Decompositions of a Completely Simple Semigroup

By Takayuki Tamura

§ 1. Introduction.

In this paper we shall study the method of finding all the decompositions of a completely simple semigroup and shall apply the result to the two special cases: an indecomposable completely simple semigroup [2] and a \mathfrak{S}-semigroup [4]. By a decomposition of a semigroup S we mean a classification of the elements of S due to a congruence relation in S. Let S be a completely simple semigroup throughout this paper. According to Rees [1], it is faithfully represented as a regular matrix semigroup whose ground group is G and whose defining matrix semigroup is $P=\left(p_{\mu_{\lambda}}\right), \mu \in L, \lambda \in M$, that is, either $S=\{(x ; \lambda \mu) \mid x \in G, \mu \in L$, $\lambda \in M\}$ or S with a two-sided zero 0 , where the multiplication is defined as

$$
(x ; \lambda \mu)(y ; \xi \eta)= \begin{cases}\left(x p_{\mu \xi} y ; \lambda \eta\right) & \text { if } p_{\mu \xi} \neq 0 \\ 0 & \text { if } p_{\mu \xi}=0 \text { and hence } S \text { has } 0 .\end{cases}
$$

For the sake of simplicity S is denoted as

$$
\operatorname{Simp} .(G, 0 ; P) \text { or } \operatorname{Simp.}(G ; P)
$$

according as S has 0 or not. L and M may be considered as a rightsingular semigroup and a left-singular semigroup respectively [5].

§ 2. Normal Form of Defining Matrix.

We define two equivalence relations $\frac{0}{m}$ and $\frac{0}{L}$ in M and L respectively: we mean by $\lambda \frac{0}{\mathcal{M}} \sigma$ that $p_{\eta \lambda} \neq 0$ if and only if $p_{\eta \sigma} \neq 0$ for all $\eta \in L$; by $\mu \stackrel{\circ}{L}_{\sim}^{\sim}$ that $p_{\mu \xi} \neq 0$ if and only if $p_{\tau \xi} \neq 0$ for all $\xi \in M$. Let $L=\sum_{r} L r$, and $M=\sum_{\mathfrak{m}} M_{\mathfrak{m}}$ be the classifications of the elements of L and M due to the relations $\stackrel{0}{L}$ and $\frac{0}{M}$ respectively.

Lemma 1. A defining matrix is equivalent to one which satisfies the following two conditions. Let e be a unit of G.
(1) For any \mathfrak{m}, there is $\alpha(\mathfrak{m}) \in L$ such that $p_{\alpha(\mathfrak{m}), \xi}=e$ for all $\xi \in M_{\mathfrak{m}}$.
(2) For any \mathfrak{l}, there is $\beta(\mathfrak{l}) \in M$ such that $p_{\eta, \beta(\mathfrak{l})}=e$ for all $\eta \in L_{\mathfrak{l}}$.

Proof. First, for any \mathfrak{m}, we can easily choose $a(\mathfrak{m}) \in L$ such that
(3) $p_{\alpha(\mathfrak{m}), \xi} \neq 0$ for all $\xi \in M_{\mathfrak{m}}$,
(4) If $\alpha\left(m_{1}\right) \frac{0}{L} \alpha\left(m_{2}\right)$, then $\alpha\left(m_{1}\right)=\alpha\left(m_{2}\right)$.

Next, for a mapping $\mathrm{m} \rightarrow \alpha(\mathrm{m}), \beta(\mathrm{l}) \in M$ is determined such that the following conditions are satisfied:
(5) $p_{\eta, \beta(\mathfrak{I})} \neq 0$ for all $\eta \in L_{\mathfrak{r}}$
(6) if there is \mathfrak{m} such that $\alpha(\mathfrak{m}) \in L_{\mathfrak{l}}$, then we let $\beta(\mathfrak{l}) \in M_{\mathfrak{m}_{1}}$ and $\alpha\left(m_{1}\right) \in L_{l}$ for one m_{1} among m.

