

A? = {atmf: t,
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Then At and A2 are the non conjugate Cartan subgroups of G. Every
Cartan subgroup of G is conjugate with either Ax or A2 (see [8]). The
Lie algebra of A, is

V 0 i(φ-θ)l2.

We define two linear forms Λ, and Λ2 on ^ by

Λ2(#(<9, φ)) = iθ .

Then we can show that

under a certain linear order in the dual space of Λ / Ί Γ Ϊ ^ .

Suppose that n = m + -=--f 1 and ̂  = « - + l .

Then if / and m are both non negative integers, n and p are half in-
tegers such that n>p>l and n—p^Z. Moreover we have

(/Λ. + mΛ,) (H(θ, φ)) = i(2n + l)θ/2 + i(2p-l)φ/2 .

Let C/MV, TΛ/> denote the characters of the representations f/M>3/2+/v,
τ*.o.PφTo.*.p d e f i n e d i n [9(b)] respectively and let %^, %^ be the
locally summable functions on G which coincide with Unv, Tn p as dis-
tributions respectively.

For any Λ = /Λ1 + raΛ2e?$0, we define

TΛ - Tnp and dnp = dA

where w = w + -^ + l and ̂  = _ + l .

The following character formulas are due to T. Hirai

= 0,

(β . 2) J(g/C2«+l)β/2 _ - , C2» + l)β/2\ /eiC2p-ΌΨ/2 __ β - iQ2p~Ό<p/2\ _ ί^lp-^m _ ^ ~ ,'(2/»-l̂ /2\
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— 2{e~czn+ί:[tl/2(eiί2p~i:>φ/2 — e~iC2p~Ό<p/2) —

It follows immediately that G satisfies also the assumption (A. 5).
Therefore we can apply Theorem 2/ to G. It is easy to see that

Let pn be the irreducible unitary representation of U={u^Q: | « |=1}
of dimension 2n-\-l defined in [9 (b)], where n is a half integer i.e.

. We define the irreducible unitary representation ρn of M by

pn(m) = pn(u) for w = ( j J

Then we have

Ωo = {pn: 2n=l (mod2)},

Ωx = {ρn: 2n=0 (mod 2)} .

It is easy to see that

dHtP = (2« + l) (2P-1) (n+p) ( n -

Since λ = 2i> and Tnp=TnΛp+T0^pJ it follows from Theorem 2X t h a t

6 f(e) = Σ ( 2 « + l) Σ ( 2 ^ - l ) ( w + ^ ) }

+ 2 Σ (2ff + l ) Π th (TΓ^ + V ^
»>0 Jo

under the normalization of the Haar measure of G such that (4.16)
holds.

Let d" ° p be the formal degree of T" ° p (see [3 (e)]). From Remark
5. 2 in [9 (b)] (p. 431), we have

dH-°-p = ( 2 Λ + 1 ) (2p-l) (n+p) (n-p+l)/16π2,

under the normalization of the Haar measure of G introduced in [9 (b)].
Therefore from the uniqueness of the Plancherel measure, we have

the following result.

Theorem 3, Let Tn0 p, T0^p and UHfV be the characters of the
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representations Tn'°'p, T°'n'p and Un'3/2+i* respectively. Then

/(*) = τ ^ Σ ( 2 w - h l ) Σ &p-l)(n+p)(n-p+l){TnOp(f)+Tonp(f)}

under the normalization of the Haar mearure of G that is introduced in
[9(b)]

This formula was conjectured by R. Takahashi in [9 (b)] (p. 432).

REMARK 5. As far as the author knows, the explicit character for-
mulas of the representations Tn'°>p and T°'n>p are not known although
the character of the representation τn'°'p®T°'n'p is known (see (6.1),
(6.2)). As we saw above, in order to obtain the explicit Plancherel
formula, it is sufficient for us only to know the character of the re-
presentation τn'°'p®T°'n'p. These facts suggest that it is natural to
consider the character TA which is the sum of the characters of irre-
ducible unitary representations having the same infinitesimal and central
character (see the proof of Proposition 3).

REMARK 6. There are some misprints in the character formulas
given in [6]. The correct formulas should be (6.1) and (6.2). Other
misprints in [6] are as follows; p. 24, line 12, read " + £•••" instead of
" - i " ; P 26, line 16, read "Lemma 2" instead of "Theorem 1", line
19, read "-HQH2(Hl-Hl)" instead of "i/0//2(i/g - # ? ) " .

