NOTE ON ORBIT SPACES

To Professor K. Shoda on his 60 -th birthday

By
Masayoshi NAGATA

Let V be an affine or projective variety with universal domain K and let G be an algebraic linear group acting on V as a group of automorphisms of V. Let d be the maximum of the dimension of G-orbits on V and let U be the set of points of V whose G-orbits are of dimension d.

Then one can ask whether or not the set of G-orbits on U forms naturally an algebraic variety. Though the answer is not affirmative in general, it is an important question to ask the nature of the set of G orbits on U. As one approach to this kind of problem, we observe the following objects:

Let L be the function field of V (over K) and let L_{G} be the field of G-invariants in L. For each point P of V, we consider the locality of P, which we shall denote by the same P, and we consider the ring $P \cap L_{G}$, which we shall denote by $P_{G} . \quad P_{G}$ is nothing but the ring of G-invariants in P. Now we can ask the following questions:

Question 1. Is P_{G} a locality?
Question 2. Does there exist an algebraic variety W such that the set of localities of points of W coincides with the set $\left\{P_{G} \mid P \in U\right\}$?

The answers to these questions are not affirmative in general.
The main purpose of the present paper is to give some results concerning the above questions in rather special cases.

In §1, we give some preliminaries. In §2, we give some results in the case where G is a torus group and V is affine. Though Question 1 is affirmative in this case, Question 2 is not affirmative in the case where G is the multiplicative group of K. In $\S 3$, we show that if V is a non-singular affine variety and if every rational representation of G is completely reducible, then Question 1 is affirmative. In $\S 4$, we show that if V is an affine variety whose coordinate ring R is a unique factorization domain, if invertible elements of R are G-invariants and if the radical of G is unipotent, then these 2 questions are affirmative,
provided that the ring R_{G} of G-invariants in R is finitely generated. Then we give an important example to the theory of orbit spaces and then we give an application of the result to the case of projective varieties. In $\S 5$, we show that Question 1 is not affirmative even if G is simple, K is of characteristic zero and V is normal.

The notation stated at the beginning is maintained throughout this paper. When V is an affine variety, R denotes the coordinate ring of V over K, and R_{G} denotes the ring of G-invariants in $R . \mathfrak{m}_{P}(P \in V)$ denotes the maximal ideal of P.

1. Preliminaries.

We begin with a remark that Question 1 is not affirmative in general. A counter example is readily obtained by our counter example to the 14 -th problem of Hilbert (see, for instance, [3]) by virtue of Theorem 4.1 below. Note that in that example, V is non-singular (cf. Theorems 3.4 and 5.1).

Consider the case where V is an affine variety. Then G becomes a group of automorphisms of R such that for each element a of R, the module $\sum_{8 \in G} a^{g} K$ is a finite K-module.

If either G is a torus group (K being arbitrary) or K is of characteristic zero and the radical of G is a torus group, then we know that every rational representation of G is completely reducible. Therefore we have the following result, whose proof can be found in our lecture note [3].

Lemma 1.1. With the assumption made above, and denoting by $F(P)$ the closure of the G-orbit of $P \in V$, (1) R_{G} is finitely generated over K, (2) the relation \sim, defined by that $P \sim Q$ if and only if $F(P) \cap F(Q) \neq$ empty, is an equivalence relation, and (3) $\left(R_{G}\right)_{\mathfrak{m}_{P} \cap R_{G}}=\bigcap_{Q \in F(P)} Q_{G}$. In particular, (4) if $Q \in F(P)$ is such that G-orbit of Q is closed, then $Q_{G}=\left(R_{G}\right)_{\mathfrak{m}_{Q} \cap R_{G}}$. Furthermore, (5) $P \sim Q$ if and only if $\left(R_{G}\right)_{\mathfrak{m}_{P} \cap R_{G}}=\left(R_{G}\right)_{\mathfrak{m}_{2} \cap R_{G}}$.

2. Torus groups.

Theorem 2.1. Assume that V is an affine variety and that G is a torus group. Then P_{G} is a locality for any $P \in V$. Let W be a G-admissible (irreducible) subvariety of V which carries P and let P^{\prime} be the locality of P on W. Then the ring P_{G}^{\prime} of G-invariants in P^{\prime} is the natural homomorphic image of P_{G}.

