Shimura, G.
Osaka J. Math.
1 (1964), 1-14.

ON PURELY TRANSCENDENTAL FIELDS OF AUTOMORPHIC FUNCTIONS OF SEVERAL VARIABLES

Goro SHIMURA

(Received December 2, 1963)

The purpose of this paper is to give some examples of arithmetically defined discontinuous groups Γ operating on a complex ball

$$
H^{r}=\left\{\left.\left(z_{1}, \cdots, z_{r}\right) \in C^{r}| | z_{1}\right|^{2}+\cdots+\left|z_{r}\right|^{2}<1\right\}
$$

such that the field of all automorphic functions ${ }^{1)}$ on H^{r} with respect to Γ is a purely transcendental extension of C of dimension r. To get such a Γ, we consider the field $K=\boldsymbol{Q}(\zeta)$ generated by a primitive m-th root of unity ζ, and take a hermitian matrix S of size $r+1$ with entries in K such that S itself has exactly r positive and one negative characteristic roots while all the other conjugates of S over \boldsymbol{Q} are definite. Let $U_{0}(S)$ be the group of all complex matrices X such that ${ }^{t} \bar{X} S X=S$. Let Γ be the subgroup of $U_{0}(S)$ consisting of the matrices whose entries are algebraic integers in K. Since H^{r} is isomorphic to the quotient space of $U_{0}(S)$ with respect to a maximal compact subgroup, Γ operates naturally on H^{r}. In our examples, the automorphic functions with respect to Γ give moduli of algebraic curves $Y: y^{m}=p(x)$, where $p(x)$ is a polynomial in $C[x]$. Then the following table describes our examples.

	K	r	S	H^{r} / Γ	Y
(1)	$\boldsymbol{Q}\left(1^{1 / 3}\right)$	2	$\operatorname{diag}[1,1,-1]$	non-compact	$y^{3}=p_{4}(x)$
(2)	$\boldsymbol{Q}\left(1^{1 / 3}\right)$	3	$\operatorname{diag}[1,1,1,-1]$	non-compact	$y^{3}=p_{6}(x)$
(3)	$\boldsymbol{Q}\left(1^{1 / 4}\right)$	2	$\operatorname{diag}[1,1,-1]$	non-compact	$y^{4}=p_{2}(x) p_{3}(x)^{2}$
(4)	$\boldsymbol{Q}\left(1^{1 / 5}\right)$	1	$\operatorname{diag}[1,(1-\sqrt{5}) / 2]$	compact	$y^{5}=p_{3}(x)$
(5)	$\boldsymbol{Q}\left(1^{1 / 5}\right)$	2	$\operatorname{diag}[1,1,(1-\sqrt{5}) / 2]$	compact	$y^{5}=p_{5}(x)$
(6)	$\boldsymbol{Q}\left(1^{1 / 7}\right)$	1	$\operatorname{diag}\left[1,-\frac{\sin (3 \pi / 7)}{\sin (2 \pi / 7)}\right]$	compact	$y^{7}=p_{3}(x)$

1) By an automorphic function, we always mean a meromorphic function which is invariant under the operation of the group in question.

Here $1^{1 / m}$ denotes a primitive m-th root of unity, $\operatorname{diag}\left[a_{1}, \cdots, a_{s}\right]$ the diagonal matrix with diagonal elements a_{1}, \cdots, a_{s}, and $p_{n}(x)$ a polynomial of degree n and without multiple root.

Theorem. In these six cases, the field of all automorphic functions on H^{r} with respect to Γ is a purely transcendental extension of \boldsymbol{C} of dimension r.

It would be worth while mentioning the following point. There was previously no known example of a discontinuous group Γ operating on a bounded symmetric domain D of dimension >1 such that D / Γ is compact and the field of all automorphic functions on D with respect to Γ is purely transcendental over C. The case (5) gives actually such a discontinuous group.

Picard [3] investigated the curve $y^{3}=p_{4}(x)$ and observed that moduli of such curves give automorphic functions on H^{2}. But it seems that he did not determine the whole field of automorphic functions.

To prove our theorem, we consider the canonically polarized jacobian variety J of the algebraic curve Y. It turns out that J belongs to an analytic family Σ treated in our previous paper [6]. In the above cases, if Y is a generic curve of the given type, J is a generic member of Σ. Now the moduli of Y are, roughly speaking, the same as the moduli of J. Then the main theorem of [6] shows that the moduli of Y are given by the automorphic functions with respect to a certain discontinuous group Γ. In order to determine the explicit form of Γ, we need some analysis of lattices in a vector space over K with a hermitian form, which was one of the subjects investigated in [7]. In the Appendix, we give a supplement to it.

In the present paper, we treated the moduli of Y only at generic points. It would be interesting to study the moduli of Y in more detail, for example, from the view-point of Igusa [2], who investigated the moduli of algebraic curves of genus two.

1. First we recall some results of [6]. Let F be a totally real algebraic number field of degree g, and K a totally imaginary quadratic extension of F. We denote by ρ the complex conjugation. Let Φ be a representation of K by complex matrices of size h. We say that a triplet $\mathcal{P}=(A, \mathcal{C}, \theta)$ is a polarized abelian variety of type $\{K, \Phi, \rho\}$ if the following conditions are satisfied.
(i) A is an abelian variety of dimension h, defined over \boldsymbol{C}.
(ii) θ is an isomorphism of K into $\operatorname{End}_{Q}(A)$; and the representation of $\theta(x)$ for $x \in K$ by an analytic coordinate system of A is equivalent to Φ.
(iii) \mathcal{C} is a polarization of A; and the involution of $\operatorname{End}_{Q}(A)$ determined by \mathcal{C} coincides with $\theta(x) \rightarrow \theta\left(x^{\rho}\right)$ on $\theta(K)$.