7. Proof of Theorem 1

In this section we shall give a proof of Theorem 1. In view of the
definition of TΛ, it is sufficient to prove the theorem when Λ + p e g 0 .
Let aiy a2y --,an be all the distinct roots in Pλ. Then P2= {άiy a2> •••, an}.
Put

r r

pr = Π α, , pr = Π cίi.
, =i , =i

Then we have

r r

spr = Π saέ, spr = Π sόίi for all s<=W.
1 = 1 1 = 1

Fix an element Λ e g such that Λ + p e g 0 . We shall prove the follow-
ing by the induction on r
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(pr) <A+P,pryτA(f)

(A d(spr))dh

f\h; d(sp~r))dh\

Lemma 11.

esos'λ-pχHψ^(h; d(sosύr))dh = ( e*cλ+pxH>Ff(h; d(spr))dh.
-AAs J+AAs

Proof. We use the notation of the proof of Lemma 7. Since
Adko(+AA') = -AA*, we have

ψ^ikohko1 d(sospr))dh

fψ\h; d(spr))dh

?\h d(sp-r))dh .

Thus the lemma is proved.
Supposing (Pn) is valid for a moment, we shall prove Theorem 1. In

view of Lemma 11, (Pn) implies that

= ( - l)n+q Σ I ( es^+PXHΨ^ (A a(τr)) dh
s<=W [J A1

+ε2(s)ε(s)[ Λ eiίK+^HΨf\h; d(τr2))dh+ε2(s)ε(s)

?\h d(π2))dh]
) y

x

since pn = πy €(so)=-l9 d(spn) = 6(s)d(π) and d(3j>Λ) = 6(s)d(π2) for all
Moreover, clearly we have the followings (see § 3).

ε2(s)S(s) = - 1 , +,4Λ* = _Λ and _AΛ̂  = +A, if

62(s)6(s) = 1, +AΛ^ = +A2 and _ΛΛ̂  = _A2 if <^p, α 0 ><0

Therefore from the above formula we can derive the following

= (-1)"+ Σ {f ϊλKh)F?>(h d(π))dh
*eW KJA1

+ \ StWFfih d(π2))dh - \ mh)F?(h dπ2)) dh}
J+A2 J~A2 )
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(see (§3)). From the definition of η^ (>fe= 1, 2), Theorem 1 is now ob-
vious.

Now we come to the proof of (Pr) (0<r</z). Again making use of
Lemma 11, we can show that (Po) is equivalent to

Σ t
ki J

Σ t
k=i JAM

Since this is valid from the definition of TΛ, our assertion follows im-
mediately for r=0. Assume now that (Pr) is valid for some r (0<r<w).
It is easy to see that <Λ + p, ar+1>eSCA+PXH> = O(Λ + p), sar+1>eSCA+pχw

= d{sar+1)eSCA+PXH\ <Λ + />, α r + 1 > ^ α + P χ f i > = <5(Λ+jδ), s&r+1}eScλ+pxm = d(sάr^)

eS(λ+?xH)9 Hence multiplying the both sides of (Pr) by <Λ + p, α r + 1>, we
get

(7.1)

= ( - l)r+g Σ Us) [ td(sar+1)es^pχ™lF?\h d(spr))dh
S<BW I JA1

= ( - i ) ' + ^ 2 ίe(s) [ es^+pχί»F?\h\ d(spr+1))dh
*e^ { JA1

+ 262(s)\ e^λ+pxHΨ?\h; d(spr+1))dh\

+ ( - l ) r + ί Σ {ε(s) [ d(sar+1)[eP*+>™>Fγ\h d(sp,))]dh
J e ^ I JAX

+2£2(s)[ d(sa,++1)le*λ+fxHΨ?\h dsp,))]dh\

Put

Λ1 } = Σ 6(s) [ d(sar

J A

A2> = Σ 2ε,{s) \ d(sar+1)[_e^™ψ?\h d{spr))-]dh.

Then the validity of (Pr+1) is equivalent to JF+JF = Q. In order to
prove that / A ) + / Λ ) = 0, we need more precise informations about /iX)

and/i2).
First we consider J^\ For any a^Pl, put σΛ = {h = exp H^A1:

a(H)^2π\/~^JZ}. It is easy to see that P? is exactly the set of all
positive singular roots in Σx (see [3 (h)] for the definition of a singular
root).

Put Fσ\h : s) = Fγ\h d(spr)). Then by making use of (1) in Lemma
3 we have the following (c.f. [3 (h)]).
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(7.2)

where

Σ Va(Ha)

: s)-

(this limit always exists from (1) in Lemma 3). In this formula dσΛ

denotes the canonical Lebesgue measure induced by dh on σΛ. Let Wκ

denote the set of all elements t^W such that Ad(k)\ί)1=t for some
k^K. Then for any α e P J , there exists an element t^Wκ such that
tao = a. For each α e P J , we fix such an element / and denote it by tΛ.
Then by definition, there exists an element k(=Ksuch that Ad (k)\^1 = ta.
We also fix such an element k and denote it by kΛ. Then we have

^ΪHJ; d(spr))
1 3(spr))

Hence

(7. 3) F«\kjιk? : s) = Fi^Cexp tΛH: s) = S{tΛ)F%(h : t?s)

Moreover it is easy to see that

(7. 4) a(HΛ) = ao(HΛo), <α, 5αr+1> = <α0, t-
λsar+1> .

