ON THE GROUPS WITH THE SAME TABLE OF CHARACTERS AS ALTERNATING GROUPS

Tuyosi OYAMA

(Received May 26, 1964)

1. Introduction

It was proved by H. Nagao that a finite group which has the same table of characters as a symmetric group S_{n} is isomorphic to S_{n}. The purpose of this paper is to prove the following theorem.

Theorem. If a finite group G has the same table of characters as an alternating group A_{n}, then G is isomorphic to A_{n}.

As is shown in [2], a group G as in the theorem has the same order as A_{n}, therefore the theorem is trivial for $n=2$ and 3. Furthermore, the degrees of corresponding irreducible characters of G and A_{n} coincide with each other, the numbers of elements of corresponding conjugate classes of G and A_{n} are the same, and G has the same multiplication table of conjugate classes as A_{n}. From the last fact it follows that G is simple for $n \geqq 5$. Since it is known that a simple group of order 60 or 360 is isomorphic to A_{5} or A_{6}, the theorem is true for $n=5$ and 6 .

Now we shall give here an outline of the proof of the theorem which will be given in the next section. An alternating group A_{n} is isomorphic to the group generated by $a_{1}, a_{2}, \cdots, a_{n-2}$ with the following defining relations;

$$
(*) \begin{cases}a_{1}^{3}=1, a_{2}^{2}=a_{3}^{2}=\cdots=a_{n-2}^{2}=1 \\ \left(a_{i} a_{i+1}\right)^{3}=1 & (i=1,2, \cdots, n-3) \\ \left(a_{i} a_{j}\right)^{2}=1 & (i=1,2, \cdots, n-4, i+1<i)\end{cases}
$$

(For the proof, see [1], Note C). The proof of the theorem is carried out by showing the existence of elements a_{1}, \cdots, a_{n-2} in G which satisfy the above relations.

Let $C^{*}\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ be the totality of elements of A_{n} which can be expressed as a product of α_{1} cycles of length i_{1}, α_{2} cycles of length i_{2}, \cdots such as each of letters occurs in only one cycle of them, where we as-
sume $i_{r}>1$ except for $C^{*}(1)$. In $A_{n}, C^{*}\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ is itself a conjugate class or a union of two conjugate classes with the same number of elements. Let G be a group with the same table of characters as A_{n}, and let $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ be the conjugate class or the union of two conjugate classes corresponding to $C^{*}\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$. Then $\left\{C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)\right\}$ has the same multiplication table as $\left\{C^{*}\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)\right\}$ and the number of elements of $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ is $\frac{n!}{(n-i)!\cdot \alpha_{1}!\cdot i_{1}^{\alpha_{1}} \cdot \alpha_{2}!\cdot i_{2}^{\alpha_{2}} \ldots}$, where $i=\sum_{r} \alpha_{r} i_{r}$. The following multiplication tables will be used frequently.

$$
\begin{aligned}
\left(\mathrm{M}_{1}\right) \quad C\left(2^{2}\right) \cdot C\left(2^{2}\right)= & \frac{n!}{8 \cdot(n-4)!} C(1)+\{(n-4)(n-5)+2\} \cdot C\left(2^{2}\right)+\frac{3}{2}(n-3) \\
& (n-4) C(3)+5 C(5)+4 C(2,4)+6 C\left(2^{2}, 3\right)+6 C\left(2^{4}\right)+9 C\left(3^{2}\right) \\
\left(\mathrm{M}_{2}\right) \quad C(3) \cdot C(3)= & \frac{n!}{3(n-3)!} C(1)+\{1+3(n-3)\} \cdot C(3)+8 C\left(2^{2}\right)+2 C\left(3^{2}\right) \\
& +5 C(5) .
\end{aligned}
$$

$\left(\mathrm{M}_{3}\right) \quad C(3) \cdot C\left(2^{2}\right)=C\left(2^{2}, 3\right)+4 C(2,4)+4(n-4) C\left(2^{2}\right)+5 C(5)+3(n-3) C(3)$.
Lemma 1 and 2 in the next section will be useful to determine the orders of elements in $C(3), C\left(2^{2}\right)$ and $C(5)$. After proving several lemmas, we shall show that there are elements a_{1} in $C(3)$ and a_{2}, b_{1}, \cdots, b_{n-4} in $C\left(2^{2}\right)$ such that $a_{1} a_{2} \in C(3), a_{1} b_{i} \in C\left(2^{2}\right), a_{2} b_{i} \in C(3)$ (Lemma 11, 12, 13). Then it will be proved that the elements $a_{1}, a_{2}, a_{3}=b_{1}, a_{4}=b_{1} b_{2} b_{1}, \cdots$, $a_{n-2}=b_{n-5} b_{n-4} b_{n-5}$ satisfy the relations (*).

2. Proof of Theorem

In this section, we assume that G is a finite group with the same table of characters as A_{n} with $n=4$ or $n \geqq 7$.

Lemma 1. If the order of an element of $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ is a prime power p^{m}, then $i=\sum_{r} \alpha_{r} i_{r} \equiv 0(p)$.

Proof. As A_{n} is a doubly transitive group G has a irreducible character χ of degree $n-1$ such that $\chi(a)=n-1-i$ for $a \in C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$. Since $a^{p^{m}}=1$, we have $\chi(a)=\sum_{r=1}^{n-1} \omega_{r}$, where $\omega_{r}^{p^{m}}=1$. Thus $\sum \omega_{r}=n-1-i$, and $(n-1-i)^{p^{m}}=\left(\sum \omega_{r}\right)^{p^{m}} \equiv \sum \omega_{r}^{p^{m}} \equiv n-1(\mathfrak{p})$, where \mathfrak{p} is a prime ipeal divisor of p in the field of p^{m} th root of unity. Therefore $n-1 \equiv n^{p^{m}}-1$ $-i^{p^{m}} \equiv n-1-i(p)$, and hence $i \equiv 0(p)$.

Lemma 2. Let $a \in C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$. If $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ is a conjugate class of G, and $a^{k} \in C(1) \cup C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ for any k, then the order of a is a prime number.

Proof. Suppose that the order of a is $k_{1} k_{2}$, where $k_{1} \neq 1, k_{2} \neq 1$. By the assumption $a^{k_{1}} \in C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$, and the order of $a^{k_{1}}$ is k_{2}, which is less than $k_{1} k_{2}$. This is a contradiction. Therefore the order of a is a prime.

Lemma 3. If G has the same table of characters as A_{4}, then G is isomorphic to A_{4}.

Proof. Now $G=C(1) \cup C\left(2^{2}\right) \cup C(3)$, where $C\left(2^{2}\right)$ is a conjugate class and $C(3)$ is a union of two conjugate classes $C_{1}(3)$ and $C_{2}(3)$.

Since the order of G is $12, G$ has elements of the order 3 and 2. Let a be an element of order 2, then by Lemma $1 a$ is not in $C(3)$, therefore $a \in C\left(2^{2}\right)$, and an element b of order 3 is in $C(3)=C_{1}(3) \cup C_{2}(3)$. Let $b \in C_{1}(3)$. Since $C_{1}(3) \cdot C\left(2^{2}\right) \supset C_{1}(3)$, there exist elements a_{1} and a_{2} such that $a_{1} \in C_{1}(3), a_{2} \in C\left(2^{2}\right)$ and $a_{1} a_{2} \in C_{1}(3)$, i.e. $a_{1}^{3}=1, a_{2}^{2}=1$ and $\left(a_{1} a_{2}\right)^{3}=1$. Therefore $H=\left\{a_{1}, a_{2}\right\}$ is a homomorphic image of A_{4}. If the order of H is 6 , then A_{4} has a normal subgroup K of the order 2 such that A_{4} / K is isomorphic to H. But A_{4} has no normal subgroup of the order 2. Therefore the order of H is 12 , and so G is isomorphic to A_{4}.

