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On the Equations of Evolution in a Banach Space

By Hiroki TANABE

§ 0. Introduction. In this paper, we again consider the equations
of evolution

(0. 1) dx(t)/dt = A(t)x(t)+f(t)

and its associated homogeneous equation

(O.l7) dx(t)/dt = A(t)x(t)

such as was treated in the previous papers [3] and [4]. However, we
shall show that we can replace the strong continuous differentiability of
A(t)A(s)~1 by its Holder continuity by means of a slight change of the
proof. It is quite clear that the differentiability of A(t)A(s)~1 is not
necessary for the construction of the formal fundamental solution U(t, s)
of (0. 1'). In the previous papers, however, we used the differentiability
essentially in appearance when we proved that the formal fundamental
solution was really the desired one. So it is in this part that the
modification of the proof is required. The inhomogeneous equation (0. 1)
can be treated similarly. Next, we shall give a generalization of a
theorem of Solomijak concerning a perturbed equation

(0. 2) dx(t)/dt = A(t)x(t) + B(t)x(t)+f(t) .

Evidently, it is absurd now to consider (0. 2) under the same assumptions
about B(t) as in [3] and [4].

For the existence of the second derivative of U(t, s), it is sufficient
to assume that A(t)A(s)~1 has a Holder continuous derivative in t.

§ 1. The fundamental solution of (0. 1'). We denote by Σ a fixed
closed sector which consists of those complex numbers λ satisfying

— #^argλ<^0, Q^>~2 Plus the origin. Throughout this paper, we

assume

Assumptions 1°. For each t with — °°<^a<^t<;*b<^vo , A(t) is a
closed operator with its domain dense in a Banach space X and its range
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in X. The resolvent set p(A(t)) of A(t\ a<^t<Lb contains Σ and the
resolvent (λ/— A(t))~l satisfies

(1.1)

for each λ e Σ, where M is a positive constant independent of λ and /.

2°. The domain ® of ^4(£) is independent of t and the bounded
operator A(f) A(s)~l is Holder continuous in t in the uniform operator
topology for each fixed 5 :

(1.2) \\A(t}A(sYl-A(r)A(sYl\\^K\t-r\\ /f>0, 0< / o<l .

By assumption 1°, A(s) generates a semi- group exp(M(s)) of bounded
operators by the formula

(1. 3) exp (tA(s)) = J-.

where Γ is any contour running from ooe~*θ to ^eiθ in the sector
) and tA(s) exp (tA(s)) is uniformly bounded in

(1.4) ||exp(M(5))||^C(M, θ)

(1. 5) ll^ω exp (M(5))|| < C(M,

where the constant on the right depends only on the arguments in the
bracket.

We shall use C to denote constants which depend only on M, θ, K, p
and b — a at the most.

The fundamental solution C7(ί, s) of (0. V) is formally given by

U(t, s) =

where /?(/, 5) is the solution of the integral equation

, 5) JT = *,(*,

(ί, s) = (^(/)-^(s)) exp ((ί-

The integral equation (1. 7) can be solved by a successive approxi-
mation method :

(1. 8) fl(*, s) = Σ Rm(t, s)
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where Rm(t, s) = Γ R,(t, ^R^r, s)dr, m=2, 3, -.
Js

By Lemma 5. 1 of [3], we have

Lemma 1. 1. The series (1. 8) converges uniformly in the wider sense
in a^s<^t^b in the uniform operator topology. The sum is strongly
continuous in a<^s<^t<^b and satisfies (1.7) and

(1.9)

Lemma 1.2. For

(1.10)

t-r.

Proof. As in Lemma 1. 3 of [3], we get

a. ID \mt, ,)-^κ s)^
On the other hand,

!(f, <r)R(<r, S)dσ- R,(ry σ)R(σy s)dσ
Js

,(/, σ)R(σ, S)dσ+\τ (R,(t, σ)-Rl(r, σ))R(<r, s}dσ .
Js

The norm of the first term on the right hand side is dominated by

(1.12) (ί, σ)R(<r, S)d<r ^ C j* (t-σγ-^σ-sY^

= CB(P,

By (1. 11), the second term is bounded in norm by

(t v-— cr (f— <r)(τ — σ)

We first estimate the integral
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If τ^(f + s)/2,

!