Let $\sigma_{1}, \cdots, \sigma_{g}, \sigma_{1} \rho, \cdots, \sigma_{g} \rho$ be all the isomorphisms of K into \boldsymbol{C}, and let r_{ν} (resp. s_{ν}) be the multiplicity of σ_{ν} (resp. $\sigma_{\nu} \rho$) in Φ. In order to insure the existence of ρ of type $\{K, \Phi, \rho\}$, the following relation should be satisfied [6,2.1]:

$$
\begin{equation*}
h=g\left(r_{\nu}+s_{\nu}\right) \quad(1 \leqq \nu \leqq g) . \tag{1.1}
\end{equation*}
$$

Hereafter we assume (1.1) and put $u=h / g$.
Let $\mathcal{P}=(A, \mathcal{C}, \theta)$ be of type $\{K, \Phi, \rho\}$. Take a complex torus C^{h} / D isomorphic to A, where D is a lattice in \boldsymbol{C}^{h}. We may choose the coordinate system of \boldsymbol{C}^{h} so that $\theta(a)$ is represented by the matrix $\Phi(a)$ on \boldsymbol{C}^{h} for every $a \in K$. Let K^{u} be the vector space of all u-dimensional row vectors with components in K. Then we find u vectors x_{1}, \cdots, x_{u} in \boldsymbol{C}^{h} such that $\boldsymbol{Q} D=\sum_{i=1}^{u} \Phi(K) x_{i}$. For every $a=\left(a_{1}, \cdots, a_{u}\right)$ in K^{u}, put $x(a)$ $=\sum_{i=1}^{u} \Phi\left(a_{i}\right) x_{i}$. Then the mapping $a \rightarrow x(a)$ is an isomorphism of K^{u} onto $\boldsymbol{Q} D$. Let L be the inverse image of D by this mapping.

Let $E(x, y)$ be a Riemann form on \boldsymbol{C}^{h} / D corresponding to a basic polar divisor in \mathcal{C}. Then there exists an anti-hermitian form $T(a, b)$ on K^{u} such that

$$
\begin{equation*}
E(x(a), \neq x(b))=\operatorname{Tr}_{K / Q}(T(a, b)) \quad\left((a, b) \in K^{u} \times K^{u}\right) \tag{1.2}
\end{equation*}
$$

The structure $\left\{K^{u}, T, L\right\}$ is uniquely determined by \mathcal{P} up to isomorphism. We say that \mathcal{P} is of type $\{K, \Phi, \rho ; T, L\}$. We note that T can not be arbitrary ; it must satisfy the following condition [6, p. 160, (25)]:
(1.3) The hermitian matrix $\sqrt{-1} T^{\sigma_{\nu}}$ has the same signature as $\left[\begin{array}{cc}-1_{r_{\nu}} & 0 \\ 0 & 1_{s v}\end{array}\right]$ for every ν, where 1_{r} denotes the identity matrix of degree r.

Let H_{ν} be the space of all complex matrices z with r_{ν} rows and s_{ν} columns such that $1-{ }^{t} \bar{z} z$ is positive hermitian, and let

$$
H=H_{1} \times \cdots \times H_{g} .
$$

Then we get an analytic family $\Sigma(K, \Phi, \rho ; T, L)=\left\{\bigodot_{z} \mid z \in H\right\}$ of polarized abelian varieties \mathcal{P}_{z} of type $\{K, \Phi, \rho ; T, L\}$ parametrized by the point z on H. Every \mathcal{P} of type $\{K, \Phi, \rho ; T, L\}$ is isomorphic to a member of $\Sigma(K, \Phi, \rho ; T, L)$.

Now we let every element of $M_{u}(K)$ operate on K^{u} on the right, and define a group $\Gamma(T, L)$ by

$$
\Gamma(T, L)=\left\{X \in G L_{u}(K) \mid T(a X, b X)=T(a, b), L X=L\right\} .
$$

Then $\Gamma(T, L)$ gives a properly discontinuous group of transformations on H [6, 2. 7]. In [6, Th. 3], we get meromorphic functions $f_{1}, \cdots, f_{\kappa}$ on H and an analytic subset W of H of codimension one, such that $\boldsymbol{Q}\left(f_{1}(z), \cdots\right.$, $\left.f_{k}(z)\right)$ is the field of moduli of \mathcal{P}_{z} for every $z \in H-W$. As remarked in [6, p. 172], if $H / \Gamma(T, L)$ is compact, $\boldsymbol{C}\left(f_{1}, \cdots, f_{\mathrm{k}}\right)$ is the field of all automorphic functions on H with respect to $\Gamma(T, L)$. Even if $H / \Gamma(T, L)$ is not compact, the last statement is true in view of [6, Th. 4] and a recent result of Baily and Borel on the compactification of $H / \Gamma(T, L)$.

Proposition 1. Let \mathcal{P} be of type $\{K, \Phi, \rho ; T, L\}$ and k_{0} the field of moduli of \mathcal{P}. If $\operatorname{dim}_{\boldsymbol{Q}} k_{0}=\sum_{v=1}^{g} r_{\nu} s_{\nu}$, then $\boldsymbol{Q}\left(f_{1}, \cdots, f_{\kappa}\right)$ is isomorphic to k_{0}.

This follows from [6, Theorem 4, (iii)] and [5, Prop. 3.5 and p. 305, Remark].
2. Let m and n be positive integers. Let Y be an algebraic curve defined by $y^{m}=p(x)$, where $p(x)$ is a polynomial in $C[x]$, of degree n and without multiple root. If d is the greatest common divisor of m and n, the genus h of Y is given by

$$
h=\frac{1}{2}[(m-1)(n-1)-(d-1)] .
$$

The vector space of differential forms of the first kind on Y is spanned by the $x^{a} d x / y^{b}$ with integers a and b satisfying $0 \leqq a<n, 0<b<m$, $b n-a m-m-d \geqq 0$.

If m divides $n+1$, take a complex number c so that $p(c) \neq 0$, and put $v=1 /(x-c), n+1=m e$. Then we get $\left(v^{e} y\right)^{m}=v \cdot v^{n} p\left(v^{-1}+c\right)$. This shows that Y is birationally equivalent to the curve $y^{m}=q(x)$ with a polynomial $q(x)$ in $C[x]$ of degree $n+1$ and without multiple root.

Hereafter we assume that m does not divide $n+1, h>1$, and m is an odd prime number. Let J be the jacobian variety of Y, and ρ a canonical mapping of Y into J. We fix a primitive m-th root of unity ζ. Let ζ_{0} be the birational correspondence of Y with itself given by $(x, y) \rightarrow(x, \zeta y)$. Denote by $\theta(\zeta)$ the automorphism of J corresponding to ζ_{0}. We see that $\zeta \rightarrow \theta(\zeta)$ can be extended naturally to an isomorphim θ of $\boldsymbol{Q}(\zeta)$ into $\operatorname{End}_{\boldsymbol{Q}}(J)$. Let \mathcal{C} be the canonical polarization of J, and ρ the automorphism of $\boldsymbol{Q}(\zeta)$ such that $\zeta^{\rho}=\zeta^{-1}$. The involution of $\operatorname{End}_{Q}(J)$ determined by \mathcal{C} gives the automorphism $\theta(a) \rightarrow \theta\left(a^{\rho}\right)$ on $\theta(\boldsymbol{Q}(\zeta))$. In this way we get a polarized abelian variety of type $\{\boldsymbol{Q}(\zeta), \Phi, \rho\}$ in the sense of $\S 1$, for a certain representation Φ of degree h. In view of the explicit form of differential forms of the first kind given above, we see that, for every integer b such that $0<b<m$, the matrix $\Phi^{\prime}(\zeta)$ has ζ^{-b} as
a characteristic root with multiplicity $[(b n-d) / m]$, where $[\alpha]$ denotes the largest non-negative integer $\leqq \alpha$.
3. Let Y^{*} be another curve defined by $y^{m}=p^{*}(x)$ for a polynomial $p^{*}(x)$ in $C[x]$ of degree n and without multiple root. From Y^{*}, we obtain a polarized abelian variety $\mathcal{P}^{*}=\left(J^{*}, \mathcal{C}^{*}, \theta^{*}\right)$ of type $\{\boldsymbol{Q}(\zeta), \Phi, \rho\}$ in the same way as above; we note that the representation Φ is the same for fixed m and n. Let ζ_{0}^{*} be the birational correspondence of Y^{*} with itself given by $(x, y) \rightarrow(x, \zeta y)$.