From now on we assume that $n \geqq 7$. Then $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ occuring in the multiplication tables $\left(M_{1}\right),\left(M_{2}\right)$ and $\left(M_{3}\right)$ are themselves conjugate classes in G. We shall denote by $n(x)$ the order of the normalizer $N(x)$ of an elemente x, and if x is in a conjugate class $C\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$ then $n(x)$ is also denoted by $n\left(i_{1}^{\alpha_{1}}, i_{2}^{\alpha_{2}}, \cdots\right)$. Since $N(x) \subseteq N\left(x^{k}\right), n(x)$ is a divisor of $n\left(x^{k}\right)$.

Lemma 4. If $a \in C(3)$, then $a^{k} \in C(3) \cup C(1)$ and the order of a is 3.
Proof. From the multiplication table $\left(\mathrm{M}_{2}\right) C(3) \cdot C(3)=C(1) \cup C(3) \cup C\left(2^{2}\right)$ $\cup C\left(3^{2}\right) \cup C(5)$. Since $n(3)$ does not divide $n\left(2^{2}\right), n\left(3^{2}\right)$ and $n(5), a^{k}$ does not belong to $C\left(2^{2}\right) \cup C\left(3^{2}\right) \cup C(5)$. Thus $a^{2} \in C(3) \cup C(1)$. If $a^{k-1} \in C(3)$ $\cup C(1)$, then $a^{k}=a^{k-1} \cdot a \in C(3) \cdot C(3)$ and hence $a^{k} \in C(3) \cup C(1)$. Therefore by an induction on k, we have $a^{k} \in C(3) \cup C(1)$. for all k. By Lemma 2 the order of a is a prime, and by Lemma 1 it is 3 .

Lemma 5. If $a \in C\left(2^{2}\right)$, then $a^{2}=1$.
Proof. From the multiplication table $\left(\mathrm{M}_{1}\right) C\left(2^{2}\right) \cdot C\left(2^{2}\right)=C(1) \cup C\left(2^{2}\right)$ $\cup C(3) \cup C(5) \cup C(2,4) \cup C\left(2^{2}, 3\right) \cup C\left(2^{4}\right) \cup C\left(3^{2}\right)$, where $C\left(2^{4}\right)$ is omitted for $n=7$. By the same argument as in the proof of Lemma 4, $a^{k} \notin C(5) \cup C(2,4)$
$\cup_{C\left(2^{2}, 3\right)}^{\cup C\left(3^{2}\right) \text {. If } a^{k} \text { is contained in } C\left(2^{4}\right), \text { then } \frac{n\left(2^{4}\right)}{n\left(2^{2}\right)}=\frac{4!\cdot 2^{4} \cdot(n-8)!}{8 \cdot(n-4)!}, ~(n)}$ $=\frac{2^{4} \cdot 3}{(n-4)(n-5)(n-6)(n-7)}$ must be an integer. But this is impossible except for $n=8$.

Now in the case of $n=8$, since $n\left(2^{2}\right)$ does not divide $n(3), a^{k} \notin C(3)$. Therefore it is easily seen that $a^{k} \in C(1) \cup C\left(2^{2}\right) \cup C\left(2^{4}\right)$. From the multilication table $\left(\mathrm{M}_{2}\right)$, there are two elements b_{1}, b_{2} of $C(3)$ such that $a=b_{1} b_{2}$, and $a^{2}=b_{1} b_{2} b_{1} b_{2}=\left(b_{1} b_{2} b_{1}^{-1}\right) \cdot b_{1}^{-1} \cdot b_{2} \in C(3)^{3}$. It is easily seen that $C(3)^{3}$ does not contain $C\left(2^{4}\right)$, hence $a^{2} \notin C\left(2^{4}\right)$, and $a^{2} \in C\left(2^{2}\right) \cup C(1)$.

Suppose that $a^{2} \notin C(1)$. Then $a^{2} \in C\left(2^{2}\right)$. If $a^{k} \in C\left(2^{4}\right)$ for some k, then $a^{2 k}=\left(a^{2}\right)^{k} \in C\left(2^{4}\right)$. Since $a^{k k^{\prime}} \in C\left(2^{2}\right) \cup C\left(2^{4}\right) \cup C(1)$, and $n\left(2^{4}\right)$ does not divide $n\left(2^{2}\right), a^{k k^{\prime}} \in C\left(2^{4}\right) \cup C(1)$ for all k^{\prime}, Hence by Lemma 1 and 2, the order of an element of $C\left(2^{4}\right)$ is 2 , and therefore $a^{2 k}=1$. This is a contradiction. Thus $a^{k} \notin C\left(2^{4}\right)$ and $a^{k} \in C\left(2^{2}\right) \cup C(1)$ for all k. By Lemma 1 and 2, we have $a^{2}=1$, which contradicts the first assumption. Thus this lemma is proved for $n=8$.

In the case of $n \neq 8$, we have seen $a^{k} \notin C\left(2^{4}\right)$ for any integer k, hence $a^{2} \in C\left(2^{2}\right) \cup C(3) \cup C(1)$. Now $a^{3}=a^{2} \cdot a \in\left\{C\left(2^{2}\right) \cup C(3) \cup C(1)\right\} \cdot C\left(2^{2}\right)$, and so from the multiplication tables $\left(\mathrm{M}_{1}\right)$ and $\left(M_{3}\right)$ and by considering the orders of normalizers of elements it is seen that $a^{3} \in C\left(2^{2}\right) \cup C(3) \cup C(1)$. Now if $a^{3} \in C(3)$, then by Lemma $4\left(a^{3}\right)^{3}=1$, but by Lemma 1 the order of a can not be $3^{2}, a^{3} \notin C(1)$, thus $a^{3} \in C\left(2^{2}\right)$. If $a^{k} \in C(3)$ for some k, then for $b=a^{3}, b^{k} \in C(3)$ since $b \in C\left(2^{2}\right)$. On the other hand, $b^{k}=\left(a^{k}\right)^{3}=1$ since $a^{k} \in C(3)$ and the order of an element of $C(3)$ is 3 . This is a contradiction. Thus $a^{k} \notin C(3)$, therefore $a^{2} \in C\left(2^{2}\right) \cup C(1)$. By the same argument as in the proof of Lemma 4, we have now $a^{2}=1$.

Lemma 6. Any element x of $C\left(3^{2}\right)$ is uniquely expressed as a product of two commutative elements a, b of $C(3)$ disregarding their arrangement, and $x^{3}=1$.

Proof. From $C(3) \cdot C(3)=2 C\left(3^{2}\right)+\cdots, x$ can be expressed in exactly two ways as a product of two elements of $C(3)$. If $x=a b$ with $a, b \in C(3)$, then $x=a \cdot b=b\left(b^{-1} a b\right)=\left(b^{-1} a b\right)\left(b^{-1} a^{-1} b a b\right)$. It is easily seen that $a \neq b$ and $b \neq b^{-1} a b$. Hence $a=b^{-1} a b$ i.e. $a b=b a$, and we have $(a b)^{3}=1$ by Lemma 4 .

