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Let O be the integral closure of a discrete rank one valuation ring
R with maximal ideal ϊ> in a finite Galois extension L of the quotient
field of R. Auslander, Goldman and Rim have proved in [1] and [2]
that a crossed product Λ over O with trivial factor sets is a maximal
order in Kn if and only if a prime ideal 3̂ in D over p is unramified
and Λ is a hereditary if and only if ?β is tamely ramified. Recently
Williamson has generalized those results in [11] to a crossed product Λ
with any factor sets in t/(O), where C7(D) means the set of units in O,
namely if φ is tamely remified, then Λ is hereditary and the rankυ of
Λ is determined.

In this paper, we shall modify the Williamson's method by making
use of a property of crossed product over a ring.

Let G, S and H be the Golois group of L, decomposition group of
^ and inertia group of *β, respectively. We denote a crossed propuct Λ
with factor sets {aσ τ} in f/(O) by (ασ>τ, G, O). Then we shall prove in
Theorem 1 that Λ is a hereditary order if and only if so is (aσ§τ, Hy O$H)
where ?βH=?βr\£)H, and £)H is the integral closure of R in the inertia
field 8H. Using this fact and the structure of hereditary orders [7], [8]
we obtain the above results in [1], [2] and [11].

Furthermore, we shall show that Λ is hereditary if and only if β̂
is tamely ramified under an assumptions that R/$ is a perfect field.

Finally, we give a complete description of hereditary orders in a
generalized quaternions over rationals in Theorem 3.

1. Reduction theorem

In this paper we always assume that R is a discrete rank one
valuation ring with maximal ideal p and p in the characteristic of R/p.
Let L be a finite Golois extension of the quotient field of R with Galois

1) The rank means the number of maximal two-sided ideals in Λ.
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group G, and O the integral closure of R in L. For a prime ideal 3̂ in
O over p we denote the decomposition group and the inertia group of
3̂ by S and H and their fields and the integral closure by Ls, LH and

£)s, £)# and so on.
We note that O is a semi-local Dedekind domain and hence, O is a

principal ideal domain. Let OP/}f=1 be the set of prime ideals in O and
Si and #, be decomposition group and inertia group of 5βίβ Let J>O =

IΠβf =Pe, where P=lEβ,. Since (Sβ,, Sβy) = O for i=t=j, Q/P = Q/SβϊΘ Θ
O/5β;. We note that (£)/$?)' = O/OP?)11 for σ G G . Then O .̂/Sβ^ is the
separable closure of R/$ in O/$βf and O^./^ is a Galois extension of
R/p with Galois group St/Hi9 (see [10], p. 290).

Let Λ be a crossed product over O with factor sets {aστ} in t/(O) : A
= («σ.τ> G, £)). Since Pσ-P for all σ-eG, PnA. = A.Pn is a two-sided ideal
in Λ.' Let Ά(n) = Λ./PnΛ. = (ά(ΓίT, G, £)/PΛ)-2Θ(ασ>τ, G, D/5β?) as a module.
We put Λ(S;,rc) = (^r,S,.,0/φ?). Since ^-^O/^?)^- wσ_lτσ(O/5βJ)",
ΰσ~

lA.(Si9 n)ΰσ.=Λ.(S(t, n\ where Si=σ~lSiσ. Thus we have

(1) A(Sί,w)βσ = McΛCSf, w ) .

Let G = σ/iS,- + <r,-2Sf H- 4- <r^S, = S/σ-^ 4- + S^ig , σ ̂ S^ = S, , since G is
a finite group. Then

(«) - Λ(S, «)4-w

2, w)4-βσ22Λ(S2, «)

, n)

(2 )

where S = S le

Let ^t ., be projections of A(Λ) to UσijK(Siy ri). For a two-sided ideal

21 in A(w) we have 31^2AvW Since ̂  y is unit, A/Sl) = Mβ.lίPίl(Sl) for
all y. Let e be the unit element in Λ(S, n\ Then A(S, , n)e = 0 for i=Φ=l
and eύσιJΛ.(S, n)^ΰσιJK(S^9 n)Λ(S, «) = 0 for Φl. Hence, gSte=ίu(8l).