Proposition 2. \mathcal{P} is isomorphic to \mathcal{P}^{*} if and only if there exists a birational mapping λ of Y to Y^{*} such that $\lambda \zeta_{0}=\zeta_{0}^{*} \lambda$.

The 'if' part is obvious. Let \mathcal{P}^{*} be a canonical mapping of Y^{*} to J^{*}. Suppose that there exists an isomorphism μ of \mathcal{P} to \mathcal{Q}^{*}. By Torelli's theorem, there exists a birational mapping λ of Y to Y^{*} such that $\mathcal{P}^{*} \lambda= \pm \mu \cdot \mathcal{P}+\boldsymbol{a}$, where a is a point of J^{*}. Since $\mu \theta(\zeta)=\theta^{*}(\zeta) \mu$, we see easily that $\lambda^{-1} \zeta_{0}^{*} \lambda$ and ζ_{0} correspond to the same automorphism $\theta(\zeta)$ of J. By our assumption $h>1$, we must have $\lambda^{-1} \zeta_{0}^{*} \lambda=\zeta_{0}$. Our proposition is thereby proved.

Proposition 3. Let k_{0} be the composite of $\boldsymbol{Q}(\zeta)$ and the field of moduli of \mathbb{P}. Then k_{0} is the subfield of \boldsymbol{C} which is uniquely determined by the following properties.
$\left(M_{1}\right)$ If k is a field of definition for Y and ζ_{0}, then $k \supset k_{0}$. If furthermore σ is an isomorphism of k into \boldsymbol{C}, over $\boldsymbol{Q}(\zeta)$, then σ is the identity mapping on k_{0} if and only if there exists a birational mapping λ of Y to Y^{σ} such that $\lambda \zeta_{0}=\zeta_{0}^{\sigma} \lambda$.
$\left(M_{2}\right) \quad k_{0} \supset \boldsymbol{Q}(\zeta)$.
This follows immediately from Prop. 2 and the definition of the field of moduli of $\mathcal{P}[4, p .110]$.

Proposition 4. Let λ be a birational mapping of Y to Y^{*} such that $\lambda \zeta_{0}=\zeta_{0}^{*} \lambda$, and let $\lambda(x, y)=(u, v)$. Then u, v are rational expressions of x, y of the following form.
(I) If m divides $n, u=(a x+b) /(c x+d), v=e y /(c x+d)^{n / m}$.
(II) If m does not divide $n, u=a x+b, v=e y$.

Here a, b, c, d, e are complex numbers.
Let $u=\sum_{i=0}^{n-1} r_{i}(x) y^{i}, v=\sum_{i=0}^{n-1} s_{i}(x) y^{i}$ with $r_{i}(x)$ and $s_{i}(x)$ in $\boldsymbol{C}(x)$. Since $\lambda \zeta_{0}=\zeta_{0}^{*} \lambda$, we have $\sum_{i=0}^{n-1} r_{i}(x) \zeta^{i} y^{i}=\sum_{i=0}^{m-1} r_{i}(x) y^{i}, \sum_{i=0}^{n-1} s_{i}(x) \zeta^{i} y^{i}$
$=\zeta \sum_{i=0}^{m-1} s_{i}(x) y^{i}$, so that $u=r_{0}(x), v=s_{1}(x) y$. Since λ is one-to-one, r_{0} must be linear fractional: $r_{0}(x)=(a x+b) /(c x+d)$. Write $s_{1}(x)$ as $s_{1}(x)$ $=s(x) / t(x)$ with polynomials $s(x)$ and $t(x)$ which are relatively prime. Then we get

$$
s(x)^{m}(c x+d)^{n} p(x)=t(x)^{m}(c x+d)^{n} p^{*}((a x+b) /(c x+d)) .
$$

We see that $(c x+d)^{n} p^{*}((a x+b) /(c x+d))$ is a polynomial in x of degree n or $n-1$, without multiple root. It follows that $s(x)$ is a constant. Recall that we excluded the case $m \mid n+1$. Then we get easily our assertions.

Suppose that m divides n. We see easily that the transformation of (I) of Prop. 4 always gives a birational mapping of Y to another curve $v^{m}=p^{*}(u)$ with a polynomial $p^{*}(u)$ of degree n or $n-1$, without multiple root. If a / c is not a root of $p(x), p^{*}(u)$ is of degree n.

If m does not divide n, it is clear that the transformation of (II) of Prop. 4 gives a birational mapping of Y to a curve of the same type.
4. Let q be a polynomial in $C[x]$ of degree $\leqq n$, other than 0 , and let $q(x)=\sum_{i=0}^{n} q_{i} x^{i}$. Let P^{n} be the projective space of dimension n. Denote by $[q]$ the point $\left(q_{0}, \cdots, q_{n}\right)$ in P^{n}. Let $\alpha=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a generic point of $G L_{2}(\boldsymbol{C})$ over $\boldsymbol{Q}\left(q_{0}, \cdots, q_{n}\right)$ and let q^{α} be the polynomial determined by

$$
q^{\alpha}(x)=(c x+d)^{n} q((a x+b) /(c x+d)) .
$$

We denote by $W(q)$ the locus of $\left[q^{\alpha}\right]$ over $\boldsymbol{Q}\left(q_{0}, \cdots, q_{n}\right)$. It can be easily seen that $W(q)$ is a variety determined only by q, and independent of the choice of α. By Prop. 4 and by a standard argument, we get

Proposition 5. Suppose that m divides n. Let Y and Y^{*} be as in $\S \S 2,3$. Then $W(p)=W\left(p^{*}\right)$ if and only if there exists a birational mapping λ of Y to Y^{*} such that $\lambda \zeta_{0}=\zeta_{0}^{*} \lambda$.