Proof. Let ϕ be the natural homomorphism from P onto P^{\prime}. Assume that $\phi\left(f^{\prime} \mid f\right)$ is in $P_{G}^{\prime}\left(f, f^{\prime} \in R, f(P) \neq 0\right)$. Consider the module
$M=\sum_{s \in \mathbb{M}} f^{g} K$. This is generated by G-semi-invariants, say f_{1}, \cdots, f_{t}. Since $f(P) \neq 0$, there is at least one f_{i}, say f_{1} such that $f_{1}(P) \neq 0$. $f_{1}=\sum_{i=1}^{N} a_{i} f^{g_{i}}$ with $a_{i} \in K$ and $g_{i} \in G$. Set $f_{1}^{\prime}=\sum a_{i} f^{\prime g_{i}}$. Then we have $\phi\left(f^{\prime} / f\right)=\phi\left(f_{1}^{\prime} / f_{1}\right)$. Thus we may assume that f is G-semi-invariant: $f^{g}=a(g) f \quad(a(g) \in K)$. Then $\phi\left(a(g) f^{\prime}-f^{\prime g}\right)=0$. Consider the module $M^{\prime}=\sum_{g \in G} f^{\prime g} K$ and its submodule $M^{\prime} \cap \phi^{-1}(0)$. By the complete reducibility of rational representations, we see that there is a representative $f^{\prime \prime}$ of f^{\prime} modulo $M^{\prime} \cap \phi^{-1}(0)$ such that $f^{\prime \prime g}=a(g) f^{\prime \prime}$ for any $g \in G$. Thus $f^{\prime \prime} / f$ is G-invariant and $\phi\left(f^{\prime \prime} \mid f\right)=\phi\left(f^{\prime} \mid f\right)$. Since it is obvious that the homomorphic image of a G-invariant by ϕ is a G-invariant, we complete the proof of the last half. Consider now the closed set $F(P)$ given in Lemma 1.1. Let Q be a point of $F(P)$ such that G-orbit of Q is closed. Note that Lemma 1.1, (2) implies that $F(P)$ contains only one closed G-orbit. If $Q_{G} \neq P_{G}$, then $Q_{G} \subset P_{G}$ by Lemma 1.1 , hence there is an element f^{\prime} / f in P_{G} which is not in Q_{G}. By the proof above, we may assume that $f(P) \neq 0$ and that f, f^{\prime} are semi-invariants. Then, considering the affine variety $V-$ (closed set defined by f), we can omit Q. If this process is repeated, then the dimension of G-orbit of new Q is greater than that of previous Q, by virtue of the uniqueness of closed orbit in $F(P)$. Therefore, after a finite number of steps, we have the case where $Q_{G}=P_{G} . Q_{G}$ is a locality by Lemma 1.1 , and therefore P_{G} is a locality. Thus we complete the proof of Theorem 2.1.

With the same V as before, assume now that G is a torus group of dimension 1, i.e., there is an isomorphism a from G onto the multiplicative group of K. Then R is generated by G-semi-invariants, say f_{1}, \cdots, f_{n}. Each f_{i} defines a character a_{i} of G in such a way that $f_{i}^{g}=a_{i}(g) f_{i}$. These a_{i} are powers of a.

Theorem 2.2. If all the a_{i} are powers of a with non-negative exponent, then the set $\left\{P_{G} \mid P \in U\right\}$ is the set of localities of a quasiprojective variety. Furthermore, for $P \in U$, the correspondence $\left\{P^{g} \mid g \in G\right\} \rightarrow P_{G}$ is one to one.