Consider the matrices
and

$$
\begin{array}{ll}
Q=\left(q_{\lambda_{1} \lambda_{2}}\right) & \lambda_{1}, \lambda_{2} \in M \\
R=\left(r_{\mu_{1} \mu_{2}}\right) & \mu_{1}, \mu_{2} \in L
\end{array}
$$

where

$$
\begin{aligned}
& q_{\lambda_{1} \lambda_{2}}= \begin{cases}p_{\alpha(\mathfrak{m}), \mathfrak{k}}^{-1} & \text { if } \lambda_{1}=\lambda_{2}=\xi \in M_{\mathfrak{m}} \\
0 & \text { if } \lambda_{1} \neq \lambda_{2}\end{cases} \\
& r_{\mu_{1} \mu_{2}}= \begin{cases}e & \text { if } \mu_{1}=\mu_{2}=\alpha(\mathrm{m}) \text { for some } \mathrm{m} \\
p_{\alpha\left(\mathfrak{m}^{\prime}\right), \beta(\mathfrak{l})} p_{\eta, \beta(\mathfrak{l})}^{-1} & \text { if } \alpha(\mathrm{m}) \neq \mu_{1}=\mu_{2}=\eta \text { for all } \mathrm{m}, \text { and we } \\
0 & \text { let } \eta \in L_{\mathfrak{l}} \text { and } \beta(\mathfrak{l}) \in M_{\mathfrak{m}^{\prime}}\end{cases} \\
& 0
\end{aligned}
$$

Then, setting $R(P Q)=\left(t_{\mu_{\lambda}}\right)$, we have

$$
t_{\mu_{\lambda}}= \begin{cases}p_{\mu \lambda} p_{\alpha(\mathfrak{m}), \lambda}^{-1} & \text { if } \mu=\alpha\left(\mathfrak{m}^{\prime \prime}\right) \text { for some } \mathfrak{m}^{\prime \prime}, \text { and } \lambda \in M_{\mathfrak{m}} \\ p_{\alpha\left(\mathfrak{m}^{\prime}\right), \beta(\mathfrak{l})} p_{\mu, \beta(\mathfrak{l})}^{-1} p_{\mu_{\lambda}} p_{\alpha(\mathfrak{H}), \lambda}^{-1} & \text { if } \mu \neq \alpha\left(\mathfrak{m}^{\prime \prime}\right) \text { for all } \mathfrak{m}^{\prime \prime}, \text { we let } \lambda \in M_{\mathfrak{m}} \\ \mu \in L \mathfrak{r}, \beta(\mathfrak{l}) \in M_{\mathfrak{m}^{\prime}},\end{cases}
$$

and it is easily shown that $R P Q$ satisfies (1) and (2). The conditions (4) and (6) are available for the proof of (2) in the case that $\eta=\alpha(\mathfrak{m}) \in L_{\mathrm{r}}$ for some m . Thus the proof of the Lemma is completed.

The form, $R P Q$, which satisfies (1) and (2), is called a normal form of P.

§ 3. Decompositions.

Hereafter we shall assume that S has a matrix of normal form as the defining matrix. Let \sim denote a congruence relation in $S . \sim$ is said to be trivial if either $x \sim y$ for all x, y or $x \sim y$ for only $x=y$.

Lemma 2. Let \sim be a non-trivial congruence relation. $\left(x ; \lambda_{\mu}\right) \sim$ ($y ; \sigma \tau$) implies $\lambda \frac{0}{M} \sigma, \mu \frac{0}{L} \tau$ and hence there are α and β such that
$p_{\alpha \lambda}=p_{\alpha \sigma}=e, p_{\mu \beta}=p_{\tau \beta}=e$ where e is a unit of G.
Proof. Suppose $p_{\eta_{0} \lambda} \neq 0$ as well as $p_{\boldsymbol{n}_{0} \sigma}=0$ for some η_{0}, and take any element ($u ; \xi \eta$), then, for certain $p_{\mu \xi_{0}} \neq 0$,

$$
\begin{aligned}
(u ; \xi \eta) & =\left(u x^{-1} p_{\eta_{0} \lambda}^{-1} ; \xi \eta_{0}\right)(x ; \lambda \mu)\left(p_{\mu_{0}}^{-1} ; \xi_{0} \eta\right) \\
& \sim\left(u x^{-1} p_{\eta_{0} \lambda}^{-1} ; \xi \eta_{0}\right)(y ; \sigma \tau)\left(p_{\mu_{\xi_{0}}}^{-1} ; \xi_{0} \eta\right)=0 .
\end{aligned}
$$

This shows that the relation \sim is a trivial congruence relation, contradicting the assumption. The remaining part is similarly proved. The existence of α and β is clear by a normal form of the defining matrix, q. e. d.