From this and Prop. 3, we obtain
Proposition 6. Suppose that m divides n. Let c be the Chow point of $W(p)$. Then $\boldsymbol{Q}(\zeta, c)$ is the field k_{0} of Prop. 3.

Let $p(x)=\sum_{i=0}^{n} p_{i} x^{i}$. If p_{0}, \cdots, p_{n} are algebraically independent over \boldsymbol{Q}, we see easily that $\boldsymbol{Q}(c)$ is the field of all quotients of homogeneous invariants, in the classical sense, of the binary form $\sum_{i=0}^{n} p_{i} x^{i} y^{n-i}$. In particular, if $n=5$, it is known that every invariant is a polynomial of certain invariants A, B, C, R of degree $4,8,12,18$; and R^{2} is a poly-
nomial of $A, B, C[1]$. Then it is clear that $\boldsymbol{Q}(c)=\boldsymbol{Q}\left(B / A^{2}, C / A^{3}\right)$. If $n=6$, by the same argument, the classical result [1] shows that $\boldsymbol{Q}(c)$ is a purely transcendental extension of \boldsymbol{Q} of dimension 3 (cf. also [2]).

In the next place, suppose that m does not divide n. Choosing a suitable transformation of the type (II) of Prop. 4, we can transform Y to the curve $Y^{\prime}: y^{m}=x^{n}+x^{n-2}+\sum_{i=0}^{n-3} p_{i} x^{n-3-i}$. Suppose that the p_{i} are algebraically independent over \boldsymbol{Q}. Then, by Prop. 4, we see that $\boldsymbol{Q}\left(\zeta, p_{0}^{2}, p_{1}, p_{2}^{2}, p_{3}, \cdots\right)$ is the field k_{0} of Prop. 3.
5. Let us now consider the curve $Y: y^{m}=p(x)$ in the special case $m=n=5$. Then $h=6$, and

$$
y^{-2} d x, y^{-3} d x, x y^{-3} d x, y^{-4} d x, x y^{-4} d x, x^{2} y^{-4} d x
$$

form a basis of the vector space of differential forms of the first kind. Let (J, \mathcal{C}, θ) be as in $\S 2$. Define an isomorphism θ^{\prime} of $\boldsymbol{Q}(\zeta)$ into $\operatorname{End}_{Q}(J)$ so that $\theta^{\prime}(\zeta)=\theta\left(\zeta^{3}\right)$. Hereafter we consider $\mathcal{P}^{\prime}=\left(I, \mathcal{C}, \theta^{\prime}\right)$ instead of $\mathcal{P} . \mathcal{P}^{\prime}$ is of type $\left\{\boldsymbol{Q}(\zeta), \Phi^{\prime}, \rho\right\}$, for a representation Φ^{\prime} such that $\Phi^{\prime}(\zeta)$ is the diagonal matrix with diagonal elements $\zeta, \zeta, \zeta^{-1}, \zeta^{3}, \zeta^{3}, \zeta^{3}$. It is easy to verify that \mathcal{P} and \mathcal{P}^{\prime} have the same field of moduli. Let $K=\boldsymbol{Q}(\zeta)$, $\zeta=e^{2 \pi i / 5}$, and let σ_{ν}, for $\nu=1,2$, be the automorphism of K such that $\zeta^{\sigma} \nu=\zeta^{\nu}$. With the notation r_{ν} and s_{ν} of $\S 1$, we have $r_{1}=2, s_{1}=1, r_{2}=0$, $s_{2}=3$. Define an anti-hermitian form T and a lattice L in K^{3} as in $\S 1$, for the present \mathcal{Q}^{\prime}. The family $\Sigma\left(K, \Phi^{\prime}, \rho ; T, L\right)$ is parametrized by the point in a domain

$$
\begin{equation*}
H=\left\{\left.(z, w) \in \boldsymbol{C}^{2}| | \boldsymbol{z}\right|^{2}+|w|^{2}<1\right\} \tag{5.1}
\end{equation*}
$$

In view of (1.3), $\sqrt{ }-1 T^{\sigma}$ is positive definite. Hence $H / \Gamma(T, L)$ is compact.

Now take $p(x)=\sum_{i=0}^{5} p_{i} x^{i}$ so that the p_{i} are algebraically independent over \boldsymbol{Q}. Let k_{0} be the field of moduli of \mathcal{P}^{\prime}. By $[8,1.7], k_{0}$ contains $K=\boldsymbol{Q}(\zeta)$. The consideration of $\S 4$ shows that k_{0} is a purely transcendental extension of $\boldsymbol{Q}(\zeta)$ of dimension 2. By Prop. $1, \boldsymbol{Q}\left(f_{1}, \cdots, f_{\kappa}\right)$ is a purely transcendental extension of $\boldsymbol{Q}(\zeta)$ of dimension 2.
6. Our next task is to determine T and L explicitly. Let C^{h} / D and E be as in $\S 1$. In our case of $\mathcal{P}^{\prime}=\left(J, \mathcal{C}, \theta^{\prime}\right)$, it is essential that J is a jacobian variety. Since every jacobian variety is self-dual, we have

$$
D=\left\{x \in \boldsymbol{C}^{h} \mid E(x, D) \subset \boldsymbol{Z}\right\},
$$

so that by (1.2),

$$
\begin{equation*}
L=\left\{a \in K^{3} \mid \operatorname{Tr}_{K / Q}(T(a, L)) \subset \boldsymbol{Z}\right\} \tag{6.1}
\end{equation*}
$$

Put $\eta=\zeta^{2}-\zeta^{-2}, S=\eta^{-1} T, \mathfrak{r}=\boldsymbol{Z}[\zeta]$. We see that $\theta(\mathfrak{r}) \subset \operatorname{End}(J)$, and hence L is an \mathfrak{r}-lattice in K^{3}. Since $\eta^{3} \mathfrak{r}$ is the different of K with respect to \boldsymbol{Q}, and since $\eta^{4} \mathrm{r}=5 \mathrm{r}$, we have

$$
L=\left\{a \in K^{3} \mid S(a, L) \subset 5^{-1} \mathrm{r}\right\} .
$$

From this relation we can derive the structure of S and L as follows. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis of K^{3}, and S_{0} a hermitian form on K^{3} represented by the diagonal matrix with diagonal elements $1,1,(1-\sqrt{5}) / 2$ with respect to $\left\{e_{i}\right\}$. Then S_{0} and S have the same signature at every infinite place of $\boldsymbol{Q}(\sqrt{5})$. Let $\mathfrak{a}=5^{-1 / 2} \mathfrak{r}, L_{0}=\mathfrak{a} e_{1}+\mathfrak{a} e_{2}+\mathfrak{a} e_{3}$. Then L_{0} is an r-lattice in K^{3}, and we have

$$
L_{0}=\left\{a \in K^{3} \mid S_{0}\left(a, L_{0}\right) \subset 5^{-1} \mathrm{r}\right\} .
$$

