ON A GENERALIZATION OF THE RING THEORY

Nobuo NOBUSAWA

(Received May 20, 1964)

1. Introduction. A ring of endomorphisms of a module plays a very important role in many parts of mathematics; the property of a ring itself is also clarified when we consider it as a ring of endomorphisms of a module. As a generalization of this idea, we can consider a set of homomorphisms of a module to another module which is closed under the addition and subtraction defined naturally but has no more a structure of a ring since we can not define the product. However, suppose that we have an additive group M consisting of homomorphisms of a module A to a module B and that we have also an additive group N consisting of homomorphisms of B to A. In this case we can define the product of three elements f_{1}, g and f_{2} where f_{1} and f_{2} are elements of M and g is an element of N. If this product $f_{1} g f_{2}$ is also an element of M for every f_{1}, g and f_{2}, we say that M is closed under the multiplication using N between. Similarly we can define that N is closed under the multiplication using M between. Take f_{1}, f_{2} and f_{3} in M and g_{1} and g_{2} in N in the above case. Then we have

$$
\left(f_{1} g_{1} f_{2}\right) g_{2} f_{3}=f_{1} g_{1}\left(f_{2} g_{2} f_{3}\right)=f_{1}\left(g_{1} f_{2} g_{2}\right) f_{3} .
$$

When we define this situation abstractly, we can get a new algebraic system.

Definition. Let M be an additive group whose elements are denoted by a, b, c, \cdots, and Γ another additive group whose elements are $\gamma, \beta, \alpha, \cdots$. Suppose that $a \gamma b$ is defined to be an element of M and that $\gamma a \beta$ is defined to be an element of Γ^{\prime} for every a, b, γ and β. If the products satisfy the following three conditions:
1)

$$
\begin{aligned}
& \left(a_{1}+a_{2}\right) \gamma b=a_{1} \gamma b+a_{2} \gamma b, \\
& a\left(\gamma_{1}+\gamma_{2}\right) b=a \gamma_{1} b+a \gamma_{2} b, \\
& a \gamma\left(b_{1}+b_{2}\right)=a \gamma b_{1}+a \gamma b_{2},
\end{aligned}
$$

2)

$$
(a \gamma b) \beta c=a \gamma(b \beta c)=a(\gamma b \beta) c,
$$

3) if $a \gamma b=0$ for any a and b in M, then $\gamma=0$, then M is called $a \Gamma$-ring
The purpose of this note is to determine the structure of Γ-rings under the following conditions which are called semi-simple and simple according to the usual ring theory.

Definition. Let M be a Γ-ring as above. If for any non-zero element a of M there exists such an element γ (depending on a) in Γ that $a \gamma a \neq 0$, we say that M is semi-simple. If for any non-zero elements a and b of M there exists γ (depending on a and b) in Γ such that $a \gamma b \neq 0$, we say that M is simple.

The main result obtained in this note is that a simple I-ring which satisfies the chain condition for left and right ideals (defined in §3) is the set $D_{n, m}$ of all rectangular matrices of type $n \times m$ over some division ring D and Γ is $D_{m, n}$ of type $m \times n$. The product $a \gamma b$ is the same as the usual matrix product of elements a, γ and b of $D_{n, m}, D_{m, n}$ and $D_{n, m}$. This is a generalization of the theorem of Wedderburn on simple rings. Subsequently, a semi-simple Γ-ring satisfying the chain condition for left and right ideals will be shown to be a direct sum of simple $\mathrm{r}_{i}{ }^{-}$ rings, where $\Gamma=\Gamma_{1}+\Gamma_{2}+\cdots+\Gamma_{n}$ (direct).
2. Examples. Suppose we have a right R-module M with an operator ring R. Take a submodule 1 ' of $\operatorname{Hom}_{R}(M, R)$. Then M is a Γ-ring as follows: If a and b are elements of M and if γ is an element of f , then we define

$$
a \gamma b=a \cdot \gamma(b),
$$

where $\gamma(b)$ is an image of b by γ and is an element of R. It is easy to verify that

$$
(a \gamma b) \beta c=(a \cdot \gamma(b)) \cdot \beta(c)=a(\gamma(b) \beta(c))=a \cdot \gamma(b \cdot \beta(c))=a \gamma(b \beta c) .
$$

We also define that

$$
\gamma b \beta=\beta \cdot \gamma(b)_{l} \quad(\beta \text { operating first }),
$$

where $\gamma(b)_{l}$ means the left multiplication of $\gamma(b)$. Then

$$
(a \gamma b) \beta c=a(\gamma(b) \beta(c))=a(\gamma b \beta) c .
$$

The conditions 1) and 3) hold naturally and M is a Γ-ring. But it will be shown in $\S 3$ that every 1 -ring is given in this way.