Now we derive the relations \approx in $G, \widetilde{\pi}$ in M, and \widetilde{L} in L from the congruence relation \sim in S as defined in the following way.
$x \approx y$ if there are $\lambda, \sigma \in M, \mu, \tau \in L$ such that $\left(x ; \lambda_{\mu}\right) \sim(y ; \sigma \tau)$,
$\lambda \widetilde{\mathbb{K}} \sigma$ if there are $x, y \in G, \mu, \tau \in L$ such that $(x ; \lambda \mu) \sim(y ; \sigma \tau)$,
$\mu \widetilde{\tau} \boldsymbol{\tau}$ if there are $x, y \in G, \lambda, \sigma \in M$ such that $(x ; \lambda \mu) \sim(y ; \sigma \tau)$.
Lemma 3. The relations $\approx, \widetilde{\mathbb{m}}$ and $\widetilde{\mathcal{L}}$ are all congruence relations.
Proof. Reflexivity and symmetry are evident. Let us prove transitivity. By $x \approx y$ and $y \approx z$ there are $\lambda, \mu, \sigma, \tau, \sigma^{\prime}, \tau^{\prime}, \kappa$ and ν such that

$$
(x, \lambda \mu) \sim(y ; \sigma \tau), \quad\left(y ; \sigma^{\prime} \tau^{\prime}\right) \sim(z ; \kappa \nu) .
$$

According to Lemma 2,

$$
p_{\alpha \lambda}=p_{\alpha \sigma}=e, \quad p_{\mu \beta}=p_{\tau \beta}=e \quad \text { for certain } \alpha \text { and } \beta,
$$

so that we get

$$
\begin{gathered}
\left(e ; \sigma^{\prime} \alpha\right)(x ; \lambda \mu)\left(e ; \beta \tau^{\prime}\right) \sim\left(e ; \sigma^{\prime} \alpha\right)(y ; \sigma \tau)\left(e ; \beta \tau^{\prime}\right) \\
\left(x ; \sigma^{\prime} \tau^{\prime}\right) \sim(z ; \kappa \nu) .
\end{gathered}
$$

Thus we have proved $x \approx z$.
Transitivity of $\widetilde{\mathbb{H}}$ is proved from $(x ; \lambda \mu) \sim(y ; \sigma \tau),\left(y^{\prime} ; \sigma \tau^{\prime}\right) \sim$ $(z ; \kappa \nu)$ and $(x ; \lambda \mu)\left(y^{-1} y^{\prime} ; \beta \tau^{\prime}\right) \sim(y ; \sigma \tau)\left(y^{-1} y^{\prime} ; \beta \tau^{\prime}\right)$ where $p_{\mu,}=p_{\tau \beta}=e$. We get transitivity of \widetilde{L} analogously.

Next, $x \approx y$ implies $x z \approx y z$ and $z x \approx z y$ because

$$
\begin{aligned}
& (x ; \lambda \mu)(z ; \beta \mu) \sim(y ; \sigma \tau)(z ; \beta \mu) \\
& (z ; \lambda \alpha)(x ; \lambda \mu) \sim(z ; \lambda \alpha)(y ; \sigma \tau)
\end{aligned}
$$

under the assumption $(x ; \lambda \mu) \sim(y ; \sigma \tau)$ where $p_{\mu \beta}=p_{\tau \beta}=p_{a \lambda}=p_{\alpha \sigma}=e$. The proof for $\widetilde{\mathbb{K}}$ and $\widetilde{\mathcal{L}}$ is clear.

Lemma 4. If $\lambda_{\widetilde{\Psi}} \sigma$ and $p_{n \lambda} \neq 0$, then $p_{\eta \lambda} \approx p_{\eta \sigma} \neq 0$ for all η. If $\mu_{\widetilde{L} \tau}^{\tau}$ and $p_{\mu \xi} \neq 0$, then $p_{\mu \xi} \approx p_{\tau \xi} \neq 0$ for all ξ.

