
Sugiura, N.
Osaka J. Math.
1 (1964), 45-59

THE BIVARIATE ORTHOGONAL INVERSE EXPANSION
AND THE MOMENTS OF ORDER STATISTICS

NARIAKI SUGIURA

(Received May 6, 1964)

1. Introduction

The orthogonal inverse expansion has been introduced in my previous
paper [9] to obtain the universal upper bounds and the approximation
for the moments of order statistics. For the same purpose two other
series have been introduced by David and Johnson [2] and Plackett [6]
and the error of the approximation of Έ(Xr/n) is evaluated by Saw [8]
and Plackett [6].

In this paper we shall derive the universal uppar bounds and the
approximation for E(Xr*nXs

j

/n) (iyj=I,2) together with the error of the
approximation by means of the bivariate orthogonal inverse expansion.

2. Some preliminaries

First we restate for convenience the following Proposition in [9].

Proposition 1. Let H be a pre-Hilbert space and {<7\}v=0,ι, be any
orthonormal system in H. Put a^ = (fy φv) and b^ = (g, φ^) for any elements
/, g in H. Then we have

(2.1) l(/,^)-Σ^ΛI<{||/ll2-Σ^}1 / 2{ll^ll2-ΣK}1 / 2,
v=o v=o v=o

where equality holds if and only if f , g, φ09 , Ψiβre linearly dependent.
We also use the following well-known Proposition concerning a

bivariate orthonormal system in a rectangular domain. The proof is
found, for example, in Courant and Hubert [1].

Proposition 2. Let L2(0, 1) and L\R) be the Hubert spaces of all
functions square integrable in the interval (0,1) and the square R=
{(u, v)\0^uy v<^,l}, respectively. If {0\(w)}v=0fif- is a complete orthonormal
system in L2(0, 1), then (φλ(u)φ^(v}}x v = 0 1 . . . is a complete orthonormal system
in L\R\
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EXAMPLE 1. Legendre polynomials in (0, 1) :

(2. 2) φ,(U) = y»±u\u-ιγ (v = o, i, - )
v! du

constitute a complete orthonormal system in L2(0, 1), so we can get a
complete orthonormal system in L\R) by Proposition 2.

To get the results corresponding to Example 3 in [9], we decompose
L\R) into the following four subspaces :

Lle(R) = {/(«, v)\feL\R) and /(«, 0) = /(!-«, 0) = f(u9 1-v}} ,

(2 3) L

and /(«, 0) - -/(l-«,ι;) = f(u9l-υ)} ,

- {/(«, v)\f£L\R) and /(«, ι;) -

Proposition 3. L^/ {^v(w)}v=0,ι, be any complete orthonormal system
in L2(0, 1) satisfying 9\(«) = ( -!

(2 4) 2λ

{^2λ-ί-l

^wrf ^^c^ subsystem is complete and orthonormal in the corresponding
subspace.

The proof of Proposition 3 is straightforward. The completeness
follows from ParsevaΓs equation as in Example 3 of [9].

REMARK 1. Legendre polynomials cited in Example 1 satisfy the
assumption of Proposition 3 and will be used in section 4.

Proposition 4. Suppose that a random variable X has a distribution
function F(x) absolutely continuous with respect to the Lebesgue measure
and that Έ,(X2)<^°o. Put u = F(x\ and then the inverse function x(u) =
F~\u) is defined almost everywhere u and

(2. 5) x(u)x(v] G L\R) .

If further F(x] is symmetric, then

(2.6) x(u)x(v) e Ll,(R) .

Proof.

j J lx(u)x(v}Jdudv - ( l [x(u)Jdu\l [_x(v)Jdv

which shows (2.5). Symmetricity of F(x) means that x(u)=-x(l~u\
which implies (2. 6).
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3. Universal upper bounds and approximation for Έ(Xr/nXs

j

/n)

(i,j = l,2)

The following Theorem is an extension of Theorem 1 in [9] to the
bivariate case.

