ON R-ALGEBRAS WHICH ARE R FINITELY GENERATED

Manabu HARADA

(Received November 5, 1964)

Let K be a field and R a ring with 1 . We know several conditions under which an R-algebra is a finitely generated R-module. In [6] Rosenberg and Zelinsky obtained, for a K-algebra A, those conditions in a case where $A \otimes_{K} A^{*} / N\left(\underset{K}{\otimes} A^{*}\right)$ is Artinian, where A^{*} is an anti-isomorphic algebra of A and $N\left(^{*}\right)$ is the radical of *.

In $\S 1$ we shall study a similar problem in a case where $A \bigotimes_{K} A^{*}$ is Noetherian and obtain, for an algebraic algebra A over K such that $A / N(A)$ is a semi-simple ring with minimum condition, that $[A: K]<\infty$ if and only if $A \otimes_{K} A^{*}$ is right Noetherian.

In $\S 2$ we consider a primitive K-algebra with minimal one sided ideals. We give a condition that the associated division ring is of a finite K-dimension.

Finally we consider a separable R-algebra A which is a submodule in a free R-module. If R is Noetherian, then we show that A is R finitely generated as R-module.

1. Algebras of finite type

In this paper we always assume that K means a field and R a commutative ring with 1.

Let $A_{2} \supseteq A_{1}$ be R-algebras. Then we have a natural homomorphism $\Phi: A_{1} \otimes_{R} A_{1}^{*} \rightarrow A_{2} \otimes_{R} A_{2}^{*}$. We denote also the image of Φ by $A_{1} \otimes_{R} A_{1}^{*}$ if there are no confusions. Furthermore, we have a natural right $A_{i} \otimes_{R} A_{i}^{*}$-homomorphism $\mathscr{\rho}_{i}: A_{i} \bigotimes_{R} A_{i}^{*} \rightarrow A_{i}$ by setting $\left(a \otimes b^{*}\right)=b a$. We denote its kernel by J_{i}.

The following lemma is based on a suggestion of M. Auslander.
Lemma 1. Let A_{3} be an R-algebra and $A_{2} \supsetneq A_{1}$ proper R-subalgebras contained in the center of A_{3}. We assume that A_{i+1} is A_{2}-projective for $i=1,2$. Then $J_{3} \supsetneq J_{i} A_{3}^{e} \supsetneq J_{1} A_{3}^{e}$, where $A_{3}^{e}=A_{3} \otimes_{R} A_{3}^{*}$.

Proof. We consider a natural A_{3}^{e}-homomorphism $\alpha_{2}: A_{3} \underset{R}{\otimes} A_{3}^{*} \rightarrow$ $A_{3} \otimes_{A_{2}} A_{3}^{*}$. If $\alpha_{2}\left(J_{3}\right)=(0)$, then we obtain easily $A_{3} \otimes A_{A_{2}} A_{3}^{*}=A_{3}$. Let \mathfrak{p} be a prime ideal of A_{2}. Then $A_{3 p} \otimes A_{1 p}^{*}$. Since $A_{3 p}$ is $A_{2 p}$-projective, $A_{3 p}$ is a free $A_{2 p}$-module by [5], Theorem 2. Hence $A_{3 p}=A_{2 p}$ for every prime ideal \mathfrak{p}, which is a contradiction. On the other hand $\alpha_{2}\left(J_{2} A_{3}^{e}\right)=(0)$. Therefore, $J_{2} A_{3}^{e} \subsetneq J_{3}$. Next we consider a commutative diagram :

From the above argument we know that $\beta\left(J_{2}\right)=(0)$. Since A_{2}, A_{3} are A_{1}-projective, β^{\prime} is monomorphic. Therefore, $\alpha_{1}\left(J_{2}\right)=\alpha_{1} \Phi\left(J_{2}\right)=\beta^{\prime} \beta\left(J_{2}\right) \neq(0)$. On the other hand $\alpha_{1}\left(J_{1}\right)=(0)$. Hence we have $J_{2} A \supsetneq J_{1} A_{3}^{e}$.

Corollary 1. Let A be an R-projective R-algebra. We assume that $A \otimes_{R} A^{*}$ is right Noetherian (resp. Artinian). Then a length of ascending (resp. descending) chain of R-projective, R-separable algebras in the center of A is finite, (cf. [7], Theorem 2).

Proof. From a fact for a separable R-algebra C that R-projective C-module is C-projective, we have the corollary.