Proof. Let a be the ideal of R generated by all G-semi-invariants which are not G-invariants. Then every element of R / \mathfrak{a} is G-invariant. This shows that if Q is a point of the closed set F defined by \mathfrak{a}, then Q is G-invariant. Let h_{1}, \cdots, h_{r} be a basis for \mathfrak{a} such that $h_{i}^{g}=a^{n} i(g) h_{i}$ with positive n_{i}. Let \mathfrak{b} be the ideal for the closed set $V-U$. Then \mathfrak{b} is generated by G-semi-invariants. Since $F \subseteq V-U$, we see that $\mathfrak{a b}$ defines $V-U$. Thus there are a finite number of G-semi-invariants k_{1}, \cdots, k_{s} in R such that (1) $k_{i}^{g}=a^{t_{i}}(g) k_{i}$ for any $g \in G$ with $t_{i}>0$ and (2)
the ideal $\sum k_{i} R$ defines $V-U$. Then, each k_{i} may be replaced by its power (of positive exponent) without losing these two properties. Therefore we may assume that all t_{i} are the same, which we shall denote by t. Now, if $k_{i}(P) \neq 0$, then the G-orbit of P is a closed set in the affine veriety defined by $R\left[k_{i}^{-1}\right]$, whence P_{G} is a ring of quotients of the ring R_{i} of G-invariants in $R\left[k_{i}^{-1}\right]$ by Lemma 1.1. Thus the set of $P_{G}(P \in U)$ is the set of localities of dimension zero which are rings of quotients of some R_{i}. Let $k_{i j}\left(j=1, \cdots, u_{i}\right)$ be elements which generate R_{i} over K, and we take a natural number v such that $k_{i j}^{\prime}=k_{i j} k_{i}^{v} \in R$ for all i, j. We now consider the projective variety W defined by homogeneous coordinates $\left(k_{1}^{v}, \cdots, k_{s}^{v}, k_{11}^{\prime}, \cdots, k_{1 u_{1}}^{\prime}, k_{21}^{\prime}, \cdots, k_{s u_{s}}^{\prime}\right)$. Then the affine ring of W-(the closed set defined by $k_{i}^{v}=0$) is obviously R_{i}. Thus there is an open subset W^{\prime} of W such that $\left\{P_{G} \mid P \in U\right\}$ is the set of localities of points of W^{\prime}. Now we have only to prove that the correspondence $\left\{P^{g} \mid g \in G\right\} \rightarrow P_{G}$ is one to one. Assume that $U \ni Q \notin\left\{P^{g} \mid g \in G\right\}$. If $F(P) \bigcap F(Q)$ is empty, then Lemma 1.1 shows that $P_{G} \neq Q_{G}$. So we assume that $F(P) \cap F(Q)$ is not empty. The ideal \mathfrak{i}_{P} for $F(P)$ is generated by G-semi-invariants. Then considering $\mathfrak{a i}_{P}$, we see that there are a finite number of G-semi-invariants m_{1}, \cdots, m_{w} such that (1) $m_{i}^{g}=a^{t_{i}^{\prime}}(g) m_{i}$ with $t_{i}^{\prime}>0$ and (2) every point of the closed set defined by $\sum m_{i} R$ is either a G-invariant point or a point in $F(P)$. Since Q is in U and is not in $F(P)$, we have $m_{i}(Q) \neq 0$ for some i, say 1 . Take a linear combination k^{\prime} of $k_{i}^{t_{1}^{\prime}}$ so that $k^{\prime}(P), k^{\prime}(Q)$ are different from zero. Then $f=m_{1}^{t} / k^{\prime}$ is G-invariant, and is regular at P and Q. Furthermore $f(P)=0$ and $f(Q) \neq 0$. Therefore $P_{G} \neq Q_{G}$. Thus we complete the proof of Theorem 2.2.

Corollary 2.3. Assume that V_{1}, \cdots, V_{n} are affine varieties and assume that G_{i} are torus groups of dimension 1 acting on V_{i}. If the operation of G_{i} on V_{i} satisfies the condition in Theorem 2.2, then, for $V=V_{1} \times \cdots \times V_{n}$ and $G=G_{1} \times \cdots \times G_{n}$, we have the same conclusion as in Theorem 2.2.

Here we give a remark that the assumption in Theorem 2.2 is important. Namely, (i) if we do not assume the non-negativity of exponents of characters, then such a quasi-projective variety (or an abstract variety) as W^{\prime} above may not exist (see Example 2.4 below), and even if such W^{\prime} exists, the correspondence $\left\{P^{g} \mid g \in G\right\} \rightarrow P_{G}$ may not be one to one (see Example 2.5 below) and (ii) if G is a torus group of dimension greater than 1, then the non-negativity of exponents is not sufficient (see Examples 2.6 and 2.7 below).

Example 2.4. Consider the affine 3 -space defined by $R=K\left[x_{1}, x_{2}, x_{3}\right]$. Let G be the set of matrices

$$
\left(\begin{array}{ccc}
t & 0 & 0 \\
0 & t & 0 \\
0 & 0 & t^{-1}
\end{array}\right)
$$

with $t \in K, t \neq 0$. Consider $P=(a, b, 0)$ with $a \neq 0$ and $Q=(0,0, c)$ with $c \neq 0$. Then P, Q are in $U . \quad P_{G}$ is a ring of quotients of the ring R_{1} of G-invariants in $R\left[x_{1}^{-1}\right]$ by Lemma 1.1. R_{1} is obviously $K\left[x_{1} x_{3}, x_{2} x_{3}, x_{2} / x_{1}\right]$. Similary, Q_{G} is a ring of quotients of $K\left[x_{1} x_{3}, x_{2} x_{3}\right]$. Therefore we see easily that Q_{G} is strictly contained in P_{G}.