Furthermore, since S£ = Sσu, .̂ ι(Sl) = M(r7
1A1(Sl)M0.lί=Aι(Sl)σιί. Therefore,

(3) a = Σwσίysisιί

*,y

for a two-sided ideal of 210 in A(S, w). Conversely, the above ideal is a
two-sided ideal in A(w) for a two-sided ideal Sί0 in Λ(S, ri).

Thus, we have

Lemma 1. Let Ά(n) and Λ(S, ri) be as above. Then we have a one-to-
one correspondence betu.een two-sided ideals of A(«) and A(S, ri) as above.

We note that the above correspondence preserves product of ideals.
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Next we shall consider A.s=(a(Γ>ry S, O) (CΞΛ = (#στ, G, .€>)), where S
is the decomposition group of φ. Since Os is contained in the center
of Λs, we may regard Λs as an order over Os. Let ^βs be the prime
ideal in Os over *>. Then O*s/$βJ =O/5P". If we set Γ = (aσ>τ, S, O*s)

= (ΛS)ΦS, Γ(w) = Γ/φT^A(S, «). In Γ we may regard K=LS and O=O*S.
Let if be the inertia group of a unique prime ideal 3̂ in O. Then H
is a normal subgroup of S, (see [10], p. 290) and we have S=H+σ2H+
~ +σfH. Let ΓH=(aσ>ΎJH, O), then Γ?βliΛΓ^=Γfi§β". Hence Γ = Γ(n) =
Γ/«βT ̂  ΓH( «) = ΓH . Furthermore,

Γ - ΓH+ΰσ2ΓH+ ••• + - + wσ/IV

By a similar argument as above, we have ΰσ~ΎHΰσ = ΓH. We denote this
automorphism by fσ. Then the restriction of fσ on O/^βΛ conincides
with σ. Let ̂  be the radical of ΓH. Then 5R^^?βΓH. We put $1=
yiH+uσyiH+- +uσfyiH, then m is a two-sided ideal of Γ and 3lm=^-i-

... +uσ/WZ'=φT for some m. Γ/^ = ΓH/^H+βσ/H/^+ ... +ίίσ/lV^
and FH/yiH^D/ty. Now we consider a crossed product of Γ^/^/f with
automorphisms {fσ} and factor sets {άσ r}. We define a two-sided Γ///^//-

module 'ΓH/31H as follows: for #,3*6^/9^ 3t*y = xf*y and j7*£=ja;, and
denote it by (σ, ΓWSJIH). Since Γ///?^ is semi-simple, (σ, ΓVsJi#) is
completely reducible. Furthermore, {σ} is the complete set of automor-
phisms of O/^3 (see [10], p. 290). Hence {/σ} is a complete outer-Galois,
namely for any two-sided ΓH/sJίH-module Λ^B in (σ, ΓH/31H) A/B is not
isomorphic to some of those forms in (1,1^/9^) if σφl. Therefore,
for any two-sided ideal SI in Γ/5R we have by [3], Theorem 48. 2

(3) 3ί = 2£σί.Sl0>

where 3I0 is a twe-sided ideal in YHfRH and Sl^=Slo for aH Λ> and it is
a one-to-one correspondence. Hence, Γ/ϊl is semi-simple, and ?l is the
radical of Γ. From the definition of fσ we have

f or σ- 6 S, T 6 #, λ 6 O/φ, and wτ € ΓH/3ΐH.
Furthermore, let ΓH/5ΪIH=S110 0SIΛ, where the 5l/s are simple com-
ponents of ΓH/yiH. If we classify those ideals SI, 93 by a relation

(5) 31-33 if and only if W* = S3 for some /σ,

then the number of maximal two-sided ideals in Γ/%1 is equal to this
class number.