On the other hand, c/σΛo goes to ύ?σΛ under the mapping h-^k
maps σ^ onto σΛ.

Therefore it follows from (7. 2), (7. 3) and (7. 4) that

PΪ Va(H) J

k*1 which

VaQ(HΛo) o

= N/^T Σ f Σ ε^ls)<^tγsar^> f ^ ^
a(Ξpo [s^w Vao(Hao) J ^

- \/^ΐ<7 Σ g

Put

(7. 5)

Then

(7.6)
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Now we come to J%\ Notice that a0 is the only one positive sin-
gular root in Σ2. Then we get similarly as above

(7. 7) Λ2) = Σ 2 g 2 ^ 5 a ° > ^ — t έ*CA+PXH~Ψ™(h- : s)dhr ,
s^v Vao(HΛo) JA-

where Ff (/Γ : s) = lim Ff (azh~ d(spr)). It is easily seen from (2) in

Lemma 3 that Fm(h~ :s) is a function of class C°°. We put

(7. 8) K?\A) = 2£«(^)<«o.g«r+1> f

Vao(Hao) iA~

Then

(7.9)
sew

Put l f o ={sGl7 :5α o =±α o } .
Then from (7. 6) and (7.9) we have

(7.10) ΓΓ +/k2) =
s

= Σ

where 5* denotes the coset in W o \^ which contains 5. Hence in order
to prove Γ?+JT = 0, it is sufficient to prove that Σ {KR() KT()}

t(ΞW0

= 0 for all s^W. For this purpose we need some additional lemmas.
Now fix a coset s?(=W0\W arbitrarily.
Put

Lemma 12.

Km <Λ(/) + P, ί f > Γ κ n ( / ) = 0

Proof. Since Λ is an integral form, A(l) = A-\-lsϊ1a° (l&Z) is again
an integral form. Moreover if /Φ/' (/, ? G Z ) then Λ(/)ΦΛ(/0. There-
fore since

for sufficiently large /, the lemma follows immediately from Proposition
3.

Lemma 13. Let s be any element of W. Then we have

(1) lim f e

s^nΛ-pχHΨγ\h d(spr+1))dh = 0 ,

(2) lim ( jKUn+vxinpiKty. d(Spr+1))dh = 0.
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Proof. In view of (1) in Lemma 3, (1) follows immediately from
Riemann-Lebesgue theorem. When $*#=$? it is obvious that

where ΐ)s = {H^~ : ss^a^H) = 0} .

Therefore in case s*Φsf, (2) follows also from Riemann-Lebesgue theo-
rem. Now we assume that s* = s? in (2). When / is sufficiently large

jf.and o n l y i f | ev*> |<l . Hence

( A . d(s$r+1))dh

for sufficiently large /. Obviously the right hand side of the last equality
tends to zero when /->°o. This proves the lemma.

Lemma 14.

(7.11) Hm{/iV,)+/i2()

l)} = 0 .

This lemma is a direct consequence of Lemma 12, Lemma 13 and
(7.1).

Lemma 15. Let s be any element of W such that s*φsf. Then we
have

(7.12) lim /ΠΪ(Λ(/)) = 0 (6 = 1,2),

for all teΞW0.
This lemma is proved in the same way as Lemma 13.

Lemma 16.

(7.13) K^Sl(A(l)) = KΫ>βl(A) (k= 1, 2),

for all 1<=Z.

Proof. For t^W0 and expi/eσ Λ o we have

tao(H) =
Hence ^S^A+IS-^

for all / G Z .

It follows from (7. 5) that
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Similarly from (7. 8) we get

= Kf^A)

for all t(ΞW0 and / e Z (l>0).
This proves the lemma.

When / tends to infinity in (7.10), we have from (7.11), (7.12) and
(7.13)

Σ {K
ew

= lim Σ {/f

= lim {/&) + / & ) - Σ Σ {/f CΛ5(Λ(/))4-K?l

= 0.

Since sf was arbitrarily chosen, we have

Σ {K?i(A) + K?>(A)} = 0
w

for all s^W. Thus Theorem 1 is proved.
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Added in proof.
By the recent result of T. Hirai :
The characters of irreducible representations of the Lorenz group of
w-th order, to appear.
Our assumptions (A. 1)~(A. 5) are satisfied also by the groups of type

(Π) in §5.