Example 2.5. Consider the affine plane V defined by $R=K[x, y]$ and let G be the set of $\left(\begin{array}{cc}t & 0 \\ 0 & t^{-1}\end{array}\right)(t \in K, t \neq 0)$. Then obviously $L_{G}=K(x y)$. Each curve $x y=a(a \in K)$ is a G-orbit for $a \neq 0$. Then curve $x y=0$ consists of three orbits, which are $\{(0, b) \mid b \neq 0\},\{(a, 0) \mid a \neq 0\}$ and $\{(0,0)\}$. If P is on one of these orbits, then P_{G} dominates $K[x y]_{(x y)}$ which is a valuation ring, hence $P_{G}=K[x y]_{(x y)}$.

Example 2.6. Consider the affine 4 -space defined by $R=K\left[x_{1}, x_{2}\right.$, $\left.x_{3}, x_{4}\right]$ and let G be the set of matrices

$$
\left(\begin{array}{cccc}
t & 0 & 0 & 0 \\
0 & u & 0 & 0 \\
0 & 0 & t u & 0 \\
0 & 0 & 0 & t^{2} u
\end{array}\right)
$$

with $t, u \in K, t u \neq 0 . \quad V-U$ is the set of points such that 3 of the coordinates are zero, hence is defined by $\sum_{i \neq j} x_{i} x_{j} R$. If $x_{i} x_{j}$ is different from zero at P, then P_{G} is a ring of quotients of the ring $R_{i j}$ of $G-$ invariants in $R\left[x_{i}^{-1}, x_{j}^{-1}\right]$. But $R_{14}=K\left[x_{1}^{2} x_{2} / x_{4}, x_{1} x_{3} / x_{4}\right], R_{23}=K\left[x_{1} x_{2} / x_{3}\right.$, $\left.x_{2} x_{4} / x_{3}^{2}\right]$ and we see that the set of all $P_{G}(P \in U)$ is not the set of localities of points of any abstract variety.

Example 2.7. If we consider the restriction of above G on the three space V defined by $R=K\left[x_{1}, x_{2}, x_{3}\right]$, then we see easily the set of $P_{G}(P \in U)$ is the set of localities of points of the projective variety defined by $\left(x_{1} x_{2}, x_{3}\right)$. But, $P=(0,1,1)$ and $Q=(1,0,1)$ belongs distinct orbits of dimension 2 and $P_{G}=Q_{G}$.

We give some remarks.
Remark 2.8. If G is a torus group, then $\left\{P_{G} \mid P \in U\right\}$ is the set of localities of points of a finite number of affine varieties of L_{G}.

The proof is immediate.

Remark 2.9. Let G be again a torus group and let V be an affine variety. If, for a G-admissible open set U^{\prime} contained in U, there are semi-invariants f_{0}, \cdots, f_{n} in R such that (1) characters of G given by f_{i} are all the same, and (2) the closed set defined by $\sum f_{i} R$ is $V-U^{\prime}$, then there is an open set W^{\prime} of the projective variety defined by the homogeneous coordinates $\left(f_{0}, \cdots, f_{n}\right)$ such that (i) the set of localities of points of W^{\prime} is the set of $\left\{P_{G} \mid P \in U^{\prime}\right\}$ and (ii) the correspondence $\left\{P^{g} \mid g \in G\right\} \rightarrow P_{G}$ is one to one (for $P \in U^{\prime}$).

For the proof, that of Theorem 2.2 is adapted easily.

3. Non-singular case.

Lemma 3.1. Let P and Q be points on V which is assumed to be normal. If $P_{G} \Phi Q_{G}$, then there exists a G-admissible divisorial closed set W of V which carries Q but not P.

Proof. Let f be an element of P_{G} which is not in Q_{G}. Then the pole of f is the required set.

Remark 3.2. The converse of Lemma 3.1 is not true in general. For instance, in Example 2.5 in $\S 2$, the line $y=0$ is G-admissible and carries Q but does not carry P, though $P_{G}=Q_{G}$.

It is known that
Lemma 3.3. If V is a non-singular affine variety and if W is a divisorial closed set of V, then $V-W$ is an affine variety.

For the proof, we refer to [1] and [2].
Now we have
Theorem 3.4. If V is a non-singular affine variety and if every rational representation of G is completely reducible, then P_{G} is a locality for any $P \in V$.

Proof. Let Q be a point of the closed set $F(P)$ (defined in Lemma 1.1) such that its G-orbit is closed. Then $Q_{G} \subseteq P_{G}$. If $Q_{G} \neq P_{G}$, then there is a G-admissible divisorial closed set W of V which carries Q but not P by Lemma 3.1. $\quad V-W$ is affine by Lemma 3.3, whence we may omit such Q by the same reason as we gave in the proof of Theorem 2.1. Thus we have the case $P_{G}=Q_{G}$, which is a locality by Lemma 1.1.