(t+s)/2
(t-σ)-1(r-<ry-1(σ—sy-1d<τ

s

= 2B(P,

and

(1.14) Γ (ί-σ)-1(r
J(ί + s)/2

If

(1.15)

Hence, noting (t—r)(t — s)p~2<^(t —r)p(t—s)'1, we obtain

Γτ t — T

i (t—T)P(T—SY , (t—τ)p 1
T^s Π-sY-Ίl> o ^ί- oy ^

By a similar method, we get

Combining (1. 7), (1. 11), (1. 12), (1. 16) and (1. 17), we obtain (1. 10).

Lemma 1..3. For

(1.18) ||^(ί){exp((

Proof. By (1. 3) and a simple computation

(1. 19) A(t) {exp ((f-

= ά L ̂ '

By (1.1) and A(f)(\.I-A(t)Yi = >JI^I-A(t)Y1-Ii A(t)(\I~A(t)Yl is uni-
formly bounded in a^t^b and λe£]:

(1. 20) ||A(0 (λ/-^))'1!!^ M+l .

Thus, we have
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(1.21) \\(A(t}-A(s))(\I-A(s)Γ\\

^ \\(A(t)-Λ(s))A(sΓ\\ \\A(s)(\I-A(s)Γ\\

<K(M+l)\t-s\".

The assertion of the lemma follows immediately from (1. 19), (1. 20),
(1. 21) and some elementary calculus.

We can operate A(t) to each term of the right hand side of

W(t, s) = V e*v((t-r)A(t))drR(t, s)

, s)-R(t, s))dτ

by the previous lemmas. Thus, we get

(1. 21) A(t) U(t, s) = A(t) exp ((t-s)A(s))+ {exp ((t-s)A(t))-I}R(t, s)

A(t){exp ((/-τ)A(r))-exp ((t-r)A(t))}R(r, s)dτ

A(f)exp((t-r)A(t))(R(r, s)-R(t,

It is easily seen that A(t) W(t, s) satisfies

(1. 22) \\A(t) W(t, 5)|| ̂  Ctf-sγ-1 .

Consequently, A(f)U(t, s) satisfies

(1.23) \\A(t)U(t, s)H^C(f-s)-1.

A similar formula and estimate can be proved for (3/3ί) U(t, s).
However, by the fact that for any *e£, {(3/30 Uh(t, s)-A(t)Uh(t, s)}x
tends to 0 as h \ 0 and the strong continuity of A(f) U(t, s), we can ob-
tain the estimate of (d/dt)U(t,s) as well as the relation (d/dt)U(t, s) =
A(t) U(t, s). Hence, we have

Theorem 1.1. Under Assumptions 1° and 2°, the fundamental solu-
tion U(t, s) of (0, V) exists. U(t, 5) is strongly continuous in a^s^t<b
and satisfies

(1.24) / M — t-s

with some constant C depending only on M, θ, K, p and b — a.
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Next, we shall prove the uniqueness of the solution. For this pur-
pose, it is sufficient to show that for each x 6 ®, U(t, s)x is strongly
continuously differentiable in 5 and it satisfies — (d/ds) U(t, s)x =
U(t,s)A(s)x (§1 of [4]). We showed in [4] that this is the case if
A(t)A(s)~1 is strongly continuously difierentiable in t.

Let j(f) be an infinitely differentiable non-negative function defined

in -oo</<oo such that ί j(t)dt = l and j(t)=Q for |ί|>l. For any

natural number ny we put jn(f) = nj(nt). Thus jn(t) determines a mollifier.
We may and will assume that A(f) is defined on the whole real line
— oo<^<^oo and satisfies Assumptions 1° and 2° there with the same
constants.

For any #e®, we define

(I- 25) AJfix = Γ jH(t-τ)A(r)xdτ .
V "DO

By an elementary calculus we have

(1. 26) x - (λ/- 4X0) (λ/- A(t)Γx

y-C-r) (A(r)-A(t)) (\I-

for any *6X. However, for the value of t such that jn(t— τ)φO in the
above integral

