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Introduction

Recently R. Bott [7] has introduced the concept of homogeneous
vector bundles over C-manifolds. By a C-manifold we understand here
a simply connected homogeneous compact complex manifold, which was
the subject of Wang’s exhaustive work [22]. Bott’s theory is a natural
extension of the preceding researches by A. Borel and A. Weil [6] and
permits us to utilize the theory of Lie groups to study complex analytic
vector bundles over C-manifolds. The purpose of this paper is to study
several problems on complex analytic vector bundles over C-manifolds
utilizing Bott’s results. The present paper is divided into four chapters.
In Chapter I are given preliminaries for the subsequent chapters. First
we recall the method of Y. Matsushima and A. Morimoto (cf. [16], [17])
to define the homogeneous (not necessarily vector) bundles in a more
natural and intrinsic way. Their definition of homogeneous bundles does
not presuppose the simply-connectedness of the base spaces, and in the
case of C-manifolds it agrees with Bott’s definition. Next, after a résumé
of the results of Wang and Bott, we shall prove that every complex
line bundle over a C-manifold is homogeneous (Theorem 1). This result
was proved very recently by S. Murakami [18], but our proof is more
direct and endows us some other implications. In Chapter II we discuss
an application of the so-called classification theorem of complex analytic
vector bundles to homogeneous vector bundles using Bott’s idea (Theorem
2 and Theorem 4). The classification theorem of general vector bundles
is due to S. Nakano, K. Kodaira and J. P. Serre (cf. [3], [19]), but it has
not been yet published in a complete from and so we shall state our
classification theorem of homogeneous vector bundles considerably in
detail. In this chapter we shall show that the main pafts of the resear-
ches by Borel-Weil [6] and by M. Gotd [9] are two special cases of our
Theorem 2, and, as another application of this theorem, we shall show
that the classical theorem of F. Severi concerning the positive divisors of
complex Grassman manifolds (cf. [13]) can be generalized to any kihlerian
C-manifold of which the 2nd Betti number is 1 (Theorem 3). Chapter
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IIT is devoted to some studies of (not necessarily homogeneous) vector
bundles over C-manifolds. Our principal aim in this chapter is to prove
Theorem 5, which asserts that the complex projective line can be charac-
terized among C-manifolds by the property that every complex analytic
vector bundle is decomposed into the direct sum of complex line bundles.
A. Grothendieck [107] has proved that the complex projective line satisfies
the above property and he posed a conjecture to the effect that the
complex projective line would be the unique projective algebraic variety
satisfying the above property. Our Theorem 5 gives a partial answer to
this conjecture. Finally in Chapter IV, we shall be concerned with the
tangential vector bundles of C-manifolds. It will be an important problem
to clarify the relation between the indecomposability of homogeneous
vector bundles and the defining representations. We treat here this
problem in the case of tangential bundles (Theorem 6). In the first part
of this chapter some results on non-kihlerian C-manifolds shall be dis-
cussed which are of interest for themselves. A few unsolved problems,
in connection with Theorem 6, are presented at the end of Chapter IV.

Some of the results of Bott and ours are valid also for Hopf mani-
folds, which shall be discussed in the forthcoming paper.

The author wishes to express here his sincere thanks to Professors
Y. Matsushima, S. Murakami and S. Nakano for their valuable instructions
and criticisms during the preparation of this paper.