Thus, we have
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Lemma 2. Let L be a Galois extension of the field K with Galois
group G such that S=G, Γ = (tfσ>τ, S, O), am/ ΓH= (#σ>τ, J7, O). // we denote
the radicals of Γ and ΓH by 9ΐ, 9ίH, ίfew, 9ί'=2£σ9lk(^0dφT) /or s0m0
t<^n, and there exists a one-to-one correspondence between two-sided ideals
in Γ/9Ϊ and Γ#/9iH which is given by (3) and (4).

Lemma 3. Let Ω be an order over R in a central simple K-algebra
Σ and 9Ϊ the radical of Ω. Then Ω is hereditary if and only if 9ϊ' =

for some t^>0 and

Proof. If 9i' = tfi2, then the left (right) order of 91 = Ω, and 9ί9ϊ'-1α-1

= Ω,. Hence 9i is inversible in Ω, which implies that Ω is hereditary by
[7], Lemma 3. 6. The converse is clear by [7], Theorem 6. 1.

Theorem 1. Let R be a discrete rank one valuation ring and K its
quotient field, and L a Galois extension of K with group G. Let S and
H be decomposition group and inertia group of a prime ideal ^ in the
integral closure Ό of R in L. Let Λ=(#σ τ, G, O), As=(«(ΓtT, S, O$s), and
A.H=(aστy H, O$H). Then the following statement is equivalent

1) Λ is hereditary,
2) Λs is hereditary,
3) A.H is hereditary.

In this case the rank of Λ is equal to that of Λs and is equal or less
than that of Λ f f.

Proof. l)->2). Let 91, 9ls be the radicals of Λ and Λs and P be the
product of the prime ideals as in the beginning. Then yi* = PΛ.. For
n^>t we have 9is=^βΛs (mod^MΛs) by Lemma 1 and remark after that.
Hence 9is = ̂ βΛs since 9isΞιφ*Λs. Therefore, Λs is hereditary by Lemma
3. The remaining parts are proved similarly by using Lemmas 1, 2,
and 3, and a remark before Lemma 2.

If ( I H\, />)=!, then Λ/φΛ is separable by [11], Theorem 1, (see
Lemma 4 below) and hence Λ is herediatry, where \H\ means the order
of group H. Therefore, we have

Corollary 1. ([11]). If ^ is tamely ramefied, i.e. ( \ H \ , />)=!, then
Λ.= (aσr,G, O) is hereditary of the same rank as that of Λs=(#στ,S, O#s)
and its rank is equal to the class number of ideals defined by (5).

Corollary 2. ([1,2]). // {^στ} = {l}, then Λ is hereditary if and only
if a prime ideal ?β in O over ϊ> is tamely ramified. In this case the rank
of Λ is equal to the ramification index of ?β.

Proof. {aσr} = {l}, then 2 = (0σ > τ, G, L) = Kn. We assume that Λ is
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hereditary, then ΛHis also hereditary by Theorem 1. AfίL^(LίΓ)Λ, where
h=\H\, (OH)A is a maximal order in A.HL. Furtheremore, the composi-
tion length of left ideals of (O#)A modulo the radical (^H}h is equal to
h, which is invariant for hereditary orders in A.HL by [8], Corollary to
Lemma 2.5. On the other hand [Λ^/φΛ^: O/*β] = A. Hence, φΛH is
the radical and ΛH/*βΛH is semi-simple which is a group ring of H over

Therefore, (|#|, ^)=1. In this case 3l = (Σ«cr) O/5β is a two-

sided ideal in Λ.H/?βΛ.H which is invariant under automorphisms fσ of (4).
SI is a minimal two-sided ideal in Λ.H/?βA.H which is invariant under fσ.
Hence, Λs/2Jί^Σwσ//§ί for some maximal ideal 9Jί in Λs. Furtheremore,

{°H}
since Λs is principal20, As/9K«As/2Ji' for any maximal ideal 2JΪ' in Λs

by [8], Theorem 4. 1. Therefore, there exists h two-sided ideals in
A.H/^A.H which is invariant under /σ, since [21: O/$β] = l.