Lemma 7. Any element x of $C\left(2^{2}, 3\right)$ can be expressed uniquely as a product of an element a of $C(3)$ and an element b of $C\left(2^{2}\right)$. Two elements a and b are commutative and the order of x is 6.

Proof. From $C(3) \cdot C\left(2^{2}\right)=1 \cdot C\left(2^{2}, 3\right)+\cdots$, the first half of the lemma is evident. Now $x=a \cdot b=(b a b)\left(b a^{-1} b a b\right), b a b \in C(3)$ and $b a^{-1} b a b \in C\left(2^{2}\right)$,
therefore $a=b a b$ i. e. $a b=b a$, and so from $a^{3}=1$ and $b^{2}=1$, the order of x is 6 .

Lemma 8. The oder of an element x of $C(5)$ is 5 , and $x^{k} \in C(5)$ for $k \neq 0$ (5).

Proof. From $C\left(2^{2}\right) \cdot C\left(2^{2}\right)=5 C(5)+\cdots$ there exist two elements a and b of $C\left(2^{2}\right)$ such that $x=a b$, and x is expressed in exactly five ways as a product of two elements of $C\left(2^{2}\right)$. Now $x=a b=b(b a b)=(b a b)(b a b a b)$ $=(b a b a b)(b a b a b a b)=(b a b a b a b)(b a b a b a b a b)$, and by Lemma 1 the order of element of $C(5)$ can not be 2,3 and 4 , and therefore it is easily seen that these five expressions of x as a product of two elements of $C\left(2^{2}\right)$ are all distinct. Since $x=(b a b a b a b a b)(b a b a b a b a b a b)$ is also an expression as a product of two elements of $C\left(2^{2}\right)$, and $b(a b)^{4}$ is not equal to $b, b a b, b(a b)^{2}$ and $b(a b)^{3}, b(a b)^{4}$ must be equal to a i. e. $(a b)^{5}=1$. Since $(a b)^{2}=(a b a) b$ and $(a b)^{3}=(a b)^{-2}$, these are contained in $C\left(2^{2}\right) \cdot C\left(2^{2}\right)$ and from the multiplication table $\left(\mathrm{M}_{1}\right)$ and Lemma 1, except the elements of $C(5)$, the order of any element of cojugate classes in $C\left(2^{2}\right) \cdot C\left(2^{2}\right)$ is not 5 . Therefore both $(a b)^{2}$ and $(a b)^{3}$ are contained in $C(5)$ and $(a b)^{4}=(a b)^{-1}$ is also in $C(5)$.

Lemma 9. If $x \in C(2,4)$, then $x^{2} \in C\left(2^{2}\right)$ and $x^{4}=1$.
Proof. Since $C(2,4)$ is contained in $C(3) \cdot C\left(2^{2}\right)$, there exist an element a of $C(3)$ and an element b of $C\left(2^{2}\right)$ such that $x=a b$. If $x^{2}=1$ then $a b a b=1, a b a=b$, hence $a^{-1} b a=a b$, but $a^{-1} b a$ is contained in $C\left(2^{2}\right)$, which is a contradiction. If $x^{3}=1$, then $a b a b a b=1 . a b a b a=b$, hence $a^{-1} b a b a=a b$, but $a^{-1} b a b a \sim a \in C(3)$, which is a contradiction. (Here $x \sim y$ means that x is conjugate to y.)

Since $C\left(2^{2}\right) \cdot C\left(2^{2}\right)=4 C(2,4)+\cdots$ and the order of x is not 2 and 3 as proved above, we can show that the order of x is 4 by the same argument as in the proof of Lemma 8. Now $x^{2}=a(b a b) \in C(3) \cdot C(3)$ and the only conjugate class in $C(3) \cdot C(3)$ whose elements have order 2 is $C\left(2^{2}\right)$, therefore $x^{2} \in C\left(2^{2}\right)$.

Lemma 10.

(1) Let $x=a b \in C(5)$, where a and b belong to $C\left(2^{2}\right)$, then setting $a^{x^{i}}=x^{-i} a x^{i}, x=a^{x^{i}} b^{x^{i}}(i=0,1,2,3,4)$ are all of the ways to express x as a product of two elements of $C\left(2^{2}\right)$. The same holds for $a, b \in C(3)$ or $a \in C(3), b \in C\left(2^{2}\right)$.
(2) For elements a and b of $C\left(2^{2}\right)$, if there exists an element y such that y does not belong to $C(5) \cup C(1)$, ay belongs to $C\left(2^{2}\right)$ and $y^{-1} b$ belongs to $C\left(2^{2}\right)$, then $a b$ does not belong to $C(5)$.
(3) For an element a of $C(3)$ and an element b of $C\left(2^{2}\right)$, if there exists an element y such that y does not belong to $C(3) \cup C(5) \cup C(1)$, ay belongs to $C(3)$ and $y^{-1} b$ belongs to $C\left(2^{2}\right)$, then ab does not belong to $C(5)$.

Proof. (1) Since $C\left(2^{2}\right) \cdot C\left(2^{2}\right)=5 C(5)+\cdots$, it is enough to prove that five elements $a^{x^{i}}(0 \leqq i \leqq 4)$ are all different. If $a^{x^{i}}=a^{x^{j}}$, where $0 \leqq i<i \leqq 4$, then $a x^{j-i}=x^{j-i} a$. Since the oder of x is $5, a x=x a$, hence $a b=b a$, which shows that the order of x is not 5 . This is a contradiction. The proof for $a, b \in C(3)$ or $a \in C(3), b \in C\left(2^{2}\right)$ is similer.
(2) Suppose $x=a b \in C(5)$. Then since $x=(a y)\left(y^{-1} b\right)$ and $a y, y^{-1} b$ $\in C\left(2^{2}\right)$, by (1) $a y=a^{x^{i}}=b(a b)^{2 i-1}$. Hence $y=(a b)^{2 i}$ and therefore $y \in C(5)$ $\cup C(1)$, which is a contradiction.
(3) Assume $x=a b \in C(5)$, then by (1) $a y$ is equal to some $a^{x^{i}}$. $a y$ is not equal to a. If $a y=a^{x}$, then $a y=b a^{-1} a a b=b a b$. Hence $y=a^{-1} b a b$ $=a^{-1} b a^{-1} \cdot a^{-1} b=b a b a b a b \cdot a^{-1} b \sim a b a=a^{-1} \cdot a^{-1} b \cdot a \in C(5)$, which is a contradiction. If $a y=a^{x^{2}}$, then $a y=a b a b a b a a b a b$. Hence $y=b a b a b a^{2} b a b=b a b a b a^{-1}$ - $b a^{-1} a^{-1} b \sim b a b a^{-1} b a^{-1}=b a \cdot a b a b a b \sim a \in C(3)$, which is a contradiction. If $a y=a^{x^{3}}$, then $a y=a b a b a a b a b a b$. Hence $y=b a b a^{2} b a b a b=b a^{-1} \cdot a^{-1} b a^{-1} b a b a b$ $\sim a^{-1} b a^{-1} b a b=b a b a b a a b \sim a \in C(3)$, which is a contradiction. If $a y=a^{x^{4}}$, then $a y=a b \cdot a \cdot a b a b a b a b$. Hence $y=b a^{2} b a b a b a b \sim a b a=a^{-1} \cdot a^{-1} b \cdot a \in C(5)$, which is also a contradiction. From these, x can not belong to $C(5)$.