4. Semi-simple groups.

Let V be an affine variety as before.
Theorem 4.1. If R is a unique factorization domain such that every
invertible element is G-invariant and if the radical of G is unipotent, then (1) L_{G} is the field of quotients of R_{G}, (2) $P_{G}=\left(R_{G}\right)_{\left(\mathfrak{m}_{P} \cap R_{G}\right)}$ and (3) if furthermore G is connected then R_{G} is a unique factorization domain.

Proof. The general case follows easily from the case where G is connected. Therefore we assume that G is connected. Then we see that
${ }^{(*)}$ every rational representation of G into the multiplicative group of a field containing K is trivial.

Let $f^{\prime} \mid f$ be an element of L_{G}, where f, f^{\prime} are elements of R which have no common factor. Since $\left(f^{\prime} \mid f\right)^{g}=f^{\prime} \mid f=f^{\prime g} / f^{g}(g \in G)$ and since the number of prime factors of f is equal to that of f^{g}, we see that $f^{g}=a_{g} f$ with $a_{g} \in R_{G}$. Therefore (*) above shows that f is invariant ${ }^{11}$. Thus f, f^{\prime} are in R_{G}, and L_{G} is the field of quotients of R_{G}. If $f^{\prime} \mid f \in P$, then $f^{\prime} / f=h^{\prime} / h$ with $h(P) \neq 0 \quad\left(h, h^{\prime} \in R\right)$. Since f^{\prime} / f is the reduced expression of h^{\prime} / h, we have $f(P) \neq 0$, whence $f^{\prime} \mid f \in\left(R_{G}\right)_{\left(\mathfrak{m}_{P} \cap R_{G}\right)}$. Thus $\left(R_{G}\right)_{\left(\mathfrak{m}_{P} \cap R_{G}\right)}=P_{G}$. If $f \in R_{G}$, then each prime factor of f in R is invariant because G is connected (and by virtue of (*) above), whence R_{G} is a unique factorization domain.

Corollary 4.2. If furthermore R_{G} is finitely generated, hence in particular if G is semi-simple and K is of characteristic zero, then the set of $P_{G}(P \in V)$ is the set of localities of the affine variety defined by R_{G}.

One important remark to be added here is that:
Consider the case where G is semi-simple and K is characteristic zero. Then each P_{G} corresponds to the equivalence class of P given by Lemma 1.1, hence it happens sometimes that infinitely many G-orbits in U corresponds to one P_{G}. Namely, there are many examples of an affine variety V which carries a closed subset F of U such that (1) F is the union of infinitely many G-orbits and (2) if a rational function f on V is G-invariant and if f is regular at one point of F, then F is regular at every point of F and the value of f on F is constant all over F.

Existence of such an example is easily seen. But we shall give such an example under more restriction, namely, we shall construct an example as follows:

[^0]The simple group $G=S L(3, K)$ is acting of an affine space V, and V contains G-admissible non-empty open subset U^{\prime} of U which satisfies the following two conditions. (1) If P is a generic point of U^{\prime} and if Q is a point of U^{\prime}, then $\left\{P^{g} \mid g \in G\right\}$ is uniquely specialized in U^{\prime} to $\left\{Q^{g} \mid g \in G\right\}$ over the specialization $P \rightarrow Q$, namely the set of $\left(Q, Q^{g}\right)$ $\left(Q \in U^{\prime}, g \in G\right)$ is closed in $U^{\prime} \times U^{\prime}$. (2) U^{\prime} contains a closed set F which is the union of infinitely many (mutually distinct) G-orbits such that if a rational function f on V is G-invariant and is regular at one point of F, then f is regular at every point of F and the value of f on F is constant.

Example 4.3. Consider the space V of homogeneous forms of degree 5 in three variables x, y, z. Then V is an affine space of dimension 21. An element of $G=G L(3, K)$ gives a linear transformation of the variables x, y, z, and therefore it gives a linear transformation of the space V.