Corollary 2. Let A be an extension field of K. Then A is a finite type, i.e. A is generated by a finite number of elements if and only if $A \bigotimes_{K} A$ is Noetherian, (cf. [1], p. 99).

Proof. If A is a finite type, then A is an algebraic extension of a rational function field $K\left(x_{1}, x_{2}, \cdots, x_{t}\right)$. It is clear that $K(x) \otimes_{K} K(x)$ is Noetherian. Since $A \bigotimes_{K} A$ is a finitely generated $K(x)^{e}$-module, A^{e} is Noetherian. The converse is clear from Lemma 1.

Remark 1. Lemma 1 is valid in a case where A 's are division rings. Because, we may take $A_{2} \otimes \otimes_{1}^{\Delta_{1}^{*}} A_{2}^{*}$ in a place of $A_{2} \otimes A_{A_{1}} A_{2}$ and so on.

Lemma 2. Let A be a right Noetherian, algebraic algebra over a field K. Then the radical of A is nilpotent.

Proof. By the assumption and [4], p. 212, Proposition 3, the radical
N is nil. Furthermore, since A is Noetherian, N is nilpotent by [4], p. 199, Theorem 1.

Proposition 1. Let A be a commutative algebraic algebra over a field K. Then the following conditions are equivalent.
a) $[A: K]<\infty$,
b) $A \otimes A$ is Noetherian,
c) $A \underset{K}{ } F$ is Noetherian for any algebraic extension field F of K.

Proof. First, we assume A^{e} is Noetherian. Since A^{e} is algebraic over K, its radical $N\left(A^{e}\right)$ is nilpotent by Lemma 2. Similarly we know that $N=N(A)$ is nilpotent. Hence, if we show $[A / N: K]<\infty$, then by the standard argument we obtain $[A: K]<\infty$ (cf. the proof of [3], Theorem 1). Therefore, we may assume that A is a semi-simple ring in a sense of Jacobson. From [4], p. 210 we know that A is an I-ring, namely every non-nilpotent ideal contains an idempotent element. Hence, since A is a commutative Noetherian semi-simple ring, every ideal is generated by an idempotent element. Therefore, A is a semi-simple ring with minimum conditions. Hence, we may assume that A is a field. Then $[A: K]<\infty$ by Corollary 2. By the similar argument as above, we obtain $[A: K]<\infty$ if A satisfies c).

Theorem 1. Let A be an algebraic algebra over a field K. We assume A / N is a semi-simple ring with minimum conditions, where N is the radical of A. Then we have the following equivalent conditions:
a) $[A: K]<\infty$,
b) $A \otimes_{F} A^{*}$ is right Noetherian,
c) $A \underset{K}{\otimes} F$ is right Noetherian for every algebraic extension field F of K.

Proof. In both cases b) and c) we know that N is nilpotent by Lemma 2. Hence, we may assume that A is a division algebra over K. Let L be a maximal subfield of A and Z the center of A. Let $A=\sum \oplus L u_{i}$ and $A^{*}=\sum \underset{K}{\oplus} L^{*} v_{i}$. Since $A \underset{K}{\otimes} A^{*}=\Sigma \oplus L \otimes L^{*}\left(u_{i} \otimes v_{j}\right)$ is right Noetherian, so is $L \otimes_{K} L^{*}$. Hence $[L: K]<\infty$ by Proposition 1. If we consider A as a left A - and right L-module, A is a right $A_{B}^{*} \otimes$-module. Since $A_{F}^{*} \otimes{ }_{F} L$ is a simple ring with minimum conditions and A is a simple faithful $A^{*} \otimes_{K} L$-module, A has a finite right base over $A^{*} \otimes_{F} L$-endomorphism division ring of A, which is equal to $V_{A}(L)=\{a \in A \mid a l=l a$ for all $l \in L\}$. Since L is a maximal subfield of $A, V_{A}(L)=L$. Therefore, $[A: K]<\infty$.

Corollary 3. Let A be an algebra over a field $K . L_{1}$ is an algebraic closure of K and $L_{2}=K(x)$ a rational function field over K. Then $[A: K]<\infty$ if and only if $A \underset{K}{\otimes} L_{i}(i=1,2)$ is right Artinian, ([3], Theorem 1).

Proof. By the same reason as in the proof of Proposition 1, we may assume that A is a division ring if $A \underset{K}{\otimes} L_{i}$ is right Artinian. Furthermore, it is clear that A is algebraic over K. Hence $[A: K]<\infty$ by Theorem 1.