By the same argument as in the proof of Theorem 1 we have

Proposition 1. We assume that R/$ is a perfect field, and we use
the same notations as in Theorem 1. Let V be the second ramification
group2^ and Λ.v=(aσ>r, V, O^F). Then A is hereditary if and only if so
is A.v.

Proof. By virtue of Theorem 1 we may assume G = H. Let G =
V+σV+ ••• +pV. Then Λ.=Λ.v+u(TA.v+ ... +wpΛF. Since V is a normal
subgroup of G by [10], p. 295, an inner-automorphism by uσ in Λ reduces
an automorphism fσ in A.v. Let %lv be the radical of Λκ and 9ί=5RF+
uβly-] ----- h UpΉly. We shall show that sJί is the radical of Λ. By assump-
tion that R/$ is perfect, Λy^ΛF/5RF is separable. Therefore, there exist

xiy y< in ΛF such that Σ #*.)>* = 1 and ΣλΛ ®^* = Σ^ι®(j'Λ)*> where
ί ί I

y^y* gives an anti -isomorphism of Λ to Λ*. Furthermore, we note that

\G/V\ =t is relative prime to p by [10], p. 296. Let 0=1//(Σ «T,T

®(«τ-ιVτ"1)*) = 1/^Σ^.VιΣ^Λ®^/-1)*^-!). Then l/ f (Σ
ί T

ΣwΛMτ-ι(y/τ"1) = l. We show that {(^®l*)-(l(g)^*)} ^=0 for any

Let 7 be in Λv. (7®l*)^ = l/ί(Σ^-1wτ7
/τ^. ®(Wτ-^/τ"1)*) and (l(g)7*)5 =

l/ί(Σ δT,1τ-ι«Λ®(Wr-ιΛ/τ I7)*)=l//(Σ ̂ -iWΛ ΘίΛ^-^βΐ-O. We can',τ

naturally define {/σ} on ΛF(g)Λ^ by setting (7®γ'*)/° =(γ(g)γ//<> *). Since

Σ'y/τ*<®Λ*=Σ**®(Λ7/τ)*, we obtain
Therefore,

2) See the definition in [10].
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However, we ob-
tain 57,1

τ-ι5<ΓfT = 5^1,Cστ)-ιατ-ιf(r by the relation of άστ. Hence {(

(l®«*)}0=θ! Therefore, {(wσ7®l*)-(l®(wσ7f)}^-(wσ®l*X7®l
+ (l<8)γ*)(wσ®l — l(g)M*)β=0. Thus we have proved that 5ft is the radical
of Λ. We can prove the proposition similarly to Theorem 1 by Lemma 3.

2. Tamely ramification

In this section we always assume that R/p is a perfect field.

Theorem 2. Let L be a Galois extension of K with Golois group G,
and Λ.=(aσr, G, O) a crossed product with a factor set {aστ} in C/(O). We
assume Rjty is a perfect field. Then A is hereditary if and only if every
prime ideal β̂ in O over p is tamely ramified, where C/(D) is the set of
unit elements in O.

Proof. If 3̂ is tamely ramified, then Λ is hereditary by Corollary
1. We assume that Λ is hereditary. Then by virtue of Proposition 1
we may assume that G is equal to the second ramification group V.
Since the elements of G operate trivially on O/$β, A = A/ί^A = ΏJrΰσD +
— hw τO is a generalized group ring. Furthermore, from a relation on
a factor set we have a]£l = A'σA!r/A'στ, where A'=ILάpσ. Since #/t> =

PζG

O/Sβ is perfect and G is a p-group by [10], p. 296, we have άσ>τ=A(TAτ/Aστ,
Aσ£Ώ. Therefore, Λ is a group ring of G over S. As well known
(see [5], p. 435), the radical SJΪ of Λ is equal to Σ(l-Mσ)D and Λ/Sfiϊ = JD.
Hence Λ is a unique maximal order by [2], Theorem 3. 11. Let σ be
an element in G. (uσ)

i = uσiCσi; Cσ*6 [/(O). Hence, if we replace a basis
{UP} by {Up} u'σi = (uσ)*, and «ί = «τ if τjί(σ), we may assume Λff f0.y = l if
ijrj<^\σ =n and a σ ΐ σ j = a if /-K/^w, where <2 is a unit element in O.
It is clear that <z is an element of the (σ)-fixed subfield LCσ) of L. Since