Let F_{1} be the smallest G-admissible set in V containing all of the forms of the type $f_{5}(x, y)+z f_{4}(x, y)+a z^{2} x^{3}$. Here, $f_{n}(x, y)$ denotes an arbitrary homogeneous form of degree n in x and y. Let F_{2} be the smallest G-admissible set in V containing all of the forms of the type $f_{5}(x, y)+z x f_{3}(x, y)+z^{2} x^{2} f_{1}(x, y)$. Let F_{3} be the set of all forms which have linear factors. Then :

The complement U^{\prime} of $F_{2} \cup F_{3}$ is the required example, with $F=F_{1} \cap U^{\prime}$.
Let P be a generic point of V and let Q be a point of U. Let g be a generic point of $G=S L(3, K)$. Assume that $\left(P, P^{g}\right) \rightarrow\left(Q, Q^{\prime}\right)$ is a specialization. Then the specialization is obtained as the specialization given by a zero-dimensional valuation v of the function field $K(P, g)$. From now on for a while, we mean specialization only the one given by v. Assume that $g_{1}, g_{2} \in S L(3, K(g))$ are specialized to non-singular matrices g_{1}^{*}, g_{2}^{*}, then $P^{g g_{2}}, P^{g_{1}}$ are specialized to $Q^{\prime g_{2}^{*}}$ and $Q^{g_{1}^{*}}$ respectively. There are such g_{1}, g_{2} with additional condition that $g_{1}^{-1} g g_{2}$ is a diagonal matrix. Therefore, considering $P^{g_{1}}, Q^{g_{1}^{*}}$ instead of P, Q, we assume that g is a diagonal matrix: $g=\left(\begin{array}{ccc}t_{1} & 0 & 0 \\ 0 & t_{2} & 0 \\ 0 & 0 & t_{3}\end{array}\right)$. Since $g \in S L(3, K(g))$, we have $t_{1} t_{2} t_{3}=1$. We set $u_{i}=v\left(t_{i}\right)$, whence $u_{1}+u_{2}+u_{3}=0$. If all the u_{i} are zero, then g is specialized to a non-singular matrix, and therefore Q^{\prime} is in the orbit of Q. We consider the other case. We may assume that $u_{1} \geq u_{2} \geq u_{3}$. Let $P=\sum_{i+j+k=5} a_{i j k} x^{i} y^{j} z^{k}$ and $Q=\sum_{i+j+k=5} b_{i j k} x^{i} y^{j} z^{k}$. Then $P^{g}=$ $\sum a_{i j k} t_{i j k} x^{i} y^{j} z^{k}$ with $t_{i j k}=t_{1}^{i} t_{2}^{j} t_{3}^{k}$ hence $v\left(t_{i j k}\right)=u_{1} i+u_{2} j+u_{3} k$. Therefore that P^{g} has a finite specialization implies that if $b_{i j k} \neq 0$, then $v\left(t_{i j k}\right) \geq 0$. Set $Q^{\prime}=\sum c_{i j k} x^{i} y^{j} z^{k}$. Then we see furthermore (i) if $v\left(t_{i j k}\right)>0$ or if both
$b_{i j k}$ and $v\left(t_{i j k}\right)$ are zero, then $c_{i j k}=0$ and (ii) if $v\left(t_{i j k}\right)<0$ (hence $b_{i j k}=0$), then by choice of the manner of approaching zero of $a_{i j k}, c_{i j k}$ can be arbitrarily given. Now we observe the situation in more detail.
(1) If $u_{2}=0$, then $u_{3}=-u_{1}$, hence we see immediately that both Q and Q^{\prime} must be in F_{2}. (2) Assume now that $u_{2}>0$. Then:
(i) If $k=0$, then $v\left(t_{i j k}\right)>0$. (ii) If $i \geq 1, k=1$, then $v\left(t_{i j k}\right)>0$. (iii) For $i=0, j=4, k=1$, the value $v\left(t_{i j k}\right)$ is non-negative if and only if $3 u_{2} \geq u_{1}$. (iv) For $i=3, j=0, k=2$, the value $v\left(t_{i j k}\right)$ is non-negative if and only if $u_{1} \geq 2 u_{2}$. (v) For the other (i, j, k), the value $v\left(t_{i j k}\right)$ is negative. Therefore Q must be in F_{1} and Q^{\prime} must be in F_{3}. (3) the case $u_{2}<0$ is the same as above (2) with opposite sign, and we see that Q must be in F_{3} and Q^{\prime} must be in F_{1}.

Thus we have proved that if Q, Q^{\prime} are in $U^{\prime},\left(P, P^{g}\right) \rightarrow\left(Q, Q^{\prime}\right)$ being a specialization, then Q^{\prime} must be in the orbit of Q.

Assume now that $Q=f_{3}(x, y)+z f_{4}(x, y)+a z^{2} x^{3}$. Then by the same specialization as above in the case where $u_{1} \geq u_{2}>0>u_{3}$ and $3 u_{2}>u_{1}>2 u_{2}$, we see that $\left(Q, Q^{g}\right) \rightarrow(Q, 0)$ is a specialization. Thus, if Q is in F_{1}, then the closure of the orbit of Q contains the origin, hence in particular, if Q_{1} and Q_{2} are in F_{1}, then the closures of orbits of Q_{1} and Q_{2} meet. Therefore, if f is a G-invariant rational function on V which is regular at one point of F_{1}, then f is regular at all points of F_{1} and the value of f on F_{1} is constant.