To illustrate further this new algebraic system, we introduce the
definition and examples of cubic rings.
Definition. We call that M is a cubic ring when we can define the product of three elements of M which is an additive group such that it satisfies
4)

$$
\begin{aligned}
& \left(a_{1}+a_{2}\right) b c=a_{1} b c+a_{2} b c \\
& a\left(b_{1}+b_{2}\right) c=a b_{1} c+a b_{2} c \\
& a b\left(c_{1}+c_{2}\right)=a b c_{1}+a b c_{2}
\end{aligned}
$$

5)

$$
a b(c d e)=(a b c) d e
$$

6)

if $a b c=0$ for all a and c, then $b=0$.
If we take the product in a cubic ring M as the product of two elements of M using one element of $\Gamma=M$ between, then conditions 1) and 3) for a 1 -ring are satisfied. Also the first part of 2) is satisfied. Hence, in order that M is a 1^{\prime}-ring, we must be able to define the product $\Gamma \times M \times I^{\prime}$ such that the latter part of 2) holds. In the following examples, we can find it easily.

Example 1. Let $V_{n}(F)$ be a vector space of $\operatorname{dim} n$ over a field F. If a, b and c are vectors in it, we define $a b c=(a \cdot b) c$, where $(a \cdot b)$ is the inner product of a and b. It is easy to see that $V_{n}(F)$ is a cubic ring. Now we define $(b c d)^{\prime}=b(c \cdot d)$. Then $a b(c d e)=(a \cdot b)(c \cdot d) e=a(b c d)^{\prime} e$, i.e., $V_{n}(F)$ is a Γ-ring with $\Gamma=V_{n}(F)$.

Example 2. Let $D_{n, m}$ be the set of all rectangular matrices of type $n \times m$ over a division ring D. If a, b and c are elements in it, we define $a b c=a b^{t} c$, where b^{t} is the transpose of a matrix b and the above product is well-defined. Then $D_{n, m}$ is clearly a cubic ring. Now we define $(b c d)^{\prime}=d c^{t} b$. Then $a b(c d e)=a b^{t} c d^{t} e=a(b c d)^{\prime} e$, i.e., $D_{n, m}$ is a Γ-ring with $\Gamma=D_{n, m}$.

Example 3. Let I be the set of all purely imaginary complex numbers. Then it is a cubic ring with the usual multiplication. Also it is a Γ-ring with $\Gamma=I$. However, even with the same I, we can define another cubic ring. For example, if a, b and c are elements in I, we define the product of a, b and c as $a \bar{b} c$ where \bar{b} is the conjugate of b, i.e., $-b$. This product also satisfies 4),5) and 6) of the definition of cubic rings. In this case, we put $(b c d)^{\prime}=-b c d$.
3. The operator rings and ideals. Let M be a Γ-ring. Consider the additive group generated by pairs (γ, a), where $\gamma \in \Gamma$ and $a \in M$ with defining relations $\left(\gamma_{1}+\gamma_{2}, a\right)=\left(\gamma_{1}, a\right)+\left(\gamma_{2}, a\right)$ and $\left(\gamma, a_{1}+a_{2}\right)=\left(\gamma, a_{1}\right)+\left(\gamma, a_{2}\right)$. We define the multiplication of the elements of this additive group such that

$$
(\gamma, a)(\beta, b)=(\gamma, a \beta b)
$$

Using the condition 2), we can verify that

$$
((\gamma, a)(\beta, b))(\alpha, c)=(\gamma, a)((\beta, b)(\alpha, c))
$$

Thus we get a ring which we denote by F. Now we can see that F is a right operator ring of M by the following definition:

$$
a(\gamma, b)=a \gamma b
$$

for, we have

$$
(a(\gamma, b))(\beta, c)=(a \gamma b) \beta c=a \gamma(b \beta c)=a(\gamma, b \beta c)=a((\gamma, b)(\beta, c))
$$

The set of all elements of F that annihilate M forms an ideal which we denote by A, and we denote F / A by R and call it the right operator ring of M. We use γa for an element of R which is gained from (γ, a). Thus $a \gamma b=a(\gamma b)$. Then, take an element γ of 1 . It induces an $R-$ homomorphisms of M to R such that $\gamma(a)=\gamma a$. The condition 3) implies that Γ induces the zero homomorphism if and only if $\gamma=0$. Thus Γ is considered to be a subset of the total set of R-homomorphisms of M to $R ; \Gamma \subset \operatorname{Hom}_{R}(M, R)$.