Hence 1 — # e$ftADCσ.)=^cσ). Furthermore, every one-sided ideal in Λ is
a two-sided ideal and a power of ?l by [2], Theorem 3. 11. Since
(l-ιOΛ£$βΛ, (l-wσ)Λ^φΛ. Put $ = (*•). Then τr = (l-wσ)Σw^τ =
ΣMP(^P — -^σ-^σ.σ-ip)- Hence, x, - x^-id = 7t, x, = x σ = Xσ*= - - = Xff-ι . There~
fore, x1(l — a} = τt. However, (1 — <z)=0 (modty^). Therefore, 5β is un-
ramified over ^βCσ) which implies σ-| =1. Hence F=(l), which has proved
the theorem.

Corollary 3. Let Λ.=(aσ>r, G, O). Then Λ is hereditary if and only
if A/PA is sime-simple, where P=Π^3Z .

Proof. It is clear from Theorems 1 and 2 and the proof of Pro-
position 1.



SOME CRITERIA FOR HEREDITARITY OF CROSSED PRODUCTS 75

Proposition 2. Let Λ=(0σ>τ, G, O) and t the ramification index of a
maximal order Ω, in A.K: (N(Ω)' = )pΩ). We assume that R/$ is perfect. If
Λ is a hereditary order of rank r, then the ramification index of ty is
equal to rt, where N(Ω) means the radical of Ω.

Proof. If Λ is hereditary, then N(A)=PA. by Corollary 3. Hence,
$Λ.. Therefore, e = rt by [7], Theorem 6.1.

Corollary 4. Let Λ=(<zσ τ, G, O) be a hereditary order. Then
= (6σfT, G, O) if and only if

Proof. Since Λ is hereditary, φ is tamely ramified. If
then Λ«Γ by Proposition 2 and [8], Corollary 4. 3.

Corollary 5. Let Λ = (#σ τ, G, O) and e the ramification index of β̂
over p. Then Λ is a hereditary order of rank e if and only if (e, p) = l
and a maximal order in A.K is unramified.

Corollary 6. We assume Λ=(#σ τ, H, O) is hereditary and a maximal
order in A.K is unramified. Then Λ is a minimal hereditary order^.

Proof. Let Ω be a maximal order in A.K. Put Ω,/N(U) = Δm and
[Δ:/?/t>] = 5, where Δ is a division ring. Since N(Ω)*/N(Ω)i+l**Ώ/N(Ω,),
we obtain m2s = [ί2/|)ί2 : /?/p]-[Λ/^Λ : R/p~]= \H\2. The ranker of Λ<m
by [8], Corollary to Lemma 2.5. Hence r=\H\ = m\/~s"^r\/~s by
Proposition 2. Therefore, s=l and m=\H\=r. Hence, Λ is minimal
by C8]> Corollary to Lemma 2. 5.

REMARK 1. If R is complete and R/\> is finite, then we obtain, as
well known (cf. [6]), that the ramification index of a maximal order in
2 = (βσ,τ, G, L) is equal to the index of 2.

Finally we shall generalize Corollary 2.
The following lemma is well known. However we shall give a proof

for a completeness, (cf. p l]> Theorem 1).

Lemma 4. Let K be a commutative ring and G a finite group which
operates on K trivially. {aσ τ} is a factor set in the unit elements of K.
Then a generalized group ring ( t f σ τ , G, K} is separable over K if and only
if Kn = Ky where n=\G\.

Proof. Let ψ be a /Γ-homomorphism of Λ to Λ(g)Λ* = Λ e :

^(Uσ) = 2ur®U*k(σ, T, p) , k(σy T, p) 6 K .