Proposition 2. Let A be a division algebra over a field K. If $A \otimes_{B} A^{*} / N\left(\underset{F}{A} A^{*}\right)$ is right Noetherian, then the center Z of A is of a finite transcendental degree over K and A is a finite type over Z, (cf. [7], Theorem 2).

Proof. By the proof of [2], Lemma 4, we have $N\left(A^{e}\right)=\mathfrak{a} A^{e}$, where \mathfrak{a} is an ideal contained in the radical $N\left(Z^{e}\right)$ of Z^{e}. Since there is a lattice isomorphism between two-sided ideals of A^{e} and Z^{e} by [4], p. 114, Theorem $1, Z^{e} / N\left(Z^{e}\right)$ is Noetherian. We shall show that the transcendental degree of A over K is finite. We consider again an exact sequence as in Lemma 1. $0 \rightarrow J_{i} \rightarrow L_{i} \otimes L_{i} \rightarrow L_{i} \rightarrow 0$, where $L_{i}=K\left(x_{1}, \cdots, x_{i}\right)$ and the x 's are indeterminants in Z over K. Then we shall show that $J_{i} Z^{e}+$ $N\left(Z^{e}\right) \neq J_{i+1} Z^{e}+N\left(Z^{e}\right)$. Otherwise, for any element j in $J_{i+1}\left(Z^{e}\right)$, we have $j=y+r, y \in J_{i} Z^{e}, r \in N\left(Z^{e}\right)$. Since $N\left(Z^{e}\right)$ is nil ([1], p. 85, Proposition 4), $j^{n} \in J_{i} Z^{e}$ for some integer n. Therefore, $\left(x_{i+1} \otimes 1-1 \otimes x_{i+1}\right)^{n \prime}=x_{i+1}^{n^{\prime}} \otimes 1-$ $n^{\prime}\left(x_{i+1}^{n^{\prime}-1} \otimes x_{i+1}\right)+\cdots+(-1)^{n^{\prime}}\left(1 \otimes x_{i+1}^{n^{\prime}}\right)$ is contained in $J_{i} Z^{e}$. On the other hand, $J_{i} Z^{e}=\sum \oplus u_{\alpha} J_{i}\left(L_{i+1} \otimes L_{i+1}\right)$, where $\left\{u_{\alpha}\right\}$ is a basis of Z^{e} over $L_{i+1}{\underset{K}{K}}^{\otimes} L_{i+1}$ and we assume $u_{1}=1 \otimes 1$. Extending $x_{i+1}^{k} \otimes x_{i+1}^{l}, k, l=0,1, \cdots$ to a basis $\{x, v\} \quad$ of $L_{i+1} \otimes_{K} L_{i+1}$ over $L_{i} \otimes_{K} L_{i}, \quad J_{i} Z^{e}=\sum \oplus\left(x_{i+1}^{k} \otimes x_{i+1}^{l}\right) J_{i} \oplus \sum \oplus v J_{i} \oplus$ $\sum_{\alpha \neq 1} \oplus u_{\alpha} J_{i}\left(L_{i+1} \otimes_{K} L_{i+1}\right)$. Hence J_{i} must contain 1 , which is a contradiction. Therefore, the transcendental degree of Z over K is finite. From the assumption, it is clear that $A \underset{Z}{ } A^{*}$ is right Noetherian. Hence by Lemma $1, A$ is a finite type over Z.

Remark 2. The following example shows that A is not a finite type even if A is algebraic commutative field over K and $A^{e} / N\left(A^{e}\right)$ is Artinian.

Let $A=\bigcup_{n} K\left(x^{1 / p^{n}}\right)$, where K is a field of characteristic $p \neq 0$ and x is an indeterminant over K. Then it is clear the $N\left(A^{e}\right)=J_{A}$ and $A^{e} / N\left(A^{e}\right)=A$.

2. Primitive algebras

Let A be a simple algebra over K with minimum conditions. Then it is clear that $[A: K]<\infty$ if and only if $N\left(A^{e}\right)$ is nilpotent and $A^{e} / N\left(A^{e}\right)$ is Artinian. We shall generalize this property as follows :

Theorem 2. Let A be a primitive K-algebra with minimal one-sided ideals and Δ its associated division ring, (see [4]). Then $[\Delta: K]<\infty$ if and only if the radical $N\left(A^{e}\right)$ of A^{e} is nilpotent and $N\left(A^{e}\right)$ is the intersection of a finite number of primitive rings with one-sided ideals.