Similary we can define the left operator ring L of M. We start with (a, γ) and define the product such that $(a, \gamma)(b, \beta)=(a \gamma b, \beta)$. Also we define the left operation such that $(a, \gamma) b=a \gamma b$, and so on. $a \gamma$ is an element of L given from (a, γ) and $a \gamma b=(a \gamma) b$. And we can say that $\Gamma \subset \operatorname{Hom}_{L}(M, L)$.

Definition. R-submodules of M are called right ideals of M, and L-submodules of M are left ideals.

A right ideal \mathfrak{r} is nothing but a submodule of M such that $\mathfrak{r} \Gamma M \subset \mathfrak{r}$. A left ideal \mathfrak{l} is a submodule of M such that $M \Gamma \mathfrak{l} \subset \mathfrak{l}$.
4. Peirce decomposition in semi-simple Γ-rings. Assume that M is semi-simple, and let \mathfrak{r} be a minimal right ideal. Then by semi-simplicity there exists an element ε in Γ such that $a \varepsilon a \neq 0$ for a non-zero element a in \mathfrak{r}. Then $0 \neq a \varepsilon \mathfrak{r} \subset \mathfrak{r}$ and hence $\mathfrak{r}=a \varepsilon \mathfrak{r}$, for \mathfrak{r} is minimal. Therefore $a=a \varepsilon e$ with some element e of r . Then $e=e \varepsilon e$, since from $a=a \varepsilon e=(a \varepsilon e) \varepsilon e$
we have $a \varepsilon(e-e \varepsilon e)=0$ which means $e-e \varepsilon e=0$, for a set $\{c \mid a \varepsilon c=0, c \in \mathfrak{r}\}$ is a right ideal contained in a minimal ideal \mathfrak{r} and is $\{0\}$. Since $e \in \mathfrak{r}$, $e R \subset \mathfrak{r}$, i.e., $e R=\mathfrak{r} . \quad \varepsilon M$ being a right ideal of $R, e \varepsilon M$ is a right ideal of M contained in \mathfrak{r}, and hence $e \varepsilon M=\mathfrak{x}$. Thus we get

Lemma 1. If M is semi-simple and \mathfrak{r} is a minimal right ideal, then $\mathfrak{r}=e R=e \varepsilon M$ with $e \in \mathfrak{r}$ and $\varepsilon \in \Gamma$, where $e \varepsilon e=e$.

Now we use the idea of Peirce decomposition of the ring theory. Suppose that we have a right ideal $\mathfrak{r}=e \varepsilon M$ such that $e \varepsilon e=e$. Then

$$
M=e \varepsilon M+M_{1} \quad(\text { direct }),
$$

where $M_{1}=\{b \mid e \varepsilon b=0\}$, since any element a of M is written

$$
a=e \varepsilon a+(a-e \varepsilon a)
$$

and $e \varepsilon(a-e \varepsilon a)=0 . \quad M_{1}$ is clearly a right ideal of M. Now we can get a decomposition theorem.

Theorem 1. If M is semi-simple and satisfies the minimum condition for right ideals, then

$$
M=e_{1} R+e_{2} R+\cdots+e_{n} R \quad(\text { direct }),
$$

where $e_{i} R$ are minimal right ideals and $e_{i} R=e_{i} \varepsilon_{i} M$, and $e_{i} \varepsilon_{i} e_{i}=e_{i}$ and $e_{i} \varepsilon_{i} e_{j}=0$ if $i \neq j$.