Then 'ψ is left Λe-homomorphic if and only if

3) See the definition in [8], § 2.
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tf,fTfe(σ, T, p) = aVtPk(ησ9 ηry p)
(Ό )

aPtΎ]k(σ, T, p) = aσ>Ύ)k(σηy r, ^97) for any 77 G G .

From (6) we have &(1, T, p} = a^]Γk(pτy pr, pr). If Λ is separable over K,
then there exists a Λe-homomorphism ψ of Λ to Λ* such that φψ=I,
where φ : Λ*->Λ 9>(jc®iy*) = Λ:(y. Hence l = 9>ψ»(l)= 2 #τ p#τ P&(1, r, /o) =

Wι(Σ0τp0iΓτ£(l> 1> 1) If we replace p, σ and r by ί/"1, η and 9/"1 in the
TP = 1

relation of factor sets, then we have ,̂-1 = ̂ -1^, where we assume
^,i = tfi,ij = l- Hence l = nk(ί, 1, 1). The converse is given by [11], Theorem
1. (cf. the proof of Proposition 1).

Proposition 3. We assume that Λ=(#σ τ, G, O) is an order in a
matric K-algebra over K and R/p is not necessarily perfect. Then Λ is
hereditary if and only if Sβ is tamely ramified. In this case the rank of
Λ is equal to the ramification index of ty.

Proof. We assume that Λ is hereditary. Since {aσr} is similar to
the unit factor set in L, Λ.H=(aσtT, Hy O) is in (K\H\. We know similarly
to the proof of Corollary 2 that N(A.H) = pA.H. Hence, AH=Λ.H/$A.H=
D + wσUH ----- hWpD is semi-simple. However, since Ω/N"(Ω) = (J?/t))lfΓI for
a maximal order Ω, in ( K ) \ H l , A = 2(jf?/tOmi by [7], Theorem 4.6. Hence,
Λ is separable. Therefore, (\H\,p) = l by Lemma 4.

3. Hereditary orders in a generalized quaternions

Finally, we shall determine all the hereditary orders in a generalized
quatenions. Let Z be the ring of integers and K the field of rationals.
Let d be an integer which is not divided by any quadrate and L=K(^/~d).
Then the Galois group G ={l,g} and (\/~d)8=—\/~d'. For any integer
a we have 2 = (α, G, L) = K+Kg+Kv

/~d+Kg\/~d with relations g2 = a,
(\/~d)2 = dj and g\/~d = — \/~d g. We have determined all hereditary orders
in [9], Theorem 1.2 in the case a=—l.

We use the same argument here as that in [9], § 1.
First we shall determine the types of maximal orders over Zp.

Proposition 4. Let R be the ring of $-adic integer sy L=K(\/~d] and
A.=(a, G, O). We denote the radical of A. by ^ and Λ/ ϊl by Λ. Then

1) // p = 2, d=l (mod 4), /few Λ is a maximal order such that

2) // J> = 2, d=2y 3 (mod 4), then Λ is wo/ hereditary.
3) // PΦ2, JφO (m0rf p), /few Λ is a maximal order such that

4) 7/PΦ2, ί/=0 (modi?),
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a) (<z/p)4)=l, then Λ is a herediary order of rank two.
b) (a/\>)= — 1, then Λ /$ a unique maximal order.

Proof. We shall consider the following three cases.
1) £Γ=1. Then i) t> = ̂ 2 and S=H, ii) p = $β and S=G. Since

is unramified, Λ is maximal order by Theorem 1. In the case i)
= 0/^ + 0/^2, and Λ is a maximal order such that A./\>Λ.=(R/p\. The
case ii) Λ/pΛ=O/5β+^O/?β. Since G = S, A/pΛ is not commutative and
hence, Λ is not a unique maximal.

2) G=S = Hy p = 2 dm? # = 1 (mod 2). In this case 2 is remified and
hence, Λ is not hereditary by Theorem 3.