I. PrRELIMINARIES. HOMOGENEOUS VECTOR BUNDLES.

1. Homogeneous bundles.

Throughout the paper, we denote by X a compact complex manifold
and by A(X) the group of all complex analytic antomorphisms of X with
the compact open topology. Its connected component A°X) containing
the identity element is a complex Lie group by a well-known theorem
of Bochner-Montgomery, so we denote by a(X) its Lie algebra. By
P(X, B, w) (resp. E(X, F, B, w)) is meant a complex analytic principal
bundle over X with group B and projection & (resp. a complex analytic
fibre bundle over X with fibre F, group B and projection w). We denote
by F(P) (resp. F(E)) the group of all bundle automorphisms of P (resp.
the group of all fibre-preserving automorphisms of E). We note that, if
E is an associated bundle of P and if B acts on F transitively, F(P) and
F(E) are isomorphic in a natural manner. Now, let F°(P) denote the
connected component of the identity element of F(P) with the compact
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open topology. It is also a complex Lie group by a theorem of Morimoto
[17]. The Lie algebra of F°(P) will be denoted by f(P). The projection
w induces a complex Lie group homomorphism of F°(P) into A%X)
and a complex Lie algebra homomorphism of f{(P) into a(X), which
shall be denoted by the same symbol w. If the group w(F°(P)) operates
transitively on X, we say that P is homogeneous. Therefore if P is
homogeneous, the base X must be a homogeneous complex manifold.
A simply connected homogeneous compact complex manifold is called
a C-manifold [22]. Let X be a C-manifold. It is known that X is
represented in the form X=G/U, where G is a connected complex semi-
simple Lie group operating almost effectively on X [22]. Now let p be
a holomorphic homomorphism of U into a complex Lie group B. Let
P(X, B, w) be the complex analytic principal bundle associated to the
coset bundle G(X, U, =) (= being the canonical projection of G onto
X=G/U) by the homomorphism p of U into B. We say that the bundle
P(X, B, w) obtained in this manner is homogencous in the strong sense.

Proposition 1 (MATsUsHIMA). Let P(X, B, w) be a complex analytic
principal bundle over a C-manifold X. Then P(X, B, w) is hqmogeneous,
if and only if it is homogeneous in the strong sense.

Let P(X, B, w) be homogeneous. Then w(F°P)) is transitive on X.
Since X is a C-manifold, any maximal complex semi-simple Lie subgroup
of w(F°P)) operates transitively on X [22]. We can choose a complex
semi-simple Lie subgroup G of F°(P) in such a way that the restriction
of the homomorphism o : F'(P)—A%X) on G is a local isomorphism and
that w(G) operates transitively on X. For fe€G, x€ X, set fox=w(f)-x.
Then G operates on X transitively and almost effectively. Now let u € P
and let U be the subgroup of G consisting of the elements f€ G which
leave the fibre w '(w(%)) invariant. U coincides with the subgroup of G
of the elements f€ G such that f(w(#)) =w(«). Therefore X=G/U. Let
p. be the complex analytic mapping of G into P defined by p,( f)=f(u).
Let feU. Then p,(f)=u-a, for a definite element ac B. We denote
pf)=a for fe U. Then p,: U— B is a holomorphic homomorphism. It
is easily seen that the mapping p,:G—P and the homomorphism
p.: U— B define a bundle homomorphism of the coset bundle G(X, U, =)
into P(X, B, w). Therefore P(X, B, w) is homogeneous in the strong sense.
Conversely, let P(X, B, w) be homogeneous in the strong sense. Suppose
that P(X, B, w) is associated to the coset bundle G(X, U, =) by a homo-
morphism p of U into B, where X=G/U is a certain expression of X
with semi-simple and almost effective G. Then P=G X yzB in the notation
of Bott [7], that is, P is the quotient of G x B by the equivalence relation
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(g, b)~(g-h, p(h™")-b) (g€G,be B, he U). Then the left translation by
an element g’ € G can be defined by setting g’-a(g, b)=«a(g’- g, b), where
a(g, b) denotes the equivalence class containing (g, #). It is easily seen
that the left translations by the elements of G are bundle automorphisms
of P(X, B, w). It follows then that P(X, B, w) is homogeneous.