We shall show that $F=F_{1} \cap U^{\prime}=F_{1}-\left(F_{1} \cap\left(F_{2} \bigcup F_{3}\right)\right)$ carries infinitely many orbits. For each element of V, there corresponds uniquely a plane curve of degree 5. If Q is in either F_{1} or F_{2}, then the curve defined by Q has a triple point, hence it has no more triple point unless it has a line as a component, i.e., $Q \in F_{3}$. Therefore we see that $Q=f_{5}(x, y)$ $+z f_{4}(x, y)+a z^{2} x^{3}\left(\in F_{1}\right)$ is not in $F_{2} \bigcup F_{3}$ unless it satisfies one of the following three conditions: (a) $a=0$, (b) $f_{4}(x, y)$ is divisible by x, (c) Q has a linear factor. Thus we see that F contains a non-empty open subset of F_{1}. The dimension of the set of forms of type $f_{5}(x, y)+z f_{4}(x, y)$ $+a z^{2} x^{3}$ is 12 , hence $\operatorname{dim} F_{1} \geq 13$. Since $\operatorname{dim} G=8$, each orbit in U has dimension 8 , whence there are infinitely many orbits in F. This completes the proof of our example.

Remark 4.4. In the above V, if we take a G-admissible open subset $U^{\prime \prime}$ of U such that $U^{\prime \prime} \cap F_{2}$ is not empty, then the set of $\left(Q, Q^{g}\right)\left(Q \in U^{\prime \prime}\right.$, $g \in G)$ is not closed in $U^{\prime \prime} \times U^{\prime \prime}$, as is easily seen.

We now want to apply 4.2 to the case of projective variety.
Theorem 4.5. Assume that V is a projective variety such that its homogeneous coordinate ring \bar{R} is a unique factorization domain. If G is
a semi-simple group acting on V such that whose operation can be lifted to the operation on the representative cone \bar{V} of V (not necessarily uniquely) and if K is of characteristic zero, then the set of P_{G} is the set of localities of points of a quasi-projective variety.

Proof. The operation of G on V induces, by our assumption, an operation of a group \bar{G} on \bar{V} so that \bar{G} contains the multiplicative group G_{0} of K in its center such that $a \in G_{0}$ transforms points (a_{0}, \cdots, a_{n}) of \bar{V} to ($a a_{0}, \cdots, a a_{n}$) and \bar{G} / G_{0} is isomorphic to G. Then \bar{G} contains a semisimple group G_{1} such that $G_{0} G_{1}=\bar{G}$. The structure shows that L_{G} is the field of \bar{G}-invariants in the function field \bar{L} of \bar{V}. Let L^{*} be the field of G_{1}-invariants in \bar{L}. Then the set of $\bar{P}_{G_{1}}=\bar{P} \bigcap L^{*}(\bar{P} \in \bar{V})$ is the set of localities of points of the affine variety defined by the ring $\bar{R}_{G_{1}}$ of G_{1}-invariants in \bar{R}. The operation of G_{0} on $\bar{R}_{G_{1}}$ satisfies the condition in Theorem 2.2, and we complete the proof.

Remark 4.6. Theorem 4.1 shows that under the assumption there, the set of points Q of V which have the same Q_{G} contains generically only one orbit of maximal dimension. But this does not imply that orbits are generically closed as is easily seen by some examples.

5. Normal varieties.

The purpose of this section is to prove the following
Theorem 5.1. Even if G is a simple group, K is of characteristic zero and V is normal, then ring $P_{G}(P \in V)$ is not necessarily a Noetherian ring.

In order to prove this, we use the following two lemmas, whose proofs are found in our lecture note [3].

Lemma 5.2. Let W be a subvariety of an affine variety V and let H be a subgroup of G. Assume that G is connected, H operates on W and that each H-orbit on W is the intersection of a G-orbit on V with W. Then the ring R^{\prime} of H-invariant regular rational functions on W is the homomorphic image of a ring $R_{G}^{\prime \prime}$ consisting of G-invariant rational functions on the closure $W^{\prime \prime}$ of the union W^{G} of G-orbits of points of W such that they have no pole at any point of W^{G}. (Lemma of Seshadri).