\\(A(r)-A(t) )(\I-A(t)Γ\\

This implies

(1. 27) ||*- (λ/-

for any Λ, or

(1.28)

rf

for any j>e®. This shows that An(t) is closed on ® if /ί(M-hl>rp<l.
In fact, let {y3} be a sequence from ® such that y^y and (λ,I—An(f))yί-+z
as J-+OQ. Replacing j by yj—yk in (1.28), we see that (\I—A(t))yj also
converges to some element, which together with the closedness of A(t)
implies je® and (\I—A(t))yj-+(\I—A(t))y. Finally, putting y—ys in
place of y in (1.28) shows that (λ/-An(t})y j-*(\I~An(t})y. Thus, the
closedness of AH(t) has been proved.
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By (1.27), for any n so large that /JΓ(M+l>rp<l, (λ,I~An(t))
x(λ/— A(t)}~1 has a bounded inverse. Hence, the range of \I—An(f) is
the whole of X. More precisely, \I—An(t) maps © onto X in a one-to-
one manner. As λ is any number of Σ> this implies

By (1. 27), we immediately obtain for any λ e Σ

(1.29)

where Mn^M{l — /^(M-l-l)^''}'1 tends to M as w-^°o, and

(1. 30) ||(λ/-^))(λ/- A,(0)-ΊI ̂  ̂ (M+l)^

By a simple computation and (1.30) for λ=0, we also obtain

where Kn = K{l-K(M-\-l)n-p}-1 tends to K as w-*oo. Thus, for the
equation

(1.31) dx(t)/dt = AH(t)x(t)

all the hypotheses in [4] are satisfied, therefore the fundamental solu-
tion UΛ(t, s) of (1.31) exists. \\Un(t, s)\\ is bounded by a constant which
depends continuously on Mn, θ, Kn, p and t — s. Hence Un(ty s) is uni-
formly bounded with respect to t, s and n if n is sufficiently large. We
have also

(1. 32) UH(t, r) UH(r, s) = Un(t, s) for 5 < r ̂  t , and

(1.33) ^sUn(t9s)x=Un(t9s)AH(s)x for * < Ξ ® .

Let x be any element in S). Then,

£7(ί, S)x-Un(t, S)X= \'j-(UH(t,σ)U(σ,s)x)dσ
Js σσ

= Γ £7β(ί, <r)(A(α-)-A»)C/(σ, 5)jfrfσ
Js

= [Un(t, σ)(A(σ-)-An(σ)}A(σΓA(σ}U(σ, s) A(sΓ A(s) xdσ .
Js

By (1.27) and the uniform boundedness of A(σ)U(σ, s)A(s)~\ we get

, s)-UH(t, s))x\\

, s)A(sΓ\\ \\A(s)x\\(t - s) .
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Thus, £/„(/, s) tends to U(t, s) on 3), consequently on the whole of X.
Letting n->^ in (1.32), we get

(1. 34) U(t, r) U(r, s) = U(t, s) for s^r^t, and

(1. 35) ~ U(t, s)x = U(t, s)A(s)x for x G © .
C7o

However, to show (1. 35), we must verify that the convergence of
UH(t, s)AH(s)x to U(t, s)A(s)x is uniform with respect to 5. If we want
to avoid this nuisance we can do as follows. Using

(1.36) \\R(t9

which can be easily proved, we can show

(1.37)
as

h

for x G SX Combining this with (1. 34), we readily obtain (1. 35).

Theorem 1.2. t/^ύfer Assumptions 1° tfwd 2°, /fe solution x(t) of
(0.1) is uniquely determined by the inhomogeneous term and the initial
data. Moreover y the fundamental solution of (0. 1') satisfies (1. 34) and
(1. 35).

REMARK. If there exists an operator valued function £7(ί, 5) with
the property that {/(/, s)# gives the solution of (0. Γ) having the initial
value x at t = s for each #6® and that (1.37) holds, then, the following
three assertions are equivalent:

i) the uniqueness holds for (0.1),
ii) (1. 34) holds,

iii) (1. 35) holds.

Next, we consider the inhomogeneous equation (0.1).

Theorem 1. 3. // /(/) is Holder continuous in a<ΞLt^,b :

(1.38) \\f(t)-f(r)\\^F t-r \ F>0, 0<γ<l ,

then

(1. 39) χ(t) = U(t, S)*+ Γ U(t, σ)f(σ)dσ
J s

is the solution of (1.1) in s<^t<^b corresponding to the initial condition
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Proof. By (1. 22), we have

A(t) Γ W(t, σ)f(σ)dσ = {* A(t)W(t, σ)f(σ}dσ .
Js Js

As in the proof of Theorem 1. 1, we can show

4(0 Γexp((/-σ)^(σ ))/(σ)rfσ = {exp ((/-s)4(0)-/}/(0
J s

+ Γ 4(0 {exp ((/-<r)4(«r))-exp ((t - σ) A(t))} f(σ)dσ +
Js

+ Γ A(t) exp ((f-<r)4(0) (f(σ)-f(t))dσ .
Js

As hi 0,

j-f J'~* U(t, σ)f(σ)dσ-A(t) {'"* U(t, <τ}f(σ)dσ-f(t}

= U(t, /-A)/(ί-A)-/(0->0,

S ί
U(t9 σ)f(σ)dσ and

5

' U(t, σ}f(σ)dσ = A(t) ' U(t, σ}f(σ}dσ+f(t} . (q.e.d.)