Lemma 11. For an element a_{1} of $C(3)$, there exists an element a_{2} of $C\left(2^{2}\right)$ such that $a_{1} a_{2} \in C(3)$.

Proof. From $C(3) \cdot C\left(2^{2}\right) \supset C(3)$, this lemma is evident.
Lemma 12. Let $a_{1} \in C(3), a_{2} \in C\left(2^{2}\right)$ and $a_{1} a_{2} \in C(3)$. The number of the elements b 's in $C\left(2^{2}\right)$ such that $a_{1} b \in C\left(2^{2}\right)$ and $a_{2} b \in C\left(2^{2}\right)$ is $\frac{1}{2}(n-4)$ ($n-5$). If $b \in C\left(2^{2}\right), a_{1} b \in C(3), a_{2} b \in C\left(2^{2}\right)$ then b is either $a_{1} a_{2} a_{1}^{-1}$ or $a_{1}^{-1} a_{2} a_{1}$.

Proof. From $C\left(2^{2}\right) \cdot C\left(2^{2}\right)=\{(n-4)(n-5)+2\} C\left(2^{2}\right)+\cdots$, for the element a_{2} there are $(n-4)(n-5)+2$ elements b 's in $C\left(2^{2}\right)$ such that $a_{2} b \in C\left(2^{2}\right)$. Let b be one of such elements. Then $a_{2} b \in C\left(2^{2}\right)$ and $a_{2}\left(a_{2} b\right) \in C\left(2^{2}\right)$, hence the element $a_{2} b$ is also one of elements as above. Now $a_{1} b \in C(3) \cdot C\left(2^{2}\right)$ $=C\left(2^{2}, 3\right) \cup C(5) \cup C\left(2^{2}\right) \cup C(2,4) \cup C(3)$.
(1) $a_{1} b$ is not contained in $C\left(2^{2}, 3\right) \cup C(5)$.

Since $a_{1} b=\left(a_{1} a_{2}\right)\left(a_{2} b\right), a_{1} a_{2} \in C(3)$ and $a_{2} b \in C\left(2^{2}\right)$, by Lemma $10 a_{1} b$ $\notin C(5)$. If $a_{1} b \in C\left(2^{2}, 3\right)$ then by Lemma 7, $a_{1}=a_{1} a_{2}$, which is a contradiction. Therefore $a_{1} b \notin C\left(2^{2}, 3\right)$.
(2) If there are elements b 's such that $a_{1} b \in C(2,4)$ or $a_{1} b \in C\left(2^{2}\right)$, then the number of elements b 's such that $a_{1} b \in C(2,4)$ are equal to the
number of elements b 's such that $a_{1} b \in C\left(2^{2}\right)$.
If $x=a_{1} b \in C(2,4)$, then from $C(3) \cdot C\left(2^{2}\right)=4 C(2,4)+\cdots, x=a_{1}^{x^{i}} b^{x^{i}}$ $(i=0,1,2,3)$ are all of the ways to express x as a product of an element of $C(3)$ and an element of $C\left(2^{2}\right)$. For, if $a_{1}=a_{1}^{x}$ then $a_{1}=b a_{1}^{-1} a_{1} a_{1} b=b a_{1} b$, hence $a_{1}^{-1}=\left(a_{1} b\right)^{2}$, but $a_{1}^{-1} \in C(3)$ and $\left(a_{1} b\right)^{2} \in C\left(2^{2}\right)$, which is a contradiction. If $a_{1}=a_{1}^{x 2}$ then $a_{1}=b a_{1}^{-1} b a_{1} b a_{1} b=b a_{1} \cdot b a_{1}^{-1}$, hence $b a_{1} \cdot b a_{1}=1$, which is a contradiction. If $a_{1}=a_{1}^{x^{3}}$ then $a_{1}=a_{1} b a_{1} b a_{1}^{-1}$, hence $a_{1}^{-1}=\left(a_{1} b\right)^{2}$, which is a contradiction. Thus $a_{1}^{x^{i}}$ are all distinct from each other. On the other hand, $a_{1} b=\left(a_{1} a_{2}\right)\left(a_{2} b\right), a_{1} a_{2} \in C(3)$ and $a_{2} b \in C\left(2^{2}\right)$, therefore $a_{1} a_{2}$ must be equal to some $a_{1}^{x i}$. $a_{1} a_{2}$ is not equal to a_{1}. If $a_{1} a_{2}=a_{1}^{x}$ then $a_{1} a_{2}=b a_{1} b$, hence $a_{1}^{-1} a_{2}=\left(a_{1} b\right)^{2}$, but $a_{1}^{-1} a_{2} \in C(3)$ and $\left(a_{1} b\right)^{2} \in C\left(2^{2}\right)$, which is a contradiction. If $a_{1} a_{2}=a_{1}^{x^{3}}$ then $a_{1} a_{2}=a_{1} b a_{1} b a_{1}^{-1}$, hence $a_{2} a_{1}^{-1}=\left(b a_{1}\right)^{2}$, which is a contradiction. Therefore $a_{1} a_{2}$ must be equal to $a_{1}^{x^{2}}=b a_{1} b a_{1}^{-1}$, and therefore $a_{1} a_{2} b=b a_{1} b a_{1}^{-1} b \sim b \in C\left(2^{2}\right)$. Thus we can conclude that if $a_{1} b \in C(2,4)$, $a_{1} a_{2} b$ belongs to $C\left(2^{2}\right)$.

Conversely suppose $a_{1} b \in C\left(2^{2}\right)$. Now $a_{1} a_{2} b \in C(3) \cdot C\left(2^{2}\right)$, and $\left(a_{1} a_{2} b\right)^{2}$ $=a_{1} a_{2} b a_{1} a_{2} b=a_{1} a_{2} a_{1}^{-1} b a_{2} b=a_{1} a_{2} a_{1}^{-1} a_{2}=a_{1}^{-1} a_{2} a_{1} \in C\left(2^{2}\right)$. But for a conjugate class in $C(3) \cdot C\left(2^{2}\right)$, if a square of it's element belongs to $C\left(2^{2}\right)$, then this class must be $C(2,4)$. Therefore $a_{1} a_{2} b \in C(2,4)$. Thus our assertion is proved.
(3) If $a_{1} b \in C(3)$, then b is either $a_{1} a_{2} a_{1}^{-1}$ or $a_{1}^{-1} a_{2} a_{1}$.

Let b_{1} and b_{2} belong to $C\left(2^{2}\right)$, and $a_{2} b_{i} \in C\left(2^{2}\right), a_{1} b_{i} \in C(3)$, and $b_{1} \neq b_{2}$ $(i=1,2)$. From (1) $a_{1} a_{2} b_{i} \in C(3) \cup C(2,4) \cup C\left(2^{2}\right)$ and $a_{1} a_{2} \cdot a_{2} b \in C(3)$, hence from (2) $a_{1} a_{2} b_{i} \in C(3)$. Now $b_{1} b_{2}=b_{1} a_{1} \cdot a_{1}^{-1} b \in C(3) \cdot C(3)=C(1) \cup C(3) \cup C\left(2^{2}\right)$ $\cup C\left(3^{2}\right) \cup C(5)$ and $b_{1} \neq b_{2}$, therefore the order of $b_{1} b_{2}$ is 2,3 or 5 .