Proof. By Lemma 2, it is evident that $p_{\eta \sigma} \neq 0, p_{\tau \xi} \neq 0$. Find β such that $p_{\mu \beta}=p_{\tau \beta}=e$. Multiplying each of $(x ; \lambda \mu)$ and $(y ; \sigma \tau)$ by $\left(x^{-1} ; \beta \mu\right)$ from right, we get

$$
(e ; \lambda \mu) \sim\left(y x^{-1} ; \sigma \mu\right) \quad \text { whence } \quad e \approx y x^{-1}
$$

Moreover, from $(e ; \lambda \eta)(e ; \lambda \mu) \sim(e ; \lambda \eta)\left(y x^{-1} ; \sigma \mu\right)$
we have

$$
p_{\eta \lambda} \approx p_{\eta \sigma} y x^{-1} \approx p_{\eta \sigma}
$$

completing the proof. Similarly $p_{\mu \xi} \approx p_{\tau \xi}$ is proved, q. e.d.
Conversely, consider congruence relations $\widetilde{\mathbb{I}}, \widetilde{\tau}, \approx$ in M, L, G respectively such that

$$
\begin{aligned}
\lambda \widetilde{\mathbb{M}} \sigma & \text { implies } \lambda \frac{0}{\widetilde{M}} \sigma, \\
\mu \widetilde{L} \tau & \text { implies } \mu \stackrel{0}{L} \tau, \\
\approx & \text { makes Lemma } 4 \text { hold. } .
\end{aligned}
$$

For these congruence relations, a relation \sim in S is defined as

$$
(x ; \lambda \mu) \sim(y ; \sigma \tau) \text { if } x \approx y, \lambda_{\widetilde{M}} \sigma, \text { and } \mu \widetilde{L_{\tau}}
$$

Then it is easily shown that the relation is a congruence relation.
Theorem 1. We obtain, as follows, every congruence relation in a completely simple semigroup S with a ground group G and with a defining matrix $P=\left(p_{\mu_{\lambda}}\right), \lambda \in M, \mu \in L$. First, for a pair of the congruence relations $\widetilde{\pi}$ and $\widetilde{\tau}$ taken arbitrarily, independently each other, there is at least one congruence relation \approx in G which satisfies

$$
\begin{array}{llll}
\lambda_{\widetilde{\mathbb{}} \sigma} & \text { implies } & p_{n \lambda} \approx p_{\eta \sigma} \text { for all } \eta, \\
\mu \widetilde{\tau} \tau & \text { implies } & p_{\mu \xi} \approx p_{\tau \xi} \text { for all } \xi .
\end{array}
$$

By a triplet of the three congruence relations $\widetilde{\mathbb{M}}, \widetilde{L}, a$ congruence relation \sim in S is determined as

$$
(x ; \lambda \mu) \sim(y ; \sigma \tau) \text { means that } x \approx y, \lambda \widetilde{\mathbb{K}} \sigma, \text { and } \mu \widetilde{\mathcal{L}} \tau
$$

§4. Examples.

We shall arrange a few examples which follow from Theorem 1.
First, we can easily determine the structure of an indecomposable completely simple semigroup, which was obtained in [2].

Example 1. A completely simple semigroup S is indecomposable if and only if the following three conditions are satisfied.
(7) The ground group is $G=\{e\}$.
(8) $\lambda \frac{0}{m} \sigma$ if and only if $\lambda=\sigma$.
(9) $\mu \stackrel{0}{T} \tau$ if and only if $\mu=\tau$.

Example 2. Consider a finite simple semigroup S with a ground group G and with the defining matrix $\binom{e}{e}$ or (ee $)$.