Next, we consider a perturbed equation

(1. 40) dx(f)ldt =

We denote by (1. 407) the associated homogeneous equation of (1. 40).
B(t] is assumed to satisfy

4°. The bounded operator B(t)A(s}~1 is strongly continuous in
^b for every fixed 5.

5°. There exist positive constants C0 and ^^1 such that

(1.41)

for a^Lty s^b and
Then the formal fundamental solution f/(ί, 5) of (1. 400 is given by

(i.42) u(t, s) = Σ:=O um(t, ^),
where E70(ί, 5) is the fundamental solution of (0. V) and Um(t' s) =

)B(σ)Um-&, S)dσ = Γ Um^(t9 σ}B(σ}UQ(σy s}dσ, m = I, 2, 3, -.
Js

From (1. 41), it follows that there is a constant C2 such that
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\\B(t)U0(t,s)\\^C2(t-s)-». If ||t70(ί, 5)||<C1 in a^s^t^b, then for any

In general, we do not know whether E7(f, 5) defined by (1. 42) is really
the fundamental solution of (1. 40'). However, the assumptions above
are sufficient for the validity of

-(d/ds)U(t, s}x = U(t, s)(A(s) + B(s))x

for x 6 ® (see [4]). Hence, we have

Theorem 1.4. The solution x(f) of (1.40) which is continuous in
s^t^b and satisfies (1.40) in s<^t^b is uniquely determined by the
initial data at t = s and the inhomogeneous part /(/), s<^t^,b.

The following theorem is a generalization of Theorem 6 of Solomi-
jak [1].

Theorem 1.5. // there exist positive constants a and δ,
such that B(f)A(t)-" and A(t}*B(t)A(t)~*-* are bounded operators and
strongly continuous in a<^t^Lb, then U(t, s) defined by (1. 42) is the funda-
mental solution of (1. 407) cmd there is a constant Cr such that

(1.44) U(t, s) < ~-s, \\A(t) U(t, s)\I ̂  j~ and

\\B(t)U(t>S)\\<^-a.

If f(f) is Holder continuous, then the solution x(t} of (1. 40) corresponding
to the initial condition x(s) = x is given by

X(t) = [/(/, S)X+ Γ U(t, σ)f(σ)dσ.
J s

Proof. We have only to prove the first half of the theorem. Let
TV be a positive constant with which we have \\B(t)A(t)-*\\<Z.N and
\\A(t)8B(t)A(t)~a~8\\^N. Assumptions 3°-5° are all implied by the
assumptions of the theorem. First we prove the following lemma.

Lemma 1.4. There is a constant C* such that

(1. 45)

Proof. It is easy to see
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(1.46) ξΛ exp((f-σ)Λ(o ))β(σ)£/β(<7 , s)dσ = B(t)U,(t, s)

+ Γ A(σ γ-s exp ((t-σ )A(σ'))A(σ)
sB(σ )A(σ')-a-sA(σ')a+S U0(σ, s)d<r .

Js

Using

(1.47) \\A(σ )«+8U0(σ, s)\\<C4(σ~ s)-»~8 ,

(1. 48) \\A(σy~s exp ((/-σ-)̂ (σ-))|| ̂  C^-σ-)*-1 ,

we see that the norm of the second term on the right of (1.46) is
bounded by

Combining this with \\B(ί)U,(t, s)\\^C2(t-s}-", we obtain

r, s)dσ

The above inequality, together with the easily verifiable inequality

implies (1.45).
As h |0

k U0(t, σ}B(σ)UQ(σ, s)dσ-A(t} J'~* U0(t, σ)B(σ)U0(σ, s)dσ

= t70(/, t-K)B(t-h}U,(t-h, s)

S
t

U0(t, σ)
s

x B{σ) C70(σ, s)dσ is a bounded operator and that

By induction, for any mS>l, we obtain

(1. 50) (3/3ί) Um(t, s) = A(t) Um(t, s) + B(f) Um^(t, s).