Assume $a_{2} b_{1} b_{2} \neq 1$. As $a_{2}\left(b_{1} b_{2}\right)=\left(b_{1} b_{2}\right) a_{2}$, the order of $a_{2} b_{1} b_{2}$ is 2,6 or 10. But $a_{2} b_{1} b_{2}=a_{2} b_{1} a_{1} \cdot a_{1}^{-1} b \in C(3) \cdot C(3)$. Thus from the multiplication table $\left(\mathrm{M}_{2}\right) a_{2} b_{1} b_{2} \in C\left(2^{2}\right)$ and therefore $b_{1} b_{2} \in C\left(2^{2}\right)$, and hence by (1) $a_{1} b_{1} b_{2} \in C(3)$ $\cup C(2,4) \cup C\left(2^{2}\right)$. If $a_{1} b_{1} b_{2} \in C\left(2^{2}\right)$, then $a_{1} b_{1} b_{2} \cdot a_{1} b_{1} b_{2}=1, a_{1} b_{1} b_{2} a_{1} b_{2} b_{1}=1$, hence $b_{1} a_{1} b_{1} a_{1}^{-1} b_{2} a_{1}^{-1}=1$, and therefore $b_{1} a_{1} b_{1} a_{1}=a_{1} b_{2} a_{1}^{-1}$, but the left belongs to $C(3)$ and the right belongs to $C\left(2^{2}\right)$, which is a contradiction. If $a_{1} b_{1} b_{2}$ $\in C(2,4)$, then by $C(3) \cdot C\left(2^{2}\right)=4 C(2,4)+\cdots, a_{1} b_{1} b_{2}$ is expressed in exactly four ways as a product of an element of $C(3)$ and an element of $C\left(2^{2}\right)$. But $a_{1}\left(b_{1} b_{2}\right)=\left(a_{1} b_{1}\right) b_{2}=\left(a_{1} b_{2}\right) b_{1}=\left(a_{1} a_{2}\right)\left(a_{2} b_{1} b_{2}\right)=\left(a_{1} a_{2} b_{1}\right)\left(b_{2} a_{2}\right)$, and it is easily seen that these are distinct five ways of expressions of $a_{1} b_{1} b_{2}$ as a product of an element of $C(3)$ and an element of $C\left(2^{2}\right)$, which is a contradiction. Thus $a_{1} b_{1} b_{2} \not \not \subset C(2,4)$. If $a_{1} b_{1} b_{2} \in C(3)$, then by $C(3) \cdot C(3)=8 C\left(2^{2}\right)+\cdots, b_{2}$ is expressed in exactly eight ways as a product of two elements of $C(3)$. But $b_{2}=\left(b_{1} a_{1}\right)\left(a_{1}^{-1} b_{1} b_{2}\right)=\left(b_{1} b_{2} a_{1}\right)\left(a_{1}^{-1} b_{1}\right)=\left(b_{1} a_{1}^{-1}\right)\left(a_{1} b_{1} b_{2}\right)=\left(b_{1} b_{2} a_{1}^{-1}\right)\left(a_{1} b_{1}\right)=a_{1}\left(a_{1}^{-1} b_{2}\right)$ $=\left(b_{2} a_{1}\right) a_{1}^{-1}=a_{1}^{-1}\left(a_{1} b_{2}\right)=\left(b_{2} a_{1}^{-1}\right) a_{1}=\left(b_{1} a_{2} a_{1}^{-1}\right)\left(a_{1} a_{2} b_{1} b_{2}\right)$, and it is easily seen that these are distnct nine ways of expressions of b_{2} as a product of two elements
of $C(3)$, which is a contradiction. Thus $a_{1} b_{1} b_{2} \notin C(3)$. Hence $a_{2} b_{1} b_{2}$ must be equal to 1 , and therefore $b_{2}=a_{2} b_{1}$, which means that b_{2} is uniquely determined by b_{1}. Now take $a_{1} a_{2} a_{1}^{-1}$, then $a_{1} a_{2} a_{1}^{-1} \in C\left(2^{2}\right), a_{1}\left(a_{1} a_{2} a_{1}^{-1}\right)=a_{2} a_{1} a_{2}$ $\in C(3)$, and $a_{2}\left(a_{1} a_{2} a_{1}^{-1}\right)=a_{1}^{-1} a_{2} a_{1} \in C\left(2^{2}\right)$. Therefore b such that $a_{1} b \in C(3)$ and $a_{2} b \in C\left(2^{2}\right)$ is either $a_{1} a_{2} a_{1}^{-1}$ or $a_{2} \cdot a_{1} a_{2} a_{1}^{-1}=a_{1}^{-1} a_{2} a_{1}$.
(4) From the proofs above, there are exactly $\frac{1}{2}(n-4)(n-5)$ elements b 's such that $a_{1} b \in C\left(2^{2}\right)$.

Lemma 13. Let $a_{1} \in C(3), a_{2} \in C\left(2^{2}\right), a_{1} a_{2} \in C(3)$, then there are $n-4$ elements b's in $C\left(2^{2}\right)$ such that $a_{1} b \in C\left(2^{2}\right), a_{2} b \in C(3)$.

Proof. From $C(3) \cdot C\left(2^{2}\right)=4(n-4) C\left(2^{2}\right)+\cdots$, for a_{1} there are $\frac{3}{2}(n-3)$ ($n-4$) elements b 's such that $a_{1} b \in C\left(2^{2}\right)$, and for such b 's, since $a_{1} b$ and $a_{1}^{-1} b$ belong to $C\left(2^{2}\right)$ and $a_{1}\left(a_{1} b\right)$ and $a_{1}\left(a_{1}^{-1} b\right)$ belong to $C\left(2^{2}\right), a_{1} b$ and $a_{1}^{-1} b$ are included $\frac{3}{2}(n-3)(n-4)$ element b 's, and $b, a_{1} b$ and $a_{1}^{-1} b$ are all distinct. For such elements b_{1}, b_{2} the sets $\left\{b_{1}, a_{1} b_{1}, a_{1}^{-1} b_{1}\right\}$ and $\left\{b_{2}, a_{1} b_{2}, a_{1}^{-1} b_{2}\right\}$ are the same set or have no common element. Now $a_{2} b=a_{2} a_{1} \cdot a_{1} b \in C(3) \cdot C\left(2^{2}\right)$ $=C\left(2^{2}, 3\right) \cup C(2,4) \cup C\left(2^{2}\right) \cup C(5) \cup C(3)$.
(1) $a_{2} b$ is not in $C\left(2^{2}, 3\right)$.
$a_{2} b=a_{2} a_{1} \cdot a_{1}^{-1} b=a_{2} a_{1}^{-1} \cdot a_{1} b$, hence by Lemma 7 if $a_{2} b \in C\left(2^{2}, 3\right)$, then $a_{2} a_{1}$ $=a_{2} a_{1}^{-1}$, and this is a contradiction. Therefore $a_{2} b \notin C\left(2^{2}, 3\right)$.
(2) There are $\frac{1}{2}(n-4)(n-5)$ elements b 's such that $a_{2} b \in C\left(2^{2}\right)$, and for such $b, a_{2} a_{1} b$ and $a_{2} a_{1}^{-1} b$ belong to $C(2,4)$.