Theorem 1. Let Xi/H be the ith (smallest) order statistic in a random
sample of size n with distribution function F(x) absolutely continuous with
respect to the Lebesgue measure having mean μ and finite variance σ2.
Let {9>v(w)}v=0,ι, (φ0(u) = ϊ) be any complete orthonormal system in L2(0, 1)
and let for any pair r,s (l^

(3. 1) aλ = \ x(u)φλ(u)du ,
Jo

(3.2) δ λ v = — - -

then

1 *

5 n r n s n ^ ̂ ^

k
<"" / 4 \ΓΊ
^ t°~ ~~ Zj

, Λ-r+1)]2

nrr>,
2[Jβ(5, W —

(3.4)

Proof. It holds that

(3 5) **<*<* -B<,,-ϊn-,+ JJ
7

B(r, s-r,
(( x(u)x(v)ur-\v-u)s-r-\l~v)"'sdudv

x(u)x(v)vr-\u-vj-r-\l-u)n-sdudv

= \ \ f(u, v)g(u, v)dudυ ,
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/(«, υ) = x(u)x(υ) ,

2B(r,s-r,n-s+l)

2B(r,s-r, n-s +

l l / l l 2 = J j

where

(3.6)

(3.7) g(u,v) =

Since

(3.8)

we can apply the Proposition 1 to (/, g) in (3. 5). Replacing {<7\}v=0,ι, ,*

by {'Po(M) Pv(w)}v=o,1>. . w {<Px(w)(Po(ί')}λ=1,2, . w {•Pλ(M)'Pv(^)}λ,v=I,2,...,A in Proposi-
tion 1, we have

(3.9)

-l, 2s-2r-l, 2n-

λ=o

λ,v=ι

where ^>v and 6J;V are the Fourier coefficients of / and g in Ry that is,

#*v = J J x(u)x(v}φλ(u)φ^(v)dudu = aλav ,

(3. 10)

\\
X

because of (3. 1) and (3. 2). This implies

,Q 11λ «*o = ^o = μ2 , «ίv
( ^ ft* - 1 ft*00,0 — J- > ^λ,v

and hence
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(3.12) t = Σ «?.2o= ̂  Σ a\ =

We calculate each term in (3. 9). If we put λ=0 in (3.2) and transform
the variable u to t by u = vt, then

— -
B(r, s—r, n— s+1)

Γ i^l-iO"-Vv(fO* Γ r-\l-tγ-'-l

Jo Jo
(3. 13)

and similarly

(3. 14) bλ>0 = _ - * - - Γ ιf-\l-uT-'φάu)du .
B(r,n—r+V)Jo

We have already met with (3. 13) in Theorem 1 and 2 in [9] in dealing
with ECX,,,,). From (3.10), (3.13), (3.14) and the completeness of
{9\(«)}v=ofιf in L2(Q, 1), it follows that

(3. 15) tv*ίv = £ Σ ̂ 0 v
2 v=0

(3.16)

. 2
> λ'

_ fl(2r-l,2n-2r+l)

r—
,

B(r, n —

whence we can calculate

(3. 17) o.v*v.β +Σ %v)

Substituting (3. 11), (3. 12) and (3. 15)̂ (3. 17) into (3. 9), we can get
Theorem 1.

Corollary 1. For any distribution absolutely continuous with respect
to the Lebesgue measure with mean zero and variance one and for any
r, s (l<^r<

/o
(6.

/g(2r-l, 2s~2r~ly 2n-2s+V)
- - ~ - -
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B(r-\ s-l, 2n-r-s+l)
2[5(r, n-/M-l)]2 B(r, n-r + ϊ)B(s, n-

(=a>say},

and equality holds if and only if

*-5+^-χι-fl)*-5|
s, w-s+1) / '2B(s

where g(u, v) is defined by (3. 7).

Proof. We get (3. 18) from Theorem 1 by excluding the terms corre-
sponding to {9\(w)9\(0)}λ.v-ι,2, ,* in (3.9). Equality holds from Proposi-
tion 1 if and only if

(3. 20) X(U)X(Ό) = a+βg(u, fl) + Σ 7v9\(«) + Σ δv<P» ,
V=l V = l

for some constants a, β, γv and δv(y = l, 2, •••). Integrating (3.20) by w
and #, we get

g(u,
o

(3 21) oc+β g(u,
Jo

a+β = 0.