Proof. Suppose that we have

$$
M=e_{1} \varepsilon_{1} M+\cdots+e_{k-1} \varepsilon_{k-1} M+M_{k-1} \quad \text { (direct) }
$$

such that $e_{i} \varepsilon_{i} M$ are minimal right ideals and

$$
e_{i} \varepsilon_{i} e_{j}= \begin{cases}e_{i} & \text { if } \quad i=j, \\ 0 & \text { if } \quad i \neq j\end{cases}
$$

and that $e_{i} \varepsilon_{i} a=0$ if $a \in M_{k-1}$ for $i=1,2, \cdots, k-1$. This is true for $k=2$ as above. Apply the above discussion on M_{k-1}, and we get

$$
M_{k-1}=e_{k} \varepsilon_{k}^{\prime} M+M_{k} \quad \text { (direct) }
$$

as in the above. Here $e_{i} \varepsilon_{i} e_{k}=0$ if $i<k$, but we can not say that $e_{k} \varepsilon_{k}^{\prime} e_{i}=0$. So, we change ε_{k}^{\prime} suitably. Put

$$
\varepsilon_{k}=\varepsilon_{k}^{\prime}-\varepsilon_{k}^{\prime}\left(e_{1} \varepsilon_{1}+\cdots+e_{k-1} \varepsilon_{k-1}\right)
$$

Then we can see that $e_{k} \varepsilon_{k} e_{k}=e_{k}$ and $e_{k} \varepsilon_{k} e_{i}=0$. Thus we have a decomposition for k. Since M satisfies the minimum condition for right ideals, we
can get the decomposition in Theorem 1.
Similarly we can get
Theorem 1'. If M is semi-simple and satisfies the minimum condition for left ideals, then

$$
M=L d_{1}+L d_{2}+\cdots+L d_{m} \quad(\text { direct }),
$$

where $L d_{i}$ are minimal left ideals and $L d_{i}=M \delta_{i} d_{i}$, and $d_{i} \delta_{i} d_{i}=d_{i}$ and $d_{j} \delta_{i} d_{i}=0$ if $i \neq j$.
5. Simple Γ-rings. Assume M is simple and satisfies the minimum condition for right and left ideals in this section. First we want to show that $e_{i} R$ and $e_{j} R$ are isomorphic as R-modules. M being simple, we can find an element γ in Γ such that $e_{i} \gamma e_{j} \neq 0$. Then $e_{i} \gamma \mathfrak{r}_{j}=\mathfrak{r}_{i}$ where \mathfrak{r}_{i} and r_{j} are $e_{i} R$ and $e_{j} R$. By a correspondence :

$$
\left(\mathfrak{r}_{j} \ni\right) x \longrightarrow e_{i} \gamma x\left(\in \mathfrak{r}_{i}\right)
$$

we have a one-one mapping of \mathfrak{r}_{j} onto \mathfrak{r}_{i}. If $x \neq 0, e_{i} \gamma x \neq 0$, because $\left\{c \mid e_{i} \gamma c=0, c \in \mathfrak{r}_{j}\right\}$ is a right ideal contained in \mathfrak{r}_{j} and is $\{0\}$ as \mathfrak{r}_{j} is minimal. This mapping is "onto" because r_{i} is minimal. Since $x(\beta c)=x \beta c$ corresponds to $e_{i} \gamma(x \beta c)=\left(e_{i} \gamma x\right)(\beta c)$, this mapping is an R-homomorphism, i.e., an R-isomorphism. Similarly $L d_{i} \cong L d_{j}$ (L-isomorphic). Next, we want to show that all L-endomorphisms of M are given by the right multiplication of R. Let ϕ be an L-endomorphism of M and put $\phi\left(d_{i}\right)=u_{i}$. Since $d_{i}=d_{i} \delta_{i} d_{i}, u_{i}=d_{i} \delta_{i} u_{i}$. Therefore, $u_{i}=d_{i}\left(\sum_{j} \delta_{j} d_{j} \delta_{j} u_{j}\right)$ where $\sum_{j} \delta_{,} d_{j} \delta_{j} u_{j}$ is an element of R. On the other hand, by the definition of the right operator ring, R is considered to be the set of all L-endomorphisms of M. Then the ring theory shows us that the latter ring is a matrix ring D_{m} over a division ring D, where D_{m} is $D_{m, m}$. Matrix units $E_{r, s}$ of D_{m} map d_{r} to d_{s} and d_{t} to 0 if $t \neq r$.