3) G=S = H, and $ = 2. Then J) = φ2 and Λ/φΛ = #/t> + (#/*>)£. Since
φ is tamey ramefied, SβΛ = ίϊl by the remark before Corollary 1, and Λ
is hereditary. Let Si be a two-sided ideal in Λ. If 31 is proper, then
$L = (l+$g)R/)p and ay* = l for some y£Ϊ5 = R/$, and conversely. There-
fore, if (<z/p) = l then Λ is a hereditary order of rank 2 and if (#/£)= — 1,
then Λ is a unique maximal order. The proposition is trivial from the
well known facts of quadratic field.

If we set g=i and \/~d=j, then 2 = (0, G, L) is a generalized quater-
nions over the field K of rationals. For any element x = xl + xzi -\-xj-\-XM
we define

N(x) = x\ — ax\ — dxl 4- adxl .

Let Ω be a maximal order over R with basis ulyu2,uz and w4. We
call an element #=2 #,-«,- in Ω normalized if (^, •••, jc4) = l.

We note that if 2 contains at least two maximal orders, then Σ is
a matrix ring over K where Λ means the completion with respect to J>,
(cf . [9], Lemma 1. 4).

In order to use the same argument as in the proof of £9], Theorem
1. 2 we need

Lemma 6. 1) // either t> = 2, c/=3 (mod 4) and a=ί (mod 4) or
$ = 2, d==2 (mod 4), and #=1 (mod 8), then there exists a maximal order
Ω, such that Ω = (R/2\. 2) // £ = 2, d^2 (moJ 4), Λ = ! (mod 4) ««rf
αφl (morf 8), then there exists a unique maximal order. 3) // })Φ2,
ί/=0 (moJ p) ^wί/ (#/t>)=l, ίfew ίfer^ exists a maximal order Ω 5^c
n = (l?/p)2, ^A^r^ O means the factor ring of Ω, modulo its radical.

Proof. Let Ω
where i=g and j=\/~d We denote (l/2)(l + ί) and (l/2)(j+ij) by
and /. Then we obtain by the direct computations that

4) Legendre's symbol,
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jh = i — l, hj = /, jl = d(l — h), Ij = dh, hi = l+jr, Ih

= —rj, h2 = h + r and I2 = dr y

Ό

where a=
1) d=3 (mod 4). Let N(Ω) be the radical of Ω and 5c = 5c1 + X2j + XBh

+ xj€N(Ω}/2Ω. Then Xj+jx = X4d+xJ. If *3ΞφΞθ (mod 2), then we may
assume l+j€N(Ω). Then 0=(l-f j)/ + /(!-!-;) =rf (mod 2), which is a
contradiction. Hence, we know N(Ω) = 2Ω by the similar argument for
Xu xz. Since Ω/N(Ω) is not commutative by (7), Ω/N(Ω) = (R/2\ and O,
is a maximal order (cf . [9], Lemma 1. 3).

2) rf=2 (mod 4). From (7) we obtain N(Ω) = A.j. If r=0 (mod 2),
then Ω/N(Ω) = (R/2)h + (R/2)(l + h). Hence O is a hereditary order of
rank two. Let Ωι=R+Rj + Rh + R(l/2). It is clear that Ω0igΛ and Ω{

is a ring. Hence ΩQ is a maximal order by [7], Theorems 1. 7 and 3. 3.
If rφO (mod 2), then Ω/N(Ω) is a field and hence O is a unique maximal
order.

3) In this case Λ is hereditary. Let Ω = R+Ri + Rj + R(\lp)(]+yij),
where ay* = l+px, x£R. It is clear that OΞgΛ. We shall show that O
is a ring. ((l/p}(j+yij))2 = (d/p)x£Ω, and ( l / p ) ( j + y i j ) i = -(x/y)j-
(l/yp)(J+y*J)£Ω, and (l/p)(j+yij)j=(d/p)(l + ky)£Ω. Therefore, O is
a maximal order as above.

Next, we consider a case of <zφl (mod 4) and p = 2.