Proof. We assume $[\Delta: K]<\infty$. Let \mathfrak{l} and \mathfrak{r} be minimal left and right ideals in A, respectively. Then $\mathfrak{r}_{B} \otimes \mathfrak{l}^{*}=\sum_{\alpha} \oplus\left(x_{\alpha} \otimes y_{\alpha}\right) \Delta^{e}$ is a faithful $A \bigotimes_{K} A^{*}$-module, and $A \bigotimes_{K} A^{*}$ is a dense ring in the Δ^{e}-endomorphism ring $M_{I}\left(\Delta^{e}\right)$ of $\mathfrak{r} \otimes_{K} \mathfrak{I}^{*}$ by [4], p. 113, Theorem 1. By the assumption, the radical $N\left(\Delta^{e}\right)$ of Δ^{e} is nilpotent. We consider a factor module of $\underset{K}{\mathrm{r}} \otimes \mathbb{1}^{*}$
 known theorem, the radical $N\left(M_{I}\left(\Delta^{e}\right)\right)$ of $M_{I}\left(\Delta^{e}\right)$ is contained in $M_{I}\left(N\left(\Delta^{e}\right)\right.$), and since $N\left(\Delta^{e}\right)$ is nilpotent, $M_{I}\left(N\left(\Delta^{e}\right)\right)$ is equal to $N\left(M_{I}\left(\Delta^{e}\right)\right)$. We can easily show that $M_{I}\left(\Delta^{e}\right) / N\left(M_{I}\left(\Delta^{e}\right)\right)=M_{I}\left(\left(A_{1}\right)_{n_{1}}\right) \oplus \cdots \oplus M_{I}\left(\left(A_{r}\right)_{n_{r}}\right)$, where the A 's are division algebras over K. Furthermore, it is clear that $\overline{\mathfrak{r} \otimes \mathfrak{l}^{*}}$ is a faithful $M_{I}\left(\Delta^{e}\right) / N\left(M_{I}\left(\Delta^{e}\right)\right)$-module. On the other hand, we have $\overline{\mathfrak{r} \otimes \mathfrak{I}^{*}}=\sum_{i} \sum_{\alpha} \sum_{j=1}^{n_{i}} \oplus\left(x_{\alpha} \otimes y_{\alpha}\right) \mathfrak{b}_{i, j}$, where the \mathfrak{b} 's are irreducible left ideals in $\left(A^{*}\right)_{n_{i}} . \quad$ Put $L_{i}=\sum_{\alpha}\left(x_{a} \otimes y_{a}\right) \mathfrak{b}_{i, 1}$, then $\sum_{i} \oplus L_{i}$ is a faithful $M_{I}\left(\Delta^{e}\right) / N\left(M_{I}\left(\Delta^{e}\right)\right)-$ module. By the above argument, the L 's are also A^{e}-irreducible modules. Hence $N\left(M_{I}\left(\Delta^{e}\right)\right)$ contains $N\left(A^{e}\right)$. Since $N\left(M_{I}\left(\Delta^{e}\right)\right)$ is nilpotent, we have $N\left(A^{e}\right)=N\left(M_{I}\left(\Delta^{e}\right)\right) \cap A^{e}$. Therefore, $\sum_{i} \oplus L_{i}$ is also a faithful $\bar{A}^{e}=A^{e} / N\left(A^{e}\right)-$ module. Furthermore, $N\left(\mathfrak{r} \otimes \mathfrak{l}^{*}\right)=\left(\mathfrak{r} \otimes \mathfrak{l}^{*}\right) N\left(M_{I}\left(\Delta^{e}\right)\right) \subseteq A^{e} \cap N\left(M_{I}\left(\Delta^{e}\right)\right)=N\left(A^{e}\right)$, and since we can represent \mathfrak{r} and \mathfrak{l} by $e A$ and $A e^{\prime}$, where e, e^{\prime} are primitive idempotents in A, then $\underset{\kappa}{\left(\mathfrak{r} \mathbb{I}^{*}{ }^{*}\right) \cap N\left(A^{e}\right)=\left(e \otimes e^{\prime *}\right) A^{e} \cap N\left(A^{e}\right)=\left(e \otimes e^{\prime *}\right) N\left(A^{e}\right) .