Let $x \rightarrow f(x)$ be a homomorphism of G to certain group $G^{\prime}: G^{\prime}=f(G)$, $e^{\prime}=f(e)$. Then any homomorphism of S is given as either (10) or (11).

$$
\begin{equation*}
(x ; \lambda \mu) \rightarrow(f(x) ; \lambda \mu) \tag{10}
\end{equation*}
$$

where the homomorphic image S^{\prime} of S is also a completely simple semigroup in which G^{\prime} is the ground group and $P^{\prime}=\left(f\left(p_{\mu_{\lambda}}\right)\right)$ is the defining matrix.
(11) $\quad(x ; \lambda \mu) \rightarrow f(x) \quad$ where $S^{\prime}=G^{\prime}$.

Example 3. A finite simple semigroup S with a ground group G and with the defining matrix $\left(\begin{array}{ll}e & e \\ e & a\end{array}\right)$ where $a \neq 0$. Any homomorphic image of S is given as one of

$$
\begin{aligned}
& (x ; \lambda \mu) \rightarrow(f(x) ; \lambda \mu) \quad \text { where } S^{\prime}=\operatorname{Simp} .\left(f(G) ;\binom{e^{\prime} e^{\prime}}{e^{\prime} f(a)}\right), \\
& (x ; \lambda \mu) \rightarrow(f(x) ; \lambda 1) \quad \text { where } S^{\prime}=\operatorname{Simp} .\left(f(G) ;\left(e^{\prime} e^{\prime}\right)\right) \text { and } f(e)=f(a)=e^{\prime}, \\
& (x ; \lambda \mu) \rightarrow(f(x) ; 1 \mu) \quad \text { where } S^{\prime}=\operatorname{Simp} .\left(f(G) ;\binom{e^{\prime}}{e^{\prime}}\right) \text { and } f(e)=f(a)=e^{\prime} . \\
& (x ; \lambda \mu) \rightarrow f(x) \quad \text { where } S^{\prime}=f(G) .
\end{aligned}
$$

§ 5. $\mathfrak{W}_{\mathrm{G}}$-Semigroups.

In this paragraph S denotes a finite simple semigroup. If a decomposition of S classifies the elements into some classes composed of equal number of elements, then the decomposition is called homogeneous. We term by \mathfrak{S}-semigroup a finite semigroup S with \mathfrak{K}-property, i.e., the property that every decomposition of S is homogeneous [4]. It goes without saying that any semigroup of order 2 and any indecomposable finite semigroup are \mathfrak{S}-semigroups. We assume that the order of S is >2.

Lemma 5. A \mathfrak{S}-semigroup is simple.
Proof. If a \mathfrak{S}-semigroup S is not simple, a proper ideal I exists so
that the difference semigroup ($S: I$) of S modulo I would result in a non-homogeneous decomposition of S, q. e.d.

Lemma 6. If a Se-semigroup S has zero $\mathbf{0}$, then S is indecomposable.
Proof. Let \sim be a congruence relation in S. From Lemma 5 follows that there is nothing but the trivial decompositions, i.e., either $0 \sim x$ for all $x \in S$ or $0 \sim x$ for only $x=0$. In the latter case, by homogeneity, $x \neq y$ implies $x \nsim y$ for every x, y, q.e.d.

Corollary 1. If a \mathfrak{S}-semigroup S has a non-trivial decomposition, then S is a simple semigroup without zero.

Accordingly a \mathfrak{K}-semigroup S may be considered as a semigroup $S=\operatorname{Simp} .\left(G ;\left(p_{j i}\right)\right)$ where let G be a group of order g, let $P=\left(p_{j i}\right)$ be a matrix of (l, m) type i.e. $i=1, \cdots, m ; j=1, \cdots, l$.

Lemma 7. If S is a \mathfrak{S}-semigroup which has no zero, then $m \leqq 2$, $l \leqq 2$.