By Lemma 12 there are $\frac{1}{2}(n-4)(n-5)$ elements b 's such that $a_{2} b$ $\in C\left(2^{2}\right)$. Now $a_{2} a_{1} b \in C(3) \cdot C\left(2^{2}\right)$ and $\left(a_{2} a_{1} b\right)^{2}=a_{2} a_{1} b a_{2} a_{1} b=a_{2} a_{1} a_{2} a_{1}^{-1}=a_{1}^{-1} a_{2} a_{1}$ $\in C\left(2^{2}\right)$, hence from the multiplication table $\left(\mathrm{M}_{3}\right), a_{2} a_{1} b \in C(2,4)$ and in the same way we have $a_{2} a_{1}^{-1} b \in C(2,4)$.
(3) If $a_{2} b \in C(3)$, then $a_{2} a_{1} b$ and $a_{2} a_{1}^{-1} b \in C(5)$.
$a_{2} a_{1} b \in C(3) \cdot C\left(2^{2}\right)$ and $a_{2} a_{1} b=a_{2} a_{1} a_{2} \cdot a_{2} b \in C(3) \cdot C(3)$, therefore $a_{2} a_{1} b \in C\left(2^{2}\right)$ $\cup C(3) \cup C(5)$. If $a_{2} a_{1} b \in C\left(2^{2}\right)$, then by (2) $a_{2} \cdot a_{1}^{-1} a_{1} b=a_{2} b \in C(2,4)$, which is a contradiction. If $a_{2} a_{1} b \in C(3)$, then $a_{2} a_{1} b a_{2} a_{1} b a_{2} a_{1} b=1$, therefore $b=a_{1}^{-1} a_{2} a_{1}^{-1} a_{2} b a_{2} b a_{1}^{-1} a_{2} a_{1} \sim a_{2} b a_{2} b a_{1}=b a_{2} a_{1} \sim a_{2} a_{1} b \in C(3)$, which is a contradiction, Thus $a_{2} a_{1} b \in C(5)$, and in the same way we have $a_{2} a_{1}^{-1} b \in C(5)$.
(4) If $a_{2} b \in C(2,4)$, then $a_{2} a_{1} b$ or $a_{2} a_{1}^{-1} b \in C\left(2^{2}\right)$.

For $b a_{2} b$, which belongs to $C\left(2^{2}\right), a_{2} \cdot b a_{2} b \in C\left(2^{2}\right)$, and $a_{1} \cdot b a_{2} b=b a_{1}^{-1} a_{2} b$ $\in C(3)$. By Lemma $12 b a_{2} b$ must be equal to $a_{1}^{-1} a_{2} a_{1}$ or $a_{1} a_{2} a_{1}^{-1}$. If $b a_{2} b$ $=a_{1}^{-1} a_{2} a_{1}$ then $a_{1} b \cdot a_{2}=a_{2} \cdot a_{1} b$, hence $\left(a_{2} a_{1} b\right)^{2}=1$, but $a_{2} a_{1} b \in C(3) \cdot C\left(2^{2}\right)$, and from the multiplication table $\left(\mathrm{M}_{3}\right), a_{2} a_{1} b \in C\left(2^{2}\right)$. If $b a_{2} b=a_{1} a_{2} a_{1}^{-1}$, then $a_{2} \cdot b a_{1}=b a_{1} \cdot a_{2}$, and in the same way we have $a_{2} b a_{1}=a_{2} a_{1}^{-1} b \in C\left(2^{2}\right)$.
(5) From (2), (4) there are $\frac{3}{2}(n-4)(n-5)$ elements b 's such that $a_{2} b$ $\in C\left(2^{2}\right) \cup C(2,4)$, and since $\frac{3}{2}(n-3)(n-4)-\frac{3}{2}(n-4)(n-5)=3(n-4)$, there are $3(n-4)$ elements b 's such that $a_{2} b \in C(3) \cup C(5)$.
(6) There are $n-4$ elements b 's such that $a_{2} b \in C(3)$.

From (3), (5), the number of elements b 's such that $a_{2} b \in C(5)$ is at least $2(n-4)$. Let $a_{2} b_{1} \in C(5), a_{2} b_{2} \in C(5)$ and $b_{1} \neq b_{2}$, then $b_{i}, b_{i} a_{2} b_{i}$, $b_{i} a_{2} b_{i} a_{2} b_{i}$ and $b_{i} a_{2} b_{i} a_{2} b_{i} a_{2} b_{i}(i=1,2)$ are all distinct elements in $C\left(2^{2}\right)$ and their products with a_{2} belong to $C(5)$. For, if $b_{1}\left(a_{2} b_{1}\right)^{j}=b_{2}\left(a_{2} b_{2}\right)^{k},(0 \leqq j$, $k \leqq 3$), then $\left(a_{2} b_{1}\right)^{j+1}=\left(a_{2} b_{2}\right)^{k+1}$, and as the order of $a_{2} b_{1}$ and $a_{2} b_{2}$ are 5, there exists an integer r such that $a_{2} b_{1}=\left(a_{2} b_{2}\right)^{r}$. Hence $b_{1} b_{2}=\left(b_{2} a_{2}\right)^{r-1}$ i.e. $b_{1} b_{2} \in C(5)$. But $b_{1} b_{2}=b_{1} a_{1} \cdot a_{1}^{-1} b_{2}$ and by Lemma $10 b_{1} b_{2} \notin C(5)$, which is a contradiction. Thus for the element a_{2}, the number of the elements d 's such that $d \in C\left(2^{2}\right)$ and $a_{2} d \in C(5)$ is at least $8(n-4)$. But from $C\left(2^{2}\right) \cdot C\left(2^{2}\right)$ $=5 C(5)+\cdots$, the number of such d 's is just $8(n-4)$. Therefore there are $2(n-4)$ elements b 's such that $a_{2} b \in C(5)$, and so the number of elements b 's such thac $a_{2} b \in C(3)$ is $n-4$.

Lemma 14. If $a_{1} \in C(3), a_{2} \in C\left(2^{2}\right), a_{1} a_{2} \in C(3)$, and $b_{i} \in C\left(2^{2}\right)(i=1,2$, $3,4), a_{1} b_{i} \in C\left(2^{2}\right), a_{2} b_{i} \in C(3)$ and $b_{i} \neq b_{j}(i \neq j)$, then
(1) $b_{i} b_{j} \in C(3),(i \neq j)$.
(2) $a_{2} b_{i} b_{j} b_{i} \in C\left(2^{2}\right),(i \neq j)$.
(3) $b_{i} \cdot b_{j} b_{k} b_{j} \in C\left(2^{2}\right)$, for distinct i, j and k.
(4) $b_{i} b_{j} b_{i} \cdot b_{k} b_{l} b_{k} \in C\left(2^{2}\right)$, for distinct i, j, k and l.