Again, by induction, we get

3
(1. 51)

(1.52)

Um(t, Γ(m(\-a)}

CT
(t— o

( ^
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Combining (1. 50), (1. 51) and (1. 52), we obtain the theorem.

§ 2. Successive derivative of the solution. We shall show that
if A(ΐ)A(s)~l has a Holder continuous derivative A'(f)A(s)~\ U(t, s) is
twice continuously differentiate. The computation is tedious and trou-
blesome, so we will only sketch the proof. We assume that

(2. l)

, s)dr

, s) can be written follows :

(2. 2) j-t W(t, s} = (' (Jt + Jϊ) exp (α-

-R(t,

where sl =

(2. 3)

. If we put

, , -.

then (a/3ί + a/aτ)exp((ί-τ)^L(τ)) = F(^, T, T) and, as is easily proved,

(2. 4) \\A(t}(F(t, T, ί)-F(ί, T, τ))| |f£ Ctf-rΓ1 .

Consequently, the norm of each term of the right member of

(2. 5) A(t) Γ (|̂ +|:) exp((^-τ)^(τ)) /?(r, 5)rfτ = Γ A(t)F(t, r, /)rfτ «(ί, s)JSl\ot or/ jSl

+ Γ A(t) (F(t, r, τ)-F(t, T, t))R(r, s)dr +
JSl

+ Γ A(t)F(t, r, t) (R(r, s)-R(t, S))rfτ
J^i

is uniformly bounded. Next, for s<^r<^t, as is easily proved,

(2.6) -tR(t, S)--T

Using (2.6), we can easily prove

(2.7) A(t) Γ
.Is,

Combining (2.2), (2.5) and (2.7), we obtain
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(2.8)

£ U(t, s)

t-s

c

and

As U(t,s) satisfies (0.10, we see that A(t)2U(tys) and (d/dt)2U(ty s)
both exist and are bounded by C(t — s)~2 in norm. Hence, we have

Theorem 2.1. 7/ ^(^^(s)"1 /z#s a Holder continuous derivative in
t, (d/dt)2U(t,s), A(t)(d/dt)U(t,s) and A(t}2U(tys) are all bounded opera-
tors whose norms are dominated by C(t—$)~2.

We could also treat the inhomogeneous equation, but we omit it
because it is tedious and of little interest.

§ 3. Example. As an example, we consider a partial differential
equation

(3.1) j-u(ty x) = Σ aΛ(t,
at \Λ\^2m

in a bounded cylindrical domain [#, ί] x G. We assume that the boun-
dary 3G of G is sufficiently smooth. We will consider (3. 1) in ' LP(G\

We denote by Wl

p(G) the set of all the complex- valued functions
defined in G whose distribution derivatives D*u belong to LP(G) for any
OL with O^l^l^/, and by Wl

p(G) the set of all the complex-valued func-
tions in Wl

p(G) whose distribution derivatives of order at most /—I all
vanish on 3G in the usual generalized sense.

We assume that for each /, A(t)= Σ «Λ(ί, "x)(d/3x)Λ is uniformly
\cύ\^2m

strongly elliptic and the coefficients aa(t, x) are so smooth that the
assumptions of Theorem 4 of Solomijak [2] hold good if we add a
sufficiently large positive number to A(f) if necessary. Hence we may
assume that those assumptions hold for A(f) itself uniformly in a^t^b.
Therefore, there exist a positive number M and a sector Σ °f the type
mentioned in § 1 such that for any λ e Σ we have

Next, we also assume that each aΛ(t, x} is Holder continuous in t uni-
formly in [#, b~] x G :

Then, Assumptions 1° and 2° are satisfied by A(ί). Hence the fun da-
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mental solution U(ty s) of (3.1) exists. It is also easily seen that for

any integer / with O5j/^2m, we have

IG
with some positive constant C.

If each aa(ty x) has a bounded derivative in t which is uniformly
Holder continuous in t or if the coefficients of the formal adjoint of
A(ί) are all uniformly Holder continuous in t, then the adjoint operator
U(t, s)* of U(t, s) is the fundamental solution of the adjoint equation

(§ 1 of [3] and [4]):

_J*f,(s) = A(s)*v(s).
as

(Received September 14, 1960)
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