}$ $=\left(\mathfrak{r} \otimes_{K} \mathfrak{l}^{*}\right) N\left(A^{e}\right) \subseteq N(\underset{K}{\mathcal{E}} \otimes \mathfrak{l})$. Hence, we have a monomorphism of $\overline{\mathfrak{r} \underset{K}{\otimes} \mathfrak{l}^{*}}$ into \bar{A}^{e}. Therefore, \bar{A}^{e} has a faithful complete reducible module $\sum \oplus L_{i}$. Let \mathfrak{a}_{i} be the annihilator ideal of L_{i} in \bar{A}^{e}. Then $\bar{A}^{e} / \mathfrak{a}_{i}$ contains $L_{i}+\mathfrak{a}_{i} / \mathfrak{a}_{i}$. Since L_{i} is irreducible and \bar{A}^{e} is semi-simple, $L_{i}+\mathfrak{a}_{i} / \mathfrak{a}_{i} \approx L_{i}$. Hence $\bar{A}^{e} / \mathfrak{a}_{i}$ is a primitive ring with minimal one-sided ideals. Furthermore, we have $\cap \mathfrak{a}_{i}=(0)$, which proves the first half of the theorem. Let e be an idempotent. They by [4], p. 48, Proposition 1, $N\left(\left(e \otimes e^{*}\right)\left(A \otimes_{K} A^{*}\right)\left(e \otimes e^{*}\right)\right)$
$=\left(e \otimes e^{*}\right) N\left(A \underset{K}{ } A^{*}\right)\left(e \otimes e^{*}\right)$, and hence, $N\left(\Delta^{e}\right)$ is nilpotent, where $e A e=\Delta$. Let \mathfrak{p}_{i} 's be a primitive ideals with the property as in the theorem. Then by [2], Lemma 1, $\left(e \otimes e^{*}\right) \mathfrak{p}_{\boldsymbol{i}}\left(e \otimes e^{*}\right)$ are primitive ideals in $\left(e \otimes e^{*}\right) A \otimes_{K} A^{*}\left(e \otimes e^{*}\right)$ with the same property as above. Furthermore, if $\bigcap_{i} \mathfrak{p}_{i}=N\left(A^{e}\right)$, then $\bigcap_{i}\left(e \otimes e^{*}\right) \mathfrak{p}_{i}\left(e \otimes e^{*}\right)=N\left(\Delta^{e}\right)$. Let Z be the center of Δ. Then by [4], p. 114, Theorem 1, there is a lattice isomorphism between two-sided ideals of Δ^{e} and those of Z^{e}. Put $\mathfrak{q}_{i}=\left(e \otimes e^{*}\right) \mathfrak{p}_{i}\left(e \otimes e^{*}\right)$. Then there exist ideals \mathfrak{b} and \mathfrak{c} in Z^{e} which correspont to \mathfrak{q}_{i} and an ideal \mathfrak{B} in Δ^{e} such that $\mathfrak{B} \supseteq \mathfrak{q}_{i}$ and $\mathfrak{\xi} / \mathfrak{q}_{i}$ is the socle of $\Delta^{e} / \mathfrak{q}_{i}$. We shall show that $\bar{Z}^{e}=Z^{e} / \mathfrak{b}$ is a field. Since $\overline{\mathrm{c}}$ is a unique minimal ideal in $\bar{Z}^{e}, \overline{\mathrm{c}}$ is contained in $N\left(\bar{Z}^{e}\right)$ if $\overline{\mathfrak{c}} \neq \bar{Z}^{e}$. $\overline{\mathfrak{B}}=\overline{\mathfrak{S}}^{2}, \overline{\mathrm{c}}=\overline{\mathrm{c}}^{2}$. Hence $\overline{\mathrm{c}}$ is generated by idempotent element, which is a contradiction. Therefore, \bar{Z}^{e} is a field. Hence, $\Delta^{e} / \mathfrak{q}_{i}$ is a simple ring. Since $\Delta^{e} / \mathfrak{q}_{i}$ has the socle, $\Delta^{e} / \mathfrak{q}_{i}$ satisfies the minimum conditions. $\cap \mathfrak{q}_{i}=N\left(\Delta^{e}\right)$ implies that $\Delta^{e} / N\left(\Delta^{e}\right)$ is a semi-simple ring with minimum condition. Therefore, $[\Delta: K]<\infty$ by [7], Theorem 7.