Proof. (1) $\quad b_{i} b_{j}=b_{i} a_{2} \cdot a_{2} b_{j} \in C(3) \cdot C(3)=C(1) \cup C(3) \cup C\left(2^{2}\right) \cup C\left(3^{2}\right) \cup C(5)$. Since $b_{i} \neq b_{j}, b_{i} b_{j} \notin C(1)$. Since $b_{i} b_{j}=b_{i} a_{1} \cdot a_{1}^{-1} b_{j}, b_{i} a_{1} \in C\left(2^{2}\right), a_{1}^{-1} b_{j} \in C\left(2^{2}\right)$, and $a_{1} \in C(3)$, by Lemma $10 b_{i} b_{j} \notin C(5)$. If $b_{i} b_{j} \in C\left(3^{2}\right)$, then $b_{i} b_{j}=b_{i} a_{2} \cdot a_{2} b_{j}$ and by Lemma $6 b_{i} b_{j}=a_{2} b_{j} \cdot b_{i} a_{2}$ and so $a_{2} b_{i} \cdot b_{j}=b_{j} b_{i} a_{2}$. Therefore $\left(a_{1} a_{2} b_{i} b_{j}\right)^{3}$ $=a_{1} a_{2} b_{i} b_{j} a_{1} a_{2} b_{i} b_{j} a_{1} a_{2} b_{i} b_{j}=a_{1} a_{2} a_{1} a_{2} b_{j} b_{i} b_{i} b_{j} a_{1} a_{2} b_{i} b_{j}=b_{i} b_{j} \in C\left(3^{2}\right)$. On the other hand, $a_{1} a_{2} b_{i} b_{j}=a_{1} b_{j} \cdot b_{i} a_{2} \in C\left(2^{2}\right) \cdot C(3)$ and from the multiplication table $\left(\mathrm{M}_{3}\right)$, there is no element of $C\left(2^{2}\right) \cdot C(3)$ such that it's third power belongs to $C\left(3^{2}\right)$. Therefore $b_{i} b_{j} \notin C\left(3^{2}\right)$. If $b_{i} b_{j} \in C\left(2^{2}\right)$, then b_{i} and b_{j} are commutative with each other. Now $b_{i} b_{j} a_{2} b_{j} b_{i} \in C\left(2^{2}\right), a_{2} \cdot b_{i} b_{j} a_{2} b_{j} b_{i}=a_{2} b_{i} a_{2} b_{j} a_{2} b_{i}$ $=b_{i} a_{2} b_{i} b_{j} a_{2} b_{i} \sim b_{i} b_{j} \in C\left(2^{2}\right)$, and $a_{1} \cdot b_{i} b_{j} a_{2} b_{j} b_{i}=b_{i} b_{j} a_{1} a_{2} b_{j} b_{i} \sim a_{1} a_{2} \in C(3)$, hence by Lemma $12, b_{i} b_{j} a_{2} b_{j} b_{i}$ must be equal to $a_{1}^{-1} a_{2} a_{1}$ or $a_{1} a_{2} a_{1}^{-1}$. If $b_{i} b_{j} a_{2} b_{j} b_{i}$ $=a_{1}^{-1} a_{2} a_{1}$, then $a_{1} b_{i} b_{j}=a_{2} a_{1} b_{i} b_{j} a_{2}=\left(a_{2} a_{1} a_{2}\right)\left(a_{2} b_{i} b_{j} a_{2}\right)$, but $a_{1}\left(b_{i} b_{j}\right) \in C(3) \cdot C\left(2^{2}\right)$ and by the commutativity of a_{1} and $b_{i} b_{j}$, the order of $a_{1} b_{i} b_{j}$ is 6 , and so $a_{1}\left(b_{i} b_{j}\right) \in C\left(2^{2}, 3\right)$. Hence by Lemma $7 b_{i} b_{j}=a_{2} b_{i} b_{j} a_{2}$ i. e. $\left(a_{2} b_{i} b_{j}\right)^{2}=1$, which is a contradiction. In the same way $b_{i} b_{j} a_{2} b_{j} b_{i} \neq a_{1} a_{2} a_{1}^{-1}$. Therefore $b_{i} b_{j} \notin C\left(2^{2}\right)$. Thus $b_{i} b_{j} \in C(3)$.
(2) $a_{2} b_{i} \cdot b_{j} b_{i} \in C(3) \cdot C(3)$ and $a_{2} b_{i} b_{j} b_{i}=\left(a_{2} a_{1}\right)\left(a_{1}^{-1} b_{i} b_{j} b_{i}\right)=\left(a_{2} a_{1}\right)\left(b_{i} a_{1} b_{j} b_{i}\right)$ $\in C\left(2^{2}\right) \cdot C(3)$, hence from the multiplication tables $\left(\mathrm{M}_{2}\right)$ and $\left(\mathrm{M}_{3}\right) a_{2} b_{i} b_{j} b_{i}$ $\in C(3) \cup C(5) \cup C\left(2^{2}\right)$. If $a_{2} b_{i} b_{j} b_{i} \in C(5)$, then from $C(3) \cdot C(3)=5 C(5)+\cdots$, $a_{2} b_{i} b_{j} b_{i}$ is expressed in exactly five ways as a product of two elements
of $C(3)$. But by (1) $b_{i} b_{j} b_{i}=b_{j} b_{i} b_{j}$, hence $\left(a_{2} b_{i}\right)\left(b_{j} b_{i}\right)=\left(b_{j} b_{i}\right)\left(b_{i} b_{j} a_{2} b_{i} b_{j} b_{i}\right)$ $=\left(b_{i} b_{j} a_{2} b_{i} b_{j} b_{i}\right)\left(b_{i} b_{j} b_{i} a_{2} b_{j} b_{i} a_{2} b_{i} b_{j} b_{i}\right)=\left(a_{2} b_{j}\right)\left(b_{i} b_{j}\right)=\left(b_{i} b_{j}\right)\left(b_{j} b_{i} a_{2} b_{j} b_{i} b_{j}\right)=\left(b_{j} b_{i} a_{2} b_{j} b_{i} b_{j}\right)$ $\left(b_{j} b_{i} b_{j} a_{2} b_{i} b_{j} a_{2} b_{j} b_{i} b_{j}\right)$, and these six expressions are all distinct. For if $a_{2} b_{i}$ $=b_{i} b_{j} a_{2} b_{i} b_{j} b_{i}$ then $\left(b_{j} b_{i}\right)\left(a_{2} b_{i}\right)=\left(a_{2} b_{i}\right)\left(b_{j} b_{i}\right)$, therefore $\left(a_{2} b_{i} b_{j} b_{i}\right)^{3}=1$, which is a contradiction. If $a_{2} b_{i}=b_{j} b_{i} a_{2} b_{j} b_{i} b_{j}$ then $b_{i} b_{j} a_{2} b_{i}=a_{2} b_{j} b_{i} b_{j}$ and the left belongs to $C(3)$, and the right belongs to $C(5)$, which is a contradiction. In the other cases, the proofs are similar. Thus $a_{2} b_{i} b_{j} b_{i} \notin C(5)$.