Lemma 7. Wie consider the following conditions
i) 0=3 (worfδ), d=2 (mod±\ but dφ2 (mod 8).

ii) 0=3 (mod8\ and d=2 (mod 8).
iii) 0=7 (moί/ 8), and d=2 (mod 4), but dφ2 (mod 8).
iv) a=7 (mod 8), and d=2 (mod 8).
v) αφl (morf 4), and d=3 (mod 4).

// one of i) #mί iv) is satisfied, then there is a maximal order O such
that Ω/N(Ω) = (R/2)2. If one of ii), iii) and v) is satisfied, then there
exists a unique maximal order.

Proof. We shall show this lemma by a direct computation. Thus,
we give here only a sketch of the proof.
Put i = gy j=V~I and H= 1/2(1 -H-hΛ L=l/2(i + i + ij). Let Λ. = R+Ri +
RH+RL. If we set 0=1 + 2r, J-2 + 4^ where r=l (mod4\ kφG (mod2\
we have

, i-L, iL= -

and
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HL= -

In cases i) and iv) we can show directely that N(Λ) = Λ.(i + ϊ) and

A/A(l + f)«(#/2)#Θ(#/2)(ϊ + #), H(ΐ + H) = 0, where A = A/2Λ. Since
(1-0(1 + 0 = 1-*= -2r, rφO(wod2), Λ(1 + /)^2Λ. Hence ΛΓ(A) = A(1 + 0,
which implies that A is a hereditary order of rank two. Therefore,
there exists a maximal order as in the lemma.
In cases ii) and iii) we obtain similarly that A./A.(l + i)&(R/2)H +
(R/2)(ΐ + H) and H2=Ϊ + H, (Ϊ + H)2 = H, B(Ϊ + H) = I. Hence, Λ is a
unique maximal order.
In case v) we put t = l/2(lj

ri+j + ij) and Λ.=R+Ri + Rj+Rt. Then by
the same argument in [9], Lemma 1.3 we can show that N(A) = A(1 + 0
and Λ/Λ(1 + 0 is a field. Hence, Λ is a unique maximal order.

From Proposition 4, Lemmas 6 and 7 and the proof of [9], Theorem
1. 2 we have

Theorem 4. Let R be a ring of ty-adic integers, K the field of
rationals and L=K(\/^d). For a unit element a in R, 2 = (tf, G, L) is a
generalized quaternions and A. = (a, G, O). Then every hereditary order
over R in 2 is isomorphic to one of the following :

1) Λ (unique maximal) if p = 2, d=Q (mod$\ (0/p)= — 1.

2) Ω1=7?+/?v/rfΓ+^(l/2)(l+^) + (l/2)(v

/^"+^\/T)
(unique maximal) if }) = 2, rf^2 (mod ̂  a=l (mod 4)

3) Λ (maximal),
ί/ rf/A^r Λ) t>=2, rf^l (mod 4) or

b) pφ2, JφO (mod\>).
4) Ω, (maximal), T^R+Rg+RH+RL,

if one of i) αwύ? iv) ίw Lemma 8 is valid.
5) 1\ (unique maximal)

if one of ii), iii) #?zύ? iv) ίw Lemma 8 /5 valid.
6) Ω>2 = R-^Rg^rR^~dJrRt (unique maximal)

if φ = 2, d=3 (mod 4), and αφl (mod 4=).

7) n3 = R + RV^
(maximal),

if $ = 2, d=0 (mod 4), β«rf α=l (mod 8).
8) Ωi (maximal), ^r\a~^a

if either a) ρ = 2, rf^3 (mod 4) a=l (mod 4)
i) p = 2, rf=2 (mod 4) and a = l (mod 8).

9) Ω4=R+Rg+RV~d+R(l/PXV~d+ygV~7) (maximal),
A // pφ2, rf=0 (mod$) and



80 M. HARADA

Where O means the integral closur of R in L and a is a normalized

element with respect to the basis of a maximal order and N(ά)=pq, (p>q)

= 1 a n d ay2 = l (mod p), H = ( ~ ~

REMARK 2. A maximal order Ω in 4) is any ring which contains

properly Λ.
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