Now we can determine M with respect to R which is identified with D_{m} as above. Since minimal right ideals of D_{m} are $E_{r, r} D_{m}, e_{i} D_{m}\left(=e_{i} R\right.$ in Theorem 2) $=e_{i} E_{r, r} D_{m}$ with some r. Then put $e_{i} E_{r, s}=e_{i, s}$. We get $e_{i, s}$ $(i=1,2, \cdots, n ; s=1,2, \cdots, m)$ such that

$$
e_{i, s} E_{r, t}= \begin{cases}e_{i, t} & s=r, \\ 0 & s \neq r .\end{cases}
$$

Thus we can say that $M=\sum_{i, s} e_{i, s} D$, i.e., $e_{i, s}$ are matrix units of $D_{n, m}$ and M is (isomorphic to) $D_{n, m}$ as a right D_{m}-module.

Next we must determine Γ. An element γ of Γ is considered to
induce a mapping from M to R as in $\S 3$, and Γ is considered to be a subset of the set of all R-homomorphisms of $M=D_{n, m}$ to $R=D_{m}$. On the other hand, D_{m}-homomorphisms of $D_{n, m}$ to D_{m} are induced by the left multiplications of elements of $D_{m, n}$. In fact, suppose ϕ is a $D_{m^{-}}$ homomorphism of $D_{n, m}$ to D_{m} such that

$$
\phi\left(e_{i, s}\right)=\sum_{p, q} E_{p, q} T_{p, q}(i, s)
$$

with $T_{p, q}(i, s)$ in D. Multiply $E_{s, s}$, and we can see $T_{p, q}(i, s)=0$ if $q \neq s$. Multiply $E_{s, t}$, and we can see $T_{p, s}(i, s)=T_{p, t}(i, t)$. Putting $T_{p, s}(i, s)=$ $T_{p}(i)$, we have

$$
\phi\left(e_{i, s}\right)=\sum_{p} E_{p, s} T_{p}(i)=\left(\sum_{p, j} e_{p, j}^{\prime} T_{p}(j)\right) e_{i, s},
$$

where $e_{p, i}^{\prime}$ are matrix units of $D_{m, n}$ such that

$$
e_{p, j}^{\prime} e_{i, s}= \begin{cases}E_{p, s} & \text { if } j=i \\ 0 & \text { if } j \neq i\end{cases}
$$

Hence ϕ is induced by the left multiplication of an element $A=\sum e_{p, j}^{\prime} T_{p}(j)$ of $D_{m, n}$. Identifying γ which induces ϕ and A which corresponds to ϕ, we can say that $\Gamma \subset D_{m, n}$. What we want to show is that $\Gamma=D_{m, n}$. But Γ is a two sided $D_{m}-D_{n}$ module and must be identical with $D_{m, n}$. Summarizing all the dicussions, we get the main theorem.

Theorem 2. If M is a simple Γ-ring satisfying the minimum condition for left and right ideals, then M is $D_{n, m}$ and Γ is $D_{m, n}$. The product arb is the usual matrix product of three elements a, γ and b of $D_{n, m}, D_{m, n}$ and $D_{n, m}$.
6. Semi-simple Γ-rings. Let M be a semi-simple Γ-ring which satisfies the minimum condition for left and right ideals in this section. Arranging suitably, we can see that M is expressed as follows:

$$
M=L d_{1}^{(1)}+\cdots+L d_{m(1)}^{(1)}+L d_{1}^{(2)}+\cdots+L d_{m(2)}^{(2)}+\cdots+L d_{1}^{(q)}+\cdots+L d_{m(q)}^{(q)},
$$

where $d_{i}^{(j)}$ are some d_{k} of Theorem 1^{\prime}. Moreover we take the order such that in the above $L d_{i}^{(j)} \cong L d_{k}^{(j)}$ (L-isomorphic) and $L d_{i}^{(j)} \cong L d_{k}^{\left(j^{\prime}\right)}$ if $j \neq j^{\prime}$. Then, R is, as the right multiplication ring of the L-module M, equal to a direct ring sum $\sum_{j} D_{m(j)}^{(j)}$, where $D_{m(j)}^{(j)}$ are matrix rings over division rings $D^{(j)}$ of type $m(j) \times m(j)$. Furthermore $D_{m(j)}^{(j)}$ operate on $L d_{i}^{(j)}$ as usual and are zero on $L d_{i}^{(j)}$ if $j \neq j^{\prime}$. On the other hand, we have in Theorem 1

$$
M=e_{1} R+e_{2} R+\cdots+e_{n} R
$$

$e_{i} R$ being minimal, $e_{i} R=e_{i} D_{m(j)}^{(g)}$ with some j. Rearranging the order suitably, we have