If $a_{2} b_{i} b_{j} b_{i} \in C(3)$, then $a_{2} b_{i} b_{j} b_{i} a_{2} b_{i} b_{j} b_{i} a_{2} b_{i} b_{j} b_{i}=1$, hence $a_{2} b_{i} b_{j} a_{2} b_{i} a_{2}$ $\cdot b_{j} b_{i} a_{2} b_{j} b_{i} b_{j}=1$, and so $b_{i} b_{j} a_{2} b_{i} b_{j} a_{2} b_{i} b_{j} a_{2} b_{j} a_{2} b_{i} a_{2} b_{j}=1$, therefore $\left(a_{2} b_{i} b_{j}\right)^{3}$ - $a_{2} b_{j} a_{2} b_{i} a_{2} b_{j} a_{2}=1$. But $a_{2} b_{j} a_{2} b_{i} a_{2} b_{j} a_{2} \sim b_{i} \in C\left(2^{2}\right)$, therefore $\left(a_{2} b_{i} b_{j}\right)^{3} \in C\left(2^{2}\right)$, and from the multiplication table $\left(\mathrm{M}_{3}\right), a_{2} b_{i} b_{j} \in C\left(2^{2}\right) \cup C\left(2^{2}, 3\right)$. If $a_{2} b_{i} b_{j}$ $\in C\left(2^{2}\right)$, then $a_{1} b_{i} b_{j} b_{i}=b_{i} a_{1}^{-1} b_{j} b_{i} \in C\left(2^{2}\right)$ and by the proof of (3) in Lemma 13, $a_{2} a_{1} b_{i} b_{j} b_{i} \in C(5)$. Since $a_{2} a_{1} b_{i} b_{j} b_{i}=a_{2}\left(b_{i} a_{1}^{-1} b_{j} b_{i}\right)=\left(a_{2} b_{i} b_{j}\right)\left(b_{j} b_{i} b_{i} a_{1}^{-1} b_{j} b_{i}\right)=\left(a_{2} b_{i} b_{j}\right)$ ($a_{1} b_{i}$), this contradicts (2) in Lemma 10. Thus $a_{2} b_{i} b_{j} b_{i} \notin C(3)$. Therefore $a_{2} b_{i} b_{j} b_{i} \in C\left(2^{2}\right)$.
(3) $\left(b_{i} b_{j}\right)\left(b_{k} b_{j}\right)=\left(b_{i} a_{2}\right)\left(a_{2} b_{j} b_{k} b_{j}\right) \in(C(3) \cdot C(3)) \cap\left(C(3) \cdot C\left(2^{2}\right)\right)=C(3) \cup C\left(2^{2}\right)$ $\cup_{C(5)}$. Assume that $b_{i} \neq b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j}$, in which both sides belong to $C\left(2^{2}\right)$. By (2) $a_{2} \cdot b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j}=b_{j} b_{k} b_{j} a_{2} b_{i} b_{j} b_{k} b_{j} \in C(3), a_{1} \cdot b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j}$ $=b_{j} b_{k} b_{j} a_{1}^{-1} b_{i} b_{j} b_{k} b_{j} \in C\left(2^{2}\right)$. From (2) $a_{2} \cdot b_{i} \cdot b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j} \cdot b_{i}=b_{i} \cdot b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j}$ $\cdot b_{i} \cdot a_{2}$, thus the left side $=a_{2} \cdot b_{i} b_{j} b_{i} \cdot b_{i} b_{k} b_{i} \cdot b_{i} b_{j} \cdot b_{i} b_{j} b_{i} \cdot b_{i} b_{k} b_{i} \cdot b_{i} b_{j} b_{i}=b_{i} b_{j} b_{i} \cdot b_{i} b_{k} b_{i}$ - $a_{2} b_{i} b_{j} \cdot b_{i} b_{j} b_{i} \cdot b_{i} b_{k} b_{i} \cdot b_{i} b_{j} b_{i}$, and transforming the right side in the same way, we have $a_{2} b_{j} b_{i}=b_{j} b_{i} a_{2}$. Hence $a_{2} b_{j} b_{i} b_{j}=b_{j} b_{i} a_{2} b_{j}$, but $a_{2} b_{j} b_{i} b_{j} \in C\left(2^{2}\right)$ and $b_{j} b_{i} a_{2} b_{j} \in C(3)$, which is a contradiction. Thus $b_{i}=b_{j} b_{k} b_{j} b_{i} b_{j} b_{k} b_{j}$ i. e. $\left(b_{i} b_{j} b_{k} b_{j}\right)^{2}=1$. Consequently, $b_{i} b_{j} b_{k} b_{j} \in C\left(2^{2}\right)$.
(4) $b_{i} b_{j} b_{i} \cdot b_{k} b_{l} b_{k}=\left(b_{i} b_{\jmath}\right)\left(b_{i} b_{k} b_{l} b_{k}\right) \in C(3) \cdot C\left(2^{2}\right) . \quad$ From (3) $\left(b_{i} b_{j} b_{i} b_{k} b_{l} b_{k}\right)^{2}=$ $b_{i} b_{j} b_{i} \cdot b_{k} b_{l} b_{k} b_{i} b_{j} b_{i} b_{k} b_{l} b_{k}=b_{k} b_{l} b_{k} \cdot b_{i} b_{j} b_{i} \cdot b_{i} b_{j} b_{i} \cdot b_{k} b_{l} b_{k}=1$. Therefore by the multiplication table $\left(\mathrm{M}_{3}\right), b_{i} b_{j} b_{i} \cdot b_{k} b_{l} b_{k} \in C\left(2^{2}\right)$.

Lemma 15. There are $n-2$ elements $a_{i}(i=1,2, \cdots, n-2)$ such that $a_{1} \in C(3), a_{2}, \cdots, a_{n-2} \in C\left(2^{2}\right)$ and $a_{i} a_{i+1} \in C(3)(i=1,2, \cdots, n-3), a_{i} a_{j} \in C\left(2^{2}\right)$ $(i=1,2, \cdots, n-4, j>i+1)$.

Proof. By Lemma 13, for $a_{1} \in C(3), a_{2} \in C\left(2^{2}\right)$, and $a_{1} a_{2} \in C(3)$, there are $n-4$ elements $b_{1}, b_{2}, \cdots, b_{n-4}$ such that $b_{i} \in C\left(2^{2}\right), a_{1} b_{i} \in C\left(2^{2}\right)$ and $a_{2} b_{i}$ $\in C(3),(i=1,2, \cdots, n-4)$. Put $a_{3}=b_{1}, a_{4}=b_{1} b_{2} b_{1}, \cdots, a_{i}=b_{i-3} b_{i-2} b_{i-3}, \cdots, a_{n-2}$ $=b_{n-5} b_{n-4} b_{n-5}$, then $a_{3}, a_{4}, \cdots, a_{n-2} \in C\left(2^{2}\right)$.

For $i \geqq 4, a_{1} a_{i}=a_{1} b_{i-3} b_{i-2} b_{i-3}=b_{i-3} a_{1}^{-1} b_{i-2} b_{i-3} \in C\left(2^{2}\right)$, and by (2) of Lemma $14 a_{2} a_{i}=a_{2} b_{i-3} b_{i-2} b_{i-3} \in C\left(2^{2}\right)$. By (1) of Lemma $14 a_{3} a_{4}=b_{1} \cdot b_{1} b_{2} b_{1}$ $=b_{2} b_{1} \in C(3)$. For $i \geqq 5$, by (3) of Lemma $14 a_{3} a_{i}=b_{1} \cdot b_{i-3} b_{i-2} b_{i-3} \in C\left(2^{2}\right)$. For $i \geqq 4, a_{i} a_{i+1}=b_{i-3} b_{i-2} b_{i-3} \cdot b_{i-2} b_{i-1} b_{i-2}=b_{i-2} b_{i-3} b_{i-1} b_{i-2} \in C(3)$. For $i \geqq 4$ and $j>i+1$, by (4) of Lemma $14 a_{i} a_{j}=b_{i-3} b_{i-2} b_{i-3} \cdot b_{j-3} b_{j-2} b_{j-3} \in C\left(2^{2}\right)$.

Proof of Theorem:
By Lemma 15, there is a homomorphism from A_{n} to a subgroup H of G generated by $a_{1}, a_{2}, \cdots, a_{n-2}$. But since A_{n} is a simple group, A_{n} is isomorphic to H, and comparing the orders we have $H=G$ and $A_{n} \cong G$.

Sumiyoshi High School

References

[1] W. Burnside: Theory of groups of finite order. Second edition, Cambridge Univ. Press, 1911.
[2] H. Nagao: On the groups with the same table of characters as symmetric groups, J. Polyt. Osaka City Univ. 8 (1957), 1-8.