By Prop. 8 of Appendix, there exists a K-linear automorphism τ of K^{3} such that $S_{0}(x \tau, y \tau)=S(x, y)$. Therefore we may put $S=S_{0}$ without loss of generality. By Prop. 6 of Appendix, L and L_{0} are μ_{0}-maximal \mathfrak{r} lattices and $\mu_{0}(L)=\mu_{0}\left(L_{0}\right)=5^{-1}$ r. By Prop. 5 of Appendix, L and L_{0} belong to the same genus with respect to $U\left(S_{0}\right)$. Now $\boldsymbol{Q}(\zeta)$ has the class number 1. Hence by [7,5.24, (i)], there exists an element α of $U\left(S_{0}\right)$ such that $L_{0} \alpha=L$. Therefore taking a suitable coordinate system, we may identify $\Gamma(T, L)$ with the group

$$
\left\{\tau \in G L\left(K^{3}\right) \mid S_{0}(x \tau, y \tau)=S_{0}(x, y), L_{0} \tau=L_{0}\right\} .
$$

Combining this and the result of $\S 5$, we get the assertion of our main theorem in the case (5).
7. We can treat the remaining cases by the same procedure, except the case (3). Let Y be the curve defined by $y^{4}=p(x) q(x)^{2}$, where p and q are polynomials without multiple root, and $\operatorname{deg}(p)=2$, $\operatorname{deg}(q)=3$; we assume that p and q have no common root. The genus of Y is 3 , and $y^{-1} d x, q(x) y^{-3} d x, x q(x) y^{-3} d x$ form a basis of differential forms of the first kind. As in $\S 2$, from this Y we get $\mathcal{P}=(J, \mathcal{C}, \theta)$ of type $\{Q(i), \Phi, \rho\}$, where $\Phi_{(}(i)$ is the diagonal natrix with diagonal elements $i, i,-i$. Define T and L as in $\S 1$. Then $\Sigma(\boldsymbol{Q}(i), \Phi, \rho ; T, L)$ is again parametrized by H of (5.1). Let $p(x)=\sum_{\lambda=0}^{d} p_{\lambda} x^{\lambda}, q(x)=\sum_{\mu=0}^{3} q_{\mu} x^{\mu}$, and let k_{0} be the field of moduli of \mathcal{P}. Suppose that the p_{λ} and q_{μ} are algebraically independent
over \boldsymbol{Q}. Then we see easily that $\boldsymbol{Q}(i) \subset k_{0} \subset \boldsymbol{Q}\left(i, p_{\lambda}, q_{\mu}\right), \operatorname{dim}_{\boldsymbol{Q}} k_{0}=2$. By virtue of Castelnuovo's theorem (cf. [9]), this, together with Prop. 1, shows that the field of automorphic functions on H with respect to $\Gamma(T, L)$ is purely transcendental over \boldsymbol{C}.

To determine T anp L, we employ the same argument as in $\S 6$. In this case, 2 is the only prime ramified in $\boldsymbol{Q}(i)$. Therefore, the present situation is somewhat different from $\S 6$. But the consideration in the last part of Appendix is sufficient to determine T and L explicitly from the relation similar to (6.1). Thus we get the whole result of our theorem.

Appendix

Let F be an algebraic number field of finite degree, and K a quadratic extension of F. We denote by g and \mathfrak{r} the ring of integers in F and in K respectively, and by ρ the non-trivial automorphism of K over F. Let V be a vector space over K of dimension n, and $S(x, y)$ a nondegenerate hermitian form: $V \times V \rightarrow K$, with respect to ρ. For every r-lattice L in V, we denote by $\mu^{\prime} L$) (resp. $\mu_{0}(L)$) the ideal in F (resp. K) generated by the elements $S(x, x)$ (resp. $S(x, y)$) for all $x \in L$ (resp. $x \in L$, $y \in L$). L is called maximal (resp. μ_{0}-maximal) if there is no r-lattice M in V, other than L, such that $L \subset M$ and $\left.\mu_{(}^{\prime} L\right)=\mu_{(}^{\prime} M$) (resp. $\mu_{0}(L)=\mu_{0}(M)$). For every prime ideal \mathfrak{p} of F, let $g_{\mathfrak{p}}$ and $F_{\mathfrak{p}}$ denote the completions of \mathfrak{g} and F with respect to \mathfrak{p}. Then we put $K_{\mathfrak{p}}=K \otimes_{F} F_{\mathfrak{p}}, \mathfrak{r}_{\mathfrak{p}}=\mathfrak{r g}_{\mathfrak{p}}$, $V_{\mathfrak{p}}=V \otimes_{F} F_{\mathfrak{p}} ; \rho$ and S can be extended naturally to $K_{\mathfrak{p}}$ and $V_{\mathfrak{p}}$. We can define similarly μ, μ_{0}, the maximality, and the μ_{0}-maximality for $\mathfrak{r}_{\mathfrak{p}}$ lattices in V_{p}. In [7] we investigated maximal lattices. Here we supply some results on μ_{0}-maximal lattices which are necessary for the proof of our theorem.

Let \mathfrak{D} be the different of K with respect to F. By [7,2.11], for every \mathfrak{r}-lattice L in V, we have

$$
\begin{gather*}
\left.\mu(L) \mathfrak{r} \subset \mu_{0}(L) \subset \mu_{(}^{\prime} L\right) \mathfrak{D}^{-1} \tag{A.1}\\
\operatorname{Tr}_{K / F}\left(\mu_{0}(L)\right) \subset \mu(L) .
\end{gather*}
$$

Therefore, if \mathfrak{p} is unramified in K, we have $\mu_{0}(L)_{\mathfrak{p}}=\mu(L) \mathfrak{r}_{\mathfrak{p}}$, and hence there is no distinction between maximality and μ_{0}-maximality for the $\mathfrak{r}_{\mathfrak{p}}$-lattices in $V_{\mathfrak{p}}$. If V is one-dimensional, it is clear that every \mathfrak{r}-lattice L is maximal and μ_{0}-maximal, and $\left.\mu_{0}(L)=\mu_{(}^{\prime} L\right) \mathrm{r}$.