Proof. Suppose, for example, $m \geqq 3$. Consider a congruence relation \sim in S as follows.
$(x ; k j) \sim\left(y ; k j^{\prime}\right) \quad$ for any $k>2$, any j, and any j^{\prime},
$(x ; k j) \nsim\left(y ; k^{\prime} j^{\prime}\right)$ for any $k>2, k^{\prime}>2, k \neq k^{\prime}$ any j, and any j^{\prime},
$(x ; 1 j) \sim\left(y ; 2 j^{\prime}\right)$ for any j, and any j^{\prime},
where x and y run independently throughout G.
Then we have a non-homogeneous decomposition
where

$$
\underset{-}{S}=\bar{S} \cup S_{3} \cup S_{4} \cup \ldots
$$

$$
\begin{aligned}
\bar{S} & =\{(x ; i j) \mid x \in G, i=1,2 ; 1 \leqq j \leqq l\} \\
S_{k} & =\{(x ; k j) \mid x \in G, 1 \leqq j \leqq l\}, \quad k=3,4, \cdots
\end{aligned}
$$

and the order of \bar{S} is $2 g l$, that of S_{k} is $g l$. This contradicts the assumption of \mathfrak{S}. Hence $m \leqq 2$. Similarly $l \leqq 2$ is proved.

Therefore a \mathfrak{S}-semigroup which has no zero must have a structure of the following four.

$$
\begin{aligned}
& \operatorname{Simp} .\left(G ;\binom{e}{e}\right), \\
& \operatorname{Simp} .\left(G ;\left(\begin{array}{l}
e
\end{array}\right)\right), \\
& \operatorname{Simp} .\left(G ;\left(\begin{array}{ll}
e & e \\
e & a
\end{array}\right)\right), \\
& \text { Group. }
\end{aligned}
$$

On the other hand, Examples 2, 2^{\prime} and 3 show that every decomposition of them is homogeneous. At last we have arrived at

Theorem 2. A finite semigroup is a $\mathfrak{5}$-semigroup of order $\geqq 2$ if and only if it is one of the following six cases.
$\left(\mathrm{C}_{1}\right) \quad a \quad$-semigroup of order 2 or a semilattice of order 2
$\left(\mathrm{C}_{2}\right)$ a finite group of order $\geqq 2$
$\left(\mathrm{C}_{3}\right)$ an indecomposable finite semigroup of order >1
$\left(\mathrm{C}_{4}\right) \quad \operatorname{Simp} .\left(G ;\binom{e}{e}\right)$
$\left(\mathrm{C}_{5}\right) \quad \operatorname{Simp} .(G ;(e e))$
where G is a finite group of order $\geqq 1$,
$\quad a \neq 0$
$\left(\begin{array}{ll}\mathrm{C}_{6}\end{array}\right) \quad \operatorname{Simp} .\left(G ;\left(\begin{array}{ll}e & e \\ e & a\end{array}\right)\right)$,

§ 6. Relations between S-property and \mathfrak{G}-property.

In the paper $[3,4]$ we defined \mathbb{S}-property of a finite semigroup and proved that an \mathfrak{C}-semigroup is one of the above cases except $\left(\mathrm{C}_{3}\right)$.

Immediately we have
Theorem 3. S-property implies \mathfrak{S}-property. Though the converse is not true, it is true that a \mathfrak{N}-semigroup which has a proper decomposition is an \mathfrak{S}-semigroup.

By the way we give a few theorems.
Theorem 4. A unipotent \mathfrak{S}-semigroup of order >2 is a group. A unipotent \mathfrak{S}_{2}-semigroup of order >2 is so also.

Theorem 5. A subsemigroup of an \mathfrak{S}-semigroup is an \mathfrak{S}-semigroup. A subsemigroup of an indecomposable semigroup is not always a \mathfrak{S}-semigroup, but \mathfrak{S}-property, in the other cases, is preserved in a subsemigroup. \mathfrak{S}-property and \mathfrak{S}-property are both preserved in a homomorphic image.
(Received July 8, 1960)

References

[1] D. Rees: On semigroups, Proc. Cambridge Philos. Soc. 36, 387-400 (1940).
[2] T. Tamura: Indecomposable completely simple semigroups except groups, Osaka Math. J. 8, 35-42 (1956).
[3] - Finite semigroups in which Lagrange's theorem holds, Jour. of Gakugei, Tokushima Univ. 10, 33-38 (1959).
[4] -: Note on finite semigroups which satisfy certain group-like condition, Proc. of Jap. Acad. 36, 62-64 (1960).
[5] I have called L a right-singular semigroup if $x y=y$ for all $x, y \in L$. In p. 62, [4], I find a misprint: for "left-singular", read "right-singular". But this is not essential for discussion.