From (3. 7) we have

(3.22) [g(u, v)du =
Jo 5— r,

+ Γ ίf~\u -vγ-r-\l-u)n-

vr-\l-v)"-"-r

2B(r,n-r+l) 2B(s,n-s+l)'

5 1 <iir-l(Λ ιι\

g(u9 v)dv = u (1~^
o 2B(r,n — r

\n~r

1 N Λ.2B(r,n — r + l) 2B(s,n-s+l}

From (3. 21)^(3. 23) and \\x(u)x(v)\\2 = l, we can determine α, /8,
and Sr=i^v^v(^). Substituting these relations into (3. 20), we have (3. 19).

In particular, when r=n — 1 and s=w in Corollary 1, we get

(3. 24)
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This exhibits a universal upper bound for Έ(XM-1;ttXM;M) when the distri-
tion is required to have mean zero and variance one. By the way, under
the same assumption as above, the upper bound due to Gumbel [3] and
Hartley and David [4] is

(3. 25)

Some numerical values for n = 5 in Corollary 1 are shown in the
second column of Table 1. The third column is calculated from Corol-
lary 2 (i.e. universal upper bounds for symmetric population). The last
three columns give the values of E(Xr/δXs/5) from the uniform distribution
in the interval ( —\/~3~, \/~3~)» exponential distribution with the density
0~c*+1) (#2^—1), and the standard normal distribution, the values being
calculated from Sarhan and Greenberg [7].

Table 1. Some special values of E^Xr/sXs/s) and the upper bounds.

°"°
(4,5)

(3,5)

(2,5)

(1,5)

(3, 4)

(2,4)

upper bound

any
distribution

1

0.6667

0.8729

1.3244

0.6667

0.4543

symmetric
distribution

0.8696

0.2795

0.6512

1.3025

0.4812

0.3660

true distribution

uniform

0.8571

0.1429

-0.5714

-1.2857

0.2857

-0.1429

exponential

0.8272

-0.0645

-0.6006

-0.9867

-0.4003

-0.0533

normal

0.8000

0.1482

-0.4699

-1.2783

0.2084

-0.0951

Now we shall consider, as in Moriguti [5], the case when the di-
stribution is known to be symmetric. This additional information is
expected to reduce the upper bound as is the case with Έ,(Xr/n) in [9].
For this purpose we shall define

(3.26) I(P19 P2, p>, g19 q2)

where pl, p2, p3, ql, q2 are positive integers.

Lemma 1. The following relations for I(pιy p2, p3, q^ qz) hold:

P2-1P3~1

(3.27) /(A, A, A, ?ι, ft) = Σ Σ
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(3.28)

Proof. Binomial expansion of vp2-\l—
1 yields

X
0<M<t><!

After transforming the variable v to / by v = u + (l— 2u)t, we can see
that the right side of the equation is equal to

which proves (3. 27). (3. 28) is obvious from (3. 27).

Theorem 2. L#/ J^ /,, fo /A^ ith (smallest] order statistic in a random
sample of size n with symmetric distribution F(x) absolutely continuous
with respect to the Lebesgue measure with finite variance σ2. Let
{<7\(«)K=o,ι, (^o(w) = l) be any complete orthonormal system in L2(0, 1) satis-
fying φ^(u) = ( — iγφ^(l — u) for v = l, 2, ••-. Putting ax and έλ>v as in (3. 1)
and (3.2), we have for any rys (\.<Lr<^s^ri)

-ft—7- Σ (
4 λ,v=o

1 *
(3.29) I E(#r/MXs/rt) — — - Σ

2 λ f V=°

where

Λ =
(3. 30)

s — r, s — r} + I(2n—2^+1, r, r, s — r, s — r)

and I(ply p2, p3, qly q2) is defined by (3. 27).

Proof. Since (3. 5)~(3. 8) hold also in this case for /^^O, we sub-

stitute (φj,ύ)φ*(υ\ ^2λ+,(w)^2v(^)}λ,v=o,ι, "U{^2λ+ι(w)^2v+ι(^)}λ,v=o,ι, f Λ for

0,1 , ~,k in Proposition 1 to get



THE BIVARIATE ORTHOGONAL INVERSE EXPANSION 53

(3. 31) \E(Xr/nXs/n)- (Λ&v
λ,V=0

ι.,AΛι.2v)- Σ eul
λ,V=0

λ,V=0 λ,V=0

λ,v=o λ,v=o

where a$.v and bfιV are defined by (3. 10). Since x(u}x(υ) e LltQ(R) by
Proposition 4, from Proposition 3 and (3. 10) we have