Lemma 5. 3. Assume that K is of characteristic zero. If a representation ρ of the additive group G_{a} of K in $G L(n, K)$ is given, then there is a representation $\left(\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right)$ of $S L(2, K)$ such that $(i) \mu(g)=g$ for any $g \in S L(2, K)$ and (ii) $\lambda\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)=\rho(t)$.

Now we shall prove Theorem 5.1, by showing an example. By virtue of our counter example to the 14 -th problem of Hilbert (see [3]) and also by Theorem 4.1, we see that there is an affine ring R_{1} over K which is a unique factorization domain whose invertible elements are only elements of K, G_{a} operates on R_{1} and the ring $R_{1 G_{a}}$ of G_{a}-invariants in R_{1} has a maximal ideal \mathfrak{m}^{\prime} such that $\left(R_{1 G_{a}}\right)_{\mathfrak{m}^{\prime}}$ is not Noetherian. Let ρ be a representation of G_{a} in $G L(n, K)$ with give the operation of G_{a} on R_{1} (cf. [3]). Now consider the group $G=\left\{\left.\left(\begin{array}{cc}\lambda(g) & 0 \\ 0 & \mu(g)\end{array}\right) \right\rvert\, g \in S L(2, K)\right\}$ given by Lemma 5.3. Let \mathfrak{a}^{\prime} be the ideal such that $R_{1}=K\left[x_{1}, \cdots, x_{n}\right] / \mathfrak{a}^{\prime}$ and let W be the subvariety of the affine ($n+2$)-space V defined by $\mathfrak{a}=\mathfrak{a}^{\prime} R+\left(x_{n+1}-1\right) R+x_{n+2} R\left(R=K\left[x_{1}, \cdots, x_{n+2}\right]\right)$. Then R_{1} can be identified with R / a. Since $x_{n+1}=1$ and $x_{n+2}=0$ on W, (i) W is G_{a} admissible and (ii) no element of G outside of G_{a} transforms any point of W to any point of W. Therefore the condition in Lemma 5.2 is satisfied by our case with $H=G_{a}$. The same can be applied to the derived normal variety W^{*} of $W^{\prime \prime}$, because W is a normal variety and a generic point of $W^{\prime \prime}$ is a generic transform of a generic point of W. So, we may assume that $W^{\prime \prime}$ is normal. Thus $R_{1 G_{a}}$ is the homomorphic image of the ring $R_{G}^{\prime \prime}$ of rational functions on $W^{\prime \prime}$ which are regular on W^{G}. Consider now the maximal ideal m^{\prime} of $R_{1 G_{a}}$ and let P^{\prime} be a point of W such that $\mathfrak{m}_{P^{\prime}} \cap R_{1 G_{a}}=\mathfrak{m}^{\prime}$. Let P be the point P^{\prime} as a point on $W^{\prime \prime}$. By our choice of $R_{1},\left(R_{1 G_{a}}\right)_{\mathfrak{m}^{\prime}}$ is the set of G_{a}-invariant rational functions on W which are regular at P^{\prime} by virtue of Theorem 4.1. Therefore the homomorphic image of P_{G} in the function field of W is contained in $\left(R_{1 G_{a}}\right)_{\mathfrak{m}^{\prime}}$. The converse inclusion follows immediately from the above consequence of Lemma 5.2. Thus P_{G} has a homomorphic image which is not Noetherian, hence P_{G} itself is not Noetherian.

Kyoto University.

(Received February 24, 1962)

References

[1] O. Zariski: Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math. 78 (1954), 155-168.
[2] M. Nagata: A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto, Ser. A. Math. 30 (1956-57), 57-70; Addition and corrections, ibid. 197-200.
[3] M. Nagata: On the 14-th problem of Hilbert, Lecture Notes, Tata Institute of Fundamental Research, Bombay, 1961-62,

[^0]: 1) Since we are using elements of L_{G} in this representation of G, we have to show that this representation can be extended to a rational representation of an algebraic group over the algebraic closure \bar{L}_{G} of L_{G} containing G. This can be shown as follows:
 G acts on $\bar{R}=\bar{L}_{G} \otimes_{L_{G}} L_{G}[R]$ as a subgroup of $G L\left(n, \bar{L}_{G}\right)$ with a suitable n, hence the closure \bar{G} of G in $G L\left(n, \bar{L}_{G}\right)$ acts on \bar{R} (cf. [3]). $H=\left\{g \mid f^{g} \bar{L}_{G_{F}}=f \bar{L}_{G}\right\}$ is a closed subgroup of \bar{G} (cf. [3]). Since H contains G, we see that $H=\bar{G}$. Thus $f \bar{L}_{G}$ is a representation module of \bar{G}.