$$
M=e_{1}^{(1)} R+\cdots+e_{n(1)}^{(1)} R+e_{1}^{(2)} R+\cdots+e_{n(2)}^{(2)} R+\cdots+e_{1}^{(q)} R+\cdots+e_{n(q)}^{(q)} R
$$

where $e_{i}^{(j)} R=e_{i}^{(j)} D_{m(i)}^{(j)}$ and $e_{i}^{(j)}$ are some e_{k}. Hence $n=\sum_{j} n(i)$. With the same discussion as in $\S 5$, we can say that

$$
\begin{aligned}
& e_{1}^{(1)} R+\cdots+e_{n 11}^{(1)} R=D_{n(1), m(1)}^{(1)}, \\
& e_{1}^{(2)} R+\cdots+e_{n(2)}^{(2)} R=D_{n(2), m(2)}^{(2)}, \\
& \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
& e_{1}^{(\alpha)} R+\cdots+e_{n(1)}^{(q)} R=D_{n(q), m(q)}^{(q)},
\end{aligned}
$$

i.e.,

$$
M=D_{n(1), m(1)}^{(1)}+\cdots+D_{n(Q), m(q)}^{(q)},
$$

where $D_{n(j), m(j)}^{(j)}$ are matrix rings over division rings $D^{(j)}$ of type $n(j) \times m(j)$. Naturally $D_{m(j)}^{(j)}$ operate on $D_{n(j), m(j)}^{(j)}$ as usual and are zero on $D_{n\left(j^{\prime}\right), m\left(j^{\prime}\right)}^{(j /)}$ if $j \neq j^{\prime} . \quad \Gamma$ is then a set of R-homomorphisms of M to R and is contained in $\sum_{j} D_{m(j), n(j)}^{(j)}$. Here the product of elements of $D_{m(j), n(j)}^{(j)}$ and of $D_{n\left(j^{\prime}\right), m\left(j^{\prime}\right)}^{\left(j^{\prime}\right)}$ is performed as usual if $j=j^{\prime}$ and is 0 if $j \neq j^{\prime}$. On the other hand, the condition of semi-simplicity means that for any non-zero element a of $D_{n(j), m(j)}^{(j)}$ there exists γ in Γ such that $a \gamma a \neq 0$. Now we want to show that each $D_{n(j), m(s)}^{(j)}$ is a simple Γ_{j}-ring. Let V and V^{\prime} be left $D^{(j)}-$ modules of $\operatorname{dim} n(i)$ and of $\operatorname{dim} m(j) . D_{n(j), m(j)}^{(j)}$ and $D_{m(j), n(\rho)}^{(j)}$ are considered to be the sets of all $D^{(j)}$-homomorphisms of V to V^{\prime} and of V^{\prime} to V. When we notice that $D_{m\left(j^{\prime}\right), n\left(j^{\prime}\right)}^{\left.()^{\prime}\right)}$ induce zero mapping on V^{\prime} if $j \neq j^{\prime}$, we can say that elements of Γ induce mappings of V^{\prime} to V. In this case we can show that $X \Gamma=V$ for any subspace X of $\operatorname{dim} 1$ of V^{\prime}. For, suppose that $X \Gamma \subsetneq V$. Then we can find an element a in $D_{n(j), m(j)}^{(j)}$ such that $V a=X$ and $(X \Gamma) a=0$. Then $a \gamma a=0$ for every γ in Γ, which is a contradiction. Now this fact implies the existance of γ such that $a \gamma b \neq 0$ for any non-zero a and b, for we can take a subspace of $V a$ as X and take γ such that $(X \gamma) b \neq 0$. Thus we can conclude that $\Gamma=\sum_{j} D_{m(j), n(j)}^{(j)}$. Now put $\Gamma_{\rho}=D_{m(f), n(f)}^{(j)}$.

Theorem 3. If M is a semi-simple 1 -ring satisfying the minimum condition for left and right ideals, then M is a direct sum of simple Γ_{i}-rings where $\Gamma=\Gamma_{1}+\cdots+\Gamma_{q}($ direct $)$:

$$
M=M_{1}+M_{2}+\cdots+M_{q} \quad(\text { direct }),
$$

where M_{i} are simple $\Gamma_{i}-$ rings and $M_{i} \Gamma M_{j}=0$ if $i \neq j$, and $M_{i} \Gamma_{j} M_{i}=0$ if $i \neq j$.

Osaka University and University of Alberta