Proposition 1. Let L be a μ_{0}-maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$ such that $\mu_{0}(L)=\mu(L) \delta_{\mathfrak{p}}^{-1}$. Then L is maximal.

Let M be an $\mathfrak{r}_{\mathfrak{p}}$-lattice such that $L \subset M$ and $\mu(M)=\mu_{(}^{\prime}(L)$. Then $\mu_{0}(L) \subset \mu_{0}(M) \subset \mu(M) \mathfrak{D}_{\bar{p}}^{-1}=\mu(L) \mathfrak{D}_{\bar{p}}^{-1}=\mu_{0}(L)$, so that $\mu_{0}(L)=\mu_{0}(M)$. Since L is μ_{0}-maximal, we get $L=M$; this shows that L is maximal.

Proposition 2. If \mathfrak{p} does not divide 2 , every maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$ is μ_{0}-maximal.

By our assumption, for every ideal $\mathfrak{a}_{\mathfrak{p}}$ in $K_{\mathfrak{p}}$, we have

$$
\begin{equation*}
\operatorname{Tr}_{K \mathfrak{p}} / F_{\mathfrak{p}}\left(\mathfrak{a}_{\mathfrak{p}}\right)=\mathfrak{a}_{\mathfrak{p}} \cap F_{\mathfrak{p}} \tag{A.3}
\end{equation*}
$$

Hence, from (A.1) and (A.2), we obtain, for every $\mathfrak{r}_{\mathfrak{p}}$-lattice L in $V_{\mathfrak{p}}$,

$$
\begin{equation*}
\operatorname{Tr}_{K_{\mathfrak{p}} / F_{\mathfrak{p}}}\left(\mu_{0}(L)\right)=\mu_{0}(L) \cap F_{\mathfrak{p}}=\mu(L) \tag{A.4}
\end{equation*}
$$

Then our assertion is obvious.
Proposition 3. Suppose that $n=2, \mathfrak{p}$ does not divide 2, and S is anisotropic in $V_{\mathfrak{p}}$. Then every μ_{0}-maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$ is maximal.

If \mathfrak{p} is unramified in K, there is no problem; so we assume that \mathfrak{p} is ramified in K. Let L be a μ_{0}-maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$. Since \mathfrak{p} does not divide 2 , the relation (A.1) implies that $\left.\mu_{0}(L)=\mu_{(}^{\prime} L\right) \mathfrak{r}_{\mathfrak{p}}$ or $\mu_{0}(L)$ $=\mu(L) \mathscr{D}_{\mathfrak{p}}^{-1}$. If $\mu_{0}(L)=\mu^{\prime}(L) \mathfrak{D}_{\mathfrak{p}}^{-1}, L$ is maximal by virtue of Prop. 1 . Assume that $\mu_{0}(L)=\mu(L) \mathfrak{r}_{\mathfrak{p}}$. Then there exists an element x of L such that $\mu_{0}(L)=(S(x, x))$. Put $L^{\prime}=\{y \in L \mid S(x, y)=0\}$. We can easily verify that $L=\mathfrak{r}_{\mathfrak{p}} x+L^{\prime}$. Since V is two-dimensional, we have $L^{\prime}=\mathfrak{r}_{\mathfrak{p}} y$ for some y. Since L is μ_{0}-maximal and \mathfrak{p} is ramified in K, we must have ($S(y, y)$) $=\mu_{0}(L)$. Now put $M=\left\{u \in V \mid S(u, u) \in \mu^{\prime}(L)\right\}$. By [7, 4.5], M is a maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$. We have clearly $L \subset M$. Let $u=a x+b y \in M$ with a, b in K_{p}. Then

$$
a a^{\rho} S(x, x)+b b^{\rho} S(y, y) \in \mu(L)=(S(x, x))
$$

Put $c=S(x, x)^{-1} S(y, y)$. Then c is a unit in g_{p}, and $a a^{\rho}+b b^{\rho} c \in g_{p}$. Let π be a prime element of \mathfrak{r}_{p}. Assume that $u \notin L$. Then $\pi^{e} a$ and $\pi^{e} b$ are units in $\mathfrak{r}_{\mathfrak{p}}$ with a positive integer e, and

$$
\left(\pi^{e} a\right)\left(\pi^{e} a\right)^{\rho}+\left(\pi^{e} b\right)\left(\pi^{e} b\right)^{\rho} c \equiv 0 \quad \bmod \left(\pi \pi^{\rho}\right)^{e} \mathfrak{g}_{\mathfrak{p}}
$$

It follows that $-c$ is the norm of an element in K_{p}. But this is a contradiction, since S is anisotropic in $V_{\mathfrak{p}}$. Therefore $u \in L$, and hence $M=L$. This proves our proposition.

Proposition 4. Suppose that \mathfrak{p} does not decompose in K. When \mathfrak{p} divides 2, suppose further that \mathfrak{p} is unramified in K. Let L be a $\mu_{0}-$
maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$. Put $\mathfrak{b}=\mu_{0}(L)$. Then there exists a Witt decomposition $\quad V_{\mathfrak{p}}=\sum_{i=1}^{n}\left(K_{\mathfrak{p}} x_{i}+K_{\mathfrak{p}} y_{i}\right)+W \quad$ (cf. [7,4.3]) such that $L=\sum_{i=1}^{m}\left(\mathfrak{r}_{p} x_{i}+\mathfrak{b} y_{i}\right)+M$, where M is a maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in W given by $M=\{z \in W \mid S(z, z) \in \mu(L)\}$. Conversely, let \mathfrak{b} be an ideal in $K_{\mathfrak{p}}$, and $V_{\mathfrak{p}}=\sum_{i=1}^{m}\left(K_{\mathfrak{p}} x_{i}+K_{\mathfrak{p}} y_{i}\right)+W$ be a Witt decomposition. Let

$$
M=\left\{z \in W \mid S(z, z) \in \mathfrak{b} \cap F_{\mathfrak{p}}\right\}, \quad L=\sum_{i=1}^{m}\left(\mathfrak{r}_{\mathfrak{p}} x_{i}+\mathfrak{b} y_{i}\right)+M
$$