(3.32) *ίλ.v = *&+ι,2v = 0

and by Proposition 2 and (3. 7), (3. 10)

(3.33)
λ,v=o λ,v=o

Hence the essential part of this proof consists in calculating Σλ,v=oδίλ

2

+ι,2v+ι
From (3. 10) we have

2B(r, s - , n-

Transforming the variable (u, υ) to (1— #, 1 — u) in the second integral, we
can rewrite the right-hand side as

J5 {(ur-\ι-v)n-s+un-s(i-vγ-1}
2B(r,s-r,n-s+l)Jl<ι

which becomes after transforming (u, v) to (1 — u, 1—v)

X u-

So if we put

fQ QΛΛ £(u *Λ —\o o*±) ζ{U, υ) —

4#(r, s—r, n—5+1)

1
, s-r, n-s+1)
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(3. 35) η(u, v) = ~{ξ(u, v)-ξ(u, l-v)} ,
£

then we can see ξ(u> v)=ξ(v, u}=ξ(l — u, 1 — v) and η(u, v}^Ll^(R). Since

(3. 36) #*λ-M,2v-n = j j η(u, V)φ2λ+1(u)φ2^+l(v)dudv ,

R

from Proposition 3 we have

(3. 37) Σ b £+1>2v+1 = ΓΓ [>(«, v}Jdudυ
λ,v=o Jo.'o

After some calculation the last two integrals are expressed as follows :

(1(1[_ξ(u,v)-]2dudv = 2Aly

(3.38) JoJ;

O1 ξ(u, v}ξ(u, l-υ)dudυ - 2B, .
0

Substituting (3. 32), (3. 33), (3. 37) and (3. 38) into (3. 31), we have (3. 29).

Similarly we can get

Σ £2*Λ,2v = - [f(«, ιO]2rfκώ + - £ ( « , v%(u, l-v)dudv,
λ,v=o 2 J o J o 2 ^ o J o

(3. 39)
VΊ A*2 __ v1 Λ*2

Zj ^2λ,2v + l — 2-1 ^2λ-fl,2v
λ,V=0 λ,V=0

= B(2r-l, 2s-2r-l, 2n-2s + l}-B(n + r-s, n + r-s, 2s-2r~l)

which is available to check (3. 33) and will be used in the proof of
Theorem 3.

Corollary 2. For any symmetric distribution absolutely continuous
with respect to the Lebesgue measure with mean zero and variance one,

(3.40)
"n sίnn^2^/2B(r,s-r,n-

+B(n+r-s, n + r-s, 25-2r-l)

—I(2r— 1, n—5+1, n—5+1, 5—r, 5 —r)

—2/(w + r—5, r, w—5+1, 5—r, 5 —r)

, r, r, 5-r, 5-r)}1/2 (= δ,
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where I ( p i , p2> A> <7ι> #2) ^ defined by (3.27), and equality holds if and
only if

(3. 41) x(u)x(v} = ±-jη(u, v) ,

where η(u, v} is defined by (3. 35).

Proof. We get (3. 40) from Theorem 2 by excluding the term corres-

ponding to {<P2λ+ι(^)£Wι(#)}λ,v=o,ι, ,Ar i*1 (3- 31). An analogous argument as
in Corollary 1 leads us to (3. 41).

It is to be noted that the upper bound for E(Xr/nXs/n) is identical
to the one for E(Xn-s+l/nXn-r+1/n) both in Corollary 1 and 2. The simplest
form in Corollary 2 appears when r=l and s=n, that is,

(3.42)

I n-l

This is the universal upper bound for E(XlfnXn/n') when the distribution
is required to be symmetric with mean zero and variance one. The
corresponding upper bound in Corollary 1 is

(3.43)

This is the universal upper bound when the distribution is required only
to have mean zero and variance one.

The third column in Table 1 is calculated by (3. 40), which, in com-
parison with the second, shows the effect of the restriction to symmetric
populations.

A quite analogous argument as in the proof of Theorem 1 and 2 leads
us to the following Theorem, the proof of which may be found in [10].