3. Separable algebras

Let R be a Noetherian ring and \mathfrak{a} an ideal in R. For any finitely generated R-module E and its submodule F, there exists an integer r such that $\mathfrak{a}^{n} E \cap F=\mathfrak{a}^{n-r}\left(\mathfrak{a}^{r} E \cap F\right)$ for all $n>r$ by the Artin-Rees theorem. Thus we shall call an R-module E "an Artin-Rees module with respect to \mathfrak{a} (briefly $A-R$ module)", if for any finitely generated R-submodule F in E, there exists an integer r such that $F \mathfrak{a}^{n} \cap F \subseteq F \mathfrak{a}^{n-r}$ for $n>r$.

By definition we have the following lemmas:
Lemma 3. If E is an $A-R$ module, then any submodule of E and any quotient module of E with respect to a finitely generated submodule of E are $A-R$ modules.

Lemma 4. Every submodule of a free R-module is an $A-R$ module.
Lemma 5. If \mathfrak{a} is contained in the radical of R and E is an $A-R$ module, then $\bigcap_{n} E a^{n}=(0)$.

Proof. Let x be in $\bigcap_{n} E \mathfrak{a}^{n}$. Then $x R=x R \cap E \mathfrak{a}^{n} \subseteq x R \mathfrak{a}^{n-r}$, and hence $x R=(0)$.

Proposition 3. Let \mathfrak{a} be an ideal contained in the radical of R. For any $A-R$ module E, if $E / E \mathfrak{a}$ is finitely generated then so is E.

Proof. If $E / E \mathfrak{a}$ is finitely generated, then we have a finitely generated R-submodule F such that $E=E a+F$. Let $\bar{E}=E / F$, then \bar{E} is an $A-R$ module by Lemma 3. Hence (0) $=\cap \bar{E} \mathfrak{a}^{n}=\bar{E}$ by Lemma 5 .

Corollary 4. Let R and \mathfrak{a} be as above. If R is not complete with respect to $\left\{a^{n}\right\}$, then the completion \hat{R} of R is not contained in a free R module, (cf. [1], p. 95).

Proof. If \hat{R} is contained in a free R-module then \hat{R} is an $A-R$ module by Lemma 4. Furthermore, $\hat{R} / \hat{R} \mathfrak{a} \approx R / a$, and hence \hat{R} is a finitely generated R-module by the proposition. Then since $\hat{R}=R+\hat{R} \mathfrak{a}, \hat{R}=R$ by Nakayama's Lemma, which is a contradiction.

Lemma 6. Let S be a multiplicative system consisting of non-zerodivisors in R (not necessarily Noetherian) and E a submodule of a free R-module. If $E_{s}=E \otimes_{R} R_{s}$ is finitely generated R_{s}-module, then E is contained in an finitely generated R-module.

It is clear.
Theorem 3. Let R be a Noetherian ring and let A be a separable R-algebra such that A is contained in a free R-module. Then A is a finitely genorated R-module.

Proof. Let S be the set of all non zero-divisors in R. Then A_{s} is separable R_{s}-algebra and is contained in a free R_{s}-module. Hence, we may assume by Lemma 6 that R is semi-local. Let \mathfrak{p} be a maximal ideal in R. Then $A / A p$ is a separable algebra over R / \mathfrak{p}, (it may be zero). Hence, $A / A p$ is a finitely generated R / \mathfrak{p}-module by [6], Theorem 1. On the other hand, $A \otimes R_{\mathfrak{p}} /\left(A \otimes R_{\mathfrak{p}} \mathfrak{p}\right)=A / A \mathfrak{p}$ and $A \otimes R_{\mathfrak{p}}$ is an $A-R$ module by Lemma 4. Therefore, $A \otimes R_{\mathfrak{p}}$ is finitely generated $R_{\mathfrak{p}}$-module, and hence A is a finitely generated R-module by the simple argument.

Osaka City University

References

[1] N. Bourbaki: Algebre, VIII, 1958.
[2] M. Harada and T. Kanzaki: On Kronecker product of primitive algebras, J. Inst. Polyt. Osaka City Univ. 9 (1958) 19-28.
[3] M. Harada: On homological theorems of algebras, ibid, 10 (1959) 123-128.
[4] N. Jacobson: Structure of Rings, Amer. Math. Soc., 1956.
[5] I. Kaplansky: Projective modules, Ann. of Math. 68 (1957) 372-377.
[6] A. Rosenberg and D. Zelinsky: Cohomology of infinite algebras, Trans. Amer. Math. Soc. 83 (1956) 85-98.
[7] : Tensor products of semi-primary algebras, Duke Math. J. 24 (1957) 555-560.