Then L is a μ_{0}-maximal $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$.
The converse part can be proved in a straightforward way. The proof of the direct part is similar to the proof of $[7,4.7]$; so here we only sketch a proof. Assume that S is isotropic in $V_{\mathfrak{p}}$. Then we can find an element x in $V_{\mathfrak{p}}$ such that $S(x, x)=0$ and $\mathfrak{r}_{\mathfrak{p}}=\left\{a \in K_{\mathfrak{p}} \mid a x \in L\right\}$. Put $\mathfrak{a}=S(x, L)$. We get easily $\mu_{0}\left(\mathfrak{a}^{-1} \mathfrak{b} x+L\right)=\mu_{0}(L)$, so that $\mathfrak{a}^{-1} \mathfrak{b} x+L=L$ by virtue of the μ_{0}-maximality of L. We have therefore $L \supset \mathfrak{a}^{-1} \mathfrak{b} x$, and hence $\mathfrak{a}^{-1} \mathfrak{b} \subset \mathfrak{r}_{\mathfrak{p}}$. It follows that $S(x, L)=\mathfrak{b}$. Therefore we find an element $u \in L$ such that $\mathfrak{b}=(S(x, u))$. Our assumption implies $\mu(L)=T r_{K \mathfrak{p} / F \mathfrak{p}}(\mathfrak{b})$ $=\operatorname{Tr}_{K_{p} / F_{p}}\left(S(x, u) \mathfrak{r}_{\mathfrak{p}}\right)$. Using this fact, we can find an element λ of $\mathfrak{r}_{\mathfrak{p}}$ such that $S(x+\lambda u, x+\lambda u)=0$. Put $y=x+\lambda u, L^{\prime}=\{z \in L \mid S(x, z)=S(y, z)=0\}$. Then we have $L=\mathfrak{r}_{p} x+\mathfrak{b} y+L^{\prime}$. Applying induction to L^{\prime}, we get our assertion, in view of Prop. 3.

Let $U(S)$ be the group of all K-linear automorphisms σ of V such that $S\left(x_{\sigma}, y_{\sigma}\right)=S(x, y)$. As in $[7,5.18]$ we define genera of \mathfrak{r}-lattices in V.

Proposition 5. Suppose that every prime factor of 2 in F is unramified in K. Let L be a μ_{0}-maximal \mathfrak{r}-lattice in V. Then the genus of L with respect to $U(S)$ consists of all μ_{0}-maximal \mathfrak{r}-lattices M such that $\mu_{0}(M)=\mu_{0}(L)$.

This follows directly from [7,3.3] and Prop. 4 by the same argument as in the proof of $[7,5.25]$.

Proposition 6. Suppose that every prime factor of 2 in F is unramified in K. Let \mathfrak{a} be an ideal in F, and L an \mathfrak{r}-lattice in V. Suppose that $L=\{x \in V \mid S(x, L) \subset \mathfrak{a r}\}$. Then L is μ_{0}-maximal, and $\mu_{0}(L)=\mathfrak{a r}$.

Our assertion is clear if $n=1$. Suppose that $n>1$. For every $\mathfrak{r}-$ lattice M in V, define M^{*} by $M^{*}=\{x \in V \mid S(x, M) \subset \mathfrak{a r}\}$. We see that $M \subset M^{*}$ if and only if $\mu_{0}(M) \subset a r$. Since $L=L^{*}$, we have $\mu_{0}(L) \subset a r$. If $M_{1} \subset M_{2}$, then $M_{1}^{*} \supset M_{2}^{*}$. Now let $L \subset M, \mu_{0}(M) \subset a r$. Then we have $M^{*} \subset L^{*}=L \subset M \subset M^{*}$, so that $L=M$. This shows that L is μ_{0}-maximal.

By [7,3.2] and by Prop. 4, we can easily find a μ_{0}-maximal \mathfrak{r}-lattice L^{\prime} such that $L \subset L^{\prime}$ and $\mu_{0}\left(L^{\prime}\right)=\mathfrak{a r}$. Then the above argument shows again $L=L^{\prime}$. This proves our proposition.

Proposition 7. Let \mathfrak{p} be a prime ideal in F which remains prime in K. Suppose that there exist an ideal \mathfrak{a} in $F_{\mathfrak{p}}$ and an $\mathfrak{r}_{\mathfrak{p}}$-lattice L in $V_{\mathfrak{p}}$ such that $L=\left\{x \in V_{\mathfrak{p}}^{*} \mid S(x, L) \subset \mathfrak{a r}_{\mathfrak{p}}\right\}$. Then the structure $\left(V_{\mathfrak{p}}, S\right)$ is uniquely determined by \mathfrak{a}. More precisely, if n is odd and $\mathfrak{a}=a \mathfrak{g}_{\mathfrak{p}}, d(S)$ is the class of $(-1)^{(n-1) / 2}$ a modulo $N_{K p / F p}\left(K_{p}^{*}\right)$ (cf. [7,2.1 and 4.2]). If n is even, S is maximally isotropic in $V_{\mathfrak{p}}$, namely, $V_{\mathfrak{p}}$ has the trivial kernel subspace with respect to S (cf. [7, 4.3]).

By Prop. 4, we find a Witt decomposition $V_{\mathfrak{p}}=\sum_{i=1}^{m}\left(K_{\mathfrak{p}} x_{i}+K_{\mathfrak{p}} y_{i}\right)+W$ such that $L=\sum_{i=1}^{m}\left(\mathfrak{r}_{\mathfrak{p}} x_{i}+\mathfrak{b} y_{i}\right)+M, M=\{u \in W \mid S(u, u) \in \mathfrak{a}\}$. By our assumption on L, we have

$$
\begin{equation*}
M=\left\{u \in W \mid S(u, M) \subset \mathfrak{a r}_{p}\right\} \tag{A.5}
\end{equation*}
$$

If n is odd, we have $W=K_{\mathfrak{p}} z, W=\mathfrak{r}_{\mathfrak{p}} z$ for some z. Hence (A.5) implies that $\mathfrak{a}=S(z, z) \mathfrak{g}_{\mathfrak{p}}$. Since \mathfrak{p} is unramified in K, every unit in $\mathfrak{g}_{\mathfrak{p}}$ is the norm of an element of K_{p}. Therefore we get our assertion for odd n. Next assume that n is even and W is two-dimensional. Since $\mu_{0}(M)$ $=\mu(M) \mathfrak{r}_{\mathfrak{p}}=\mathfrak{a} \mathfrak{r}_{\mathfrak{p}}$, we find, using the argument of the proof of Prop. 3, an expression $M=\mathfrak{r}_{p} u+\mathfrak{r}_{p} v$ with $S(u, v)=0$. On account of (A.5), we see that $\mathfrak{a}=S(u, u) \mathfrak{g}_{\mathfrak{p}}=S(v, v) \mathfrak{q}_{\mathfrak{p}}$; hence $S(u, u)^{-1} S(v, v)$ is a unit in $\mathfrak{q}_{\mathrm{p}}$. Therefore we find an element c in $K_{\mathfrak{p}}$ such that $c c^{\rho}=-S(u, u)^{-1} S(v, v)$. Then we get $S(c u+v, c u+v)=0$, which is a contradiction. Hence S must be maximally isotropic in V_{p}.