Theorem 3. Suppose E(X4)<^oo, then under the same assumption and
notation as in Theorem 2 we have

(3.44) \E(Xz

r/nX*/n)-SΈJ,X^+Xz

sίn)+<rt-~ Σ <&flίv(δΛΛ + *w ,01
2 λ,v=ι

where
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(3. 45) a( = Γ ίx(u)Jφκ(u)du ,
Jo

^2 = -̂ 1 >

B2 = B1 ,

(3 46) C = -> - . ( M , n) B(2s-l, 2n-2s+l} + B(n, n)
4[fi(r, w-r+1)]2

-.y, n-r+s)
2B(r, n-r+l)B(s, n-s + 1)

Theorem 4. Under the same assumption and notation as in Theorem 3,
the following two inequalities hold for any r, s

(3. 47) I E(X2

r/nXs/n)-σ *E(Xs/n)- Σ ̂ λ+20W Aλ+2,2v+1|λ,v=o

^ {σΈ(Jt4)-^- Σ ̂ .2βL+1}
1/2{Λ-A- Σ

λ,v=o λ,v=o

(3. 48) I E(Xr,nX*/n) - σΈ(Xr/B) - Σ βΛ+1αίv+^ft+1.«+1 1
λ,v=o

%2}
1/2{A-£<- Σ *

λ,v=o λ,v=o

where

(3.49)
• , = B(2r-l, 2s-2r-l, 2n-2s + l) B(2s-l, 2n-2s+l)-B(n, n)

2[_B(s, n-s+l)J

B = (̂2> — 1, n—s+1, n — s+1, s—r, s—r)—I(2n—2s+l, r, r, s—r, s—r)
3 4[B(r,s-r, w-5+1)]2

--l, 2s-2r-l, 2n-2s+l) B(2r-l, 2n-2r+ΐ)-B(n, n)A =
2[_B(r, w-

Proof. We shall sketch the proof of (3. 47), leaving the details to
[10]. From (3.5) we have

sH B(r, s-r, »_

which is written by transforming the variable (u, v) to (1 — u, 1 — v) as

B(r,s-r, n-

Putting
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f*(u, v} =

57

(3.50)

gι(u, V) =

2B(ry s-r, n-s+l)

2B(r, s—r, w-s+1)

we have from Proposition 1

(3.51) ,2V

l — Σ "0.2V + 1 Z-l

where

(3. 52)

K v = \\ {_x(u)Jx(υ)φx(u)φ^(v}dudv
J o J o

0" 1
gι\U, V)φ2ί\U)φ2^

. o

1 Γ^1

— _ \ I {g^Uy v)—g1(u, l—v)}φ2d
£ι J Ov 0

-gfa l-v}£LiQ(R\ we haveSince (̂

(3.53) >λ,v=o 4

which after some calculation turns out to be equal to

(3.54)
B(2r-\J 2n-2s + l, 2s-2r-ϊ)-I(2r-l, n-s + 1, n-s+1, s-r, s-r)

We can also see

Substituting (3. 52), (3. 54) and (3. 55) into (3. 51), we have (3. 47).

4. The values of E(Xr/nXs/n) in normal sample

As an application of Theorem 2, we shall calculate E(Xr/nXs/n) for
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the standard normal population. Adopting Legendre polynomials as φv(u)

in Theorem 2 and putting

I

we have

(4.2) <P\(u)φ »(v) =

(4.3)

Some numerical values of αλ f / and E(Xi+1/i+1) are shown in [9]. From

these relations we get Table 2.

Table 2. Values of E(Xr/5Xs/5) for standard normal population.

ίr(i+ιχy+i)
Γ(r+ι)Γ(»-s+l+y)Γχ»+l)

O, 5)

(4, 5)

(3, 5)

(2, 5)

(1, 5)

(3, 4)

(2,4)

first
approximation

αlbn

0.818 ±0.043

0.136 ±0.071

-0.546 ±0.093

-1.228 ±0.062

0.273 ±0.115

-0.136 ±0.100

second
approximation

«l^ll + έ«l«3(^13 + ̂ 3l)

0.7990 ±0.0193

0.1494 ±0.0364

-0.4676 ±0.0075

-1.2798 ±0.0050

0.2013 ±0.0411

-0.0844 ±0.0415

exact value

0.8000

0.1482

-0.4699

-1.2783

0.2084

-0.0951
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