Proposition 8. Suppose that there is no or only one prime ideal in F which is ramified in K. Suppose that there exist an ideal \mathfrak{a} in F and an \mathfrak{r}-lattice L such that $L=\{x \in V \mid S(x, L) \subset a r\}$. Then the structure (V, S) is uniquely determined, up to isomorphism, by \mathfrak{a} and the signature of S at infinite prime spots of F.

Let \mathfrak{q} be a possible prime ideal in F which is ramified in K. By Prop. 7, the structure ($V_{\mathfrak{p}}, S$) is uniquely determined by \mathfrak{a} if $\mathfrak{p} \neq \mathfrak{q}$. If we assign a fixed signature to each infinite prime spot of F, then the structure $\left(V_{\mathrm{q}}, S\right)$ is automatically determined by virtue of the product formula of norm residue symbol. This proves our proposition.

If a prime factor of 2 in F is ramified in K, we can not apply Prop. 5. However, under a suitable condition, we may treat such a case.

For example, let us consider the case where $F=\boldsymbol{Q}, K=\boldsymbol{Q}(i), i^{2}=-\mathbf{1}$, $n=3$. Let $\mathfrak{p}=(2), \mathfrak{P}=(1+i)$, and let L be an $\mathfrak{r}_{\mathfrak{p}}$-lattice in $V_{\mathfrak{p}}$ such that

$$
\begin{equation*}
L=\left\{x \mid S(x, L) \subset\left(2^{-1}\right)\right\} . \tag{A.6}
\end{equation*}
$$

Assume that S is represented in $V_{\mathfrak{p}}$ by the diagonal matrix with diagonal elements $1,1,-1$. Now by $[7,4.15]$, the following two cases may occur.
(I) $L=\mathfrak{r}_{\mathfrak{p}} x+\mathfrak{r}_{\mathfrak{p}} y+\mathfrak{r}_{\mathfrak{p} z} z S(x, y)=S(y, z)=S(z, x)=0$.
(II) $L=\mathfrak{r}_{\mathfrak{p}} x+\mathfrak{r}_{\mathfrak{p}} y+\mathfrak{r}_{\mathfrak{p}} z, S(x, z)=S(y, z)=0$,

$$
S(x, x) \in \mathfrak{M} S(x, y), S(y, y) \in \mathfrak{P} S(x, y)
$$

Put $S(x, x)=a, S(y, y)=b, S(z, z)=c, S(x, y)=d$. In the case (I), by (A. 6), we have $(a)=(b)=(c)=\left(2^{-1}\right)$. Put $2 a=a^{\prime}, 2 b=b^{\prime}, 2 c=c^{\prime}$. By our assumption on $S,-a^{\prime} b^{\prime} c^{\prime}$ must be the norm of an element of $K_{\mathfrak{p}}$ (cf. [7,4.2]). Since -1 is not a norm residue, we may assume, exchanging the order of x, y, z if necessary, that $a^{\prime}=b^{\prime}=c^{\prime}=-1$ or $a^{\prime}=b^{\prime}=1, c^{\prime}=-1$. The former case can be reduced to the latter case by the transformation $u=e^{-1}(x-(1+i) y), v=e^{-1}((1-i) x+y), w=z$, where e is an element of $\mathfrak{r}_{\mathfrak{p}}$ such that $e e^{\rho}=-3$.

In the case (II), by (A.6), we have $(c)=(d)=\left(2^{-1}\right)$, so that $a \in g_{\mathfrak{p}}$, $h \in a_{p}$. Hence $d d^{p}-a b$ is the norm of an elemet of K_{p}. Therefore, by $[7,4.1], S$ is isotropic in $K_{\mathfrak{p}} x+K_{\mathfrak{p}} y$. It follows that c is the norm of an element of K_{p}, on account of our assumption on S. Hence we may assume $\mathfrak{r}_{\mathfrak{p}} z=\mathfrak{F}^{-1} w$ with $S(w, w)=1$. Put $M=\mathfrak{r}_{p} x+\mathfrak{r}_{\mathfrak{p}} y$. Then $\mu_{(}^{\prime}(M) \subset \mathfrak{g}_{\mathfrak{p}}$ $=2 \mu_{0}(M) \subset \mu^{\prime}(M)$, so that $\left.2 \mu_{0}(M)=\mu_{0}^{\prime} M\right)$. Applying the argument of the proof of Prop. 6 to M, we see that M is μ_{0}-maximal, so that by Prop. 1, M is maximal. By [7, 4. 7], we have $M=\mathfrak{F}^{-1} u+\mathfrak{B}^{-1} v$ with $S(u, u)=S(v, v)$ $=0, S(u, v)=1$. Put $r=u+w, s=v-w, t=u-v+w$. Then $S(r, r)=S(s, s)$ $=1, S(t, t)=-1, S(r, s)=S(s, t)=S(t, r)=0, \quad L=\mathfrak{S}^{-1} r+\mathfrak{S}^{-1} s+\mathfrak{S}^{-1} t$. Therefore L is reduced to the case (I).

This result, combined with Prop. 4 and a localization of Prop. 6, shows that every \mathfrak{r}-lattice L in V satisfying (A.6) belongs to one and the same genus with respect to $U(S)$.

Osaka University and Princeton University

References

[1] A. Clebsch: Theorie der binären algebraischen Formen, Leipzig, 1872.
[2] J. Igusa: Arithmetic variety of moduli for genus two, Ann. of Math. 72, (1960), 612-649.
[3] E. Picard: Sur des fonctions de deux variables indépendantes analogues aux fonctions modulaires, Acta Mathematica 2 (1883), 114-135.
[4] G. Shimura: On the theory of automorphic functions, Ann. of Math. 70 (1959), 101-144.
[5] -: On the zeta-functions of the algebraic curves uniformized by certain automorphic functions, J. Math. Soc. Japan 13 (1961), 275-331.
[6] -: On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math. 78 (1963), 149-192.
[7] -: Arithmetic of unitary groups, Ann. of Math. 79 (1964), 369-409.
[8] -: On the field of definition for a field of automorphic functions, Ann. of Math. 80 (1964), 160-189.
[9] O. Zariski: On Castelnuovo's criterion of rationality $p_{a}=P_{2}=0$ of an algebraic surface, Illinois J. Math. 2 (1958), 303-315.