2. The structures of C-manifolds.

Let X be a C-manifold and let X=G/U, where G is a connected com-
plex semi-simple Lie group G operating almost effectively on X. We
assume hereafter these properties for the Klein form G/U of X without
any specific comment, and in this case U is called a C-subgroup of G.
If X=G/U is not kihlerian, there exists a C-subgroup U of G such that
X=G/U is a kihlerian C-manifold, and that U is a closed normal sub-
group of U and U/U is a complex toroidal group. The complex analytic
principal fibering X(X, U/ U, ¢) thus obtained is called the Jundamental
fibering of a (non-kihlerian) C-manifold X=G/U and the base space
X=G/U is called the associated kihlerian C-manifold of X (see [8], [18]).
If X=G/U is a kidhlerian C-manifold, there are a maximal C-subgroup
U, of G containing U and a maximal solvable subgroup (=a minimal
C-subgroup) Uy of G contained in U. We have the corresponding coset
fiberings XAX, U/Uy, ¥p) and X(X,,, U,/U,,), where X,=G/U,; is
called the flag manifold associated to X and X,=G/U, a maximal
C-manifold associated to X respectively. We note here the fibres U/ U,
and U,/U are again kidhlerian C-manifolds (with non effective Klein
forms). It is known that irreducible hermitian symmetric spaces are
maximal C-manifolds.

Now we summarize the structure theory of C-manifolds due to Wang
[22] and the main theorem of Bott concerning the homogeneous vector
bundles ([17]. Let X=G/U be a C-manifold and X=G/U the associated
kidhlerian C-manifold. The Lie algebras of G, U and U are denoted by
g, n and 1 respectively. Let K be a compact form of G and set
KnU=V, and KnU=V. The Lie algebras of K, V and V are denoted
by £ b=fnu and b=fnf. We can choose a Cartan subalgebra § of g

and a fundamental root system {&,,---,d&,} of g with respect to §
satisfying the following conditions : There exists a subset S of {&,, ---, &,;}
such that

g = u+mw+nt(S) = t+n*(S),
= 9(S)+hy+w+n(S), 1t =0(S)+Hh(S)+n"(S)
p° = b(S) + By, b = 0(S) +H(S)

B(S) = hy+w+w,

(1)
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where the notation is identical with the one adopted in Bott [7] except
n™(S) and n~(S), which are defined as follows:

1’l+(S) = ; C{em} ’ n_(S) = ; C{ew}

where & runs through the positive roots not belonging to S and e, denotes
an element of g such that [4, e, |=c&(h)-e, for he.

We note that X is a flag manifold or a maximal C-manifold according
as S is vacous or S consists of /—1 roots. The complex closed Lie sub-
groups generated by 9(S), n*(S), n(S), b, H(S), Hy, W, W and v° in G are
denoted by V(S), N*(S), N (S), H, H(S), Hy,, W, W and V¢ respectively.
Recall that H, H(S) and H, are isomorphic to the direct product of some
copies of the group C*, that W, W are complex vector groups and that
W is identified with the universal covering manifold of U/U.

3. The main theorem of Bott.

Let (&, #) (h,} €9) be the non-degenerate bilinear form on § defined
by the Killing form of g. For any element g of the dual space §* of §.
there exists an element %,€9 such that g(h)=(k,, k) for all k€Y. For
A, p€b*, let (A, @)=(h{, k). Then (A, ) is a non-degenerate bilinear
form on §*. For any se€b*, let &, be the element of Y such that A(%,)
=2(\, 2)/ (% &) for any Ae€h*. Especially, for any fundamental root
&, (1=<i</), set h,;=h;. An integral linear form or a weight A on §
is defined to be an element of §* such that Ak,) (1<<i</) are all
integers. If A(%;) are all non negative integers, A is called a dominant
weight. The set of all weights on § form a lattice. Let A,, -+, A, be
the dominant weights defined by A(k;)=38;; for 1=<i, j=<I. They form
a base of the lattice of weights on § and are called the fudamental
dominant weights corresponding to the fundamental roots «,,---, ;.
We denote by 9% the real /-dimensional subspace of H* consisting of all
A€ §* such that AMh;) (1=i</) are real. The restriction to 9% of the
inner product ( , ) on H* is positive definite. The fundamental (Weyl)
chamber P of H% and its open kernel ° are the closed and open regions
in 9% defined respectively by P={Aephi|A(h;)=0 for 1==i</} and
B={AehE|N\A;) >0 for 1<i<I}. Now we define the index of a weight
A (which will be denoted by Ind. A) as the number of positive roots &
such that

(A+8)(h,) <0,

where & is a weight defined by 8(k)=1 for 1==i</ (ie. S=A,+A,
+--+A,). A weight A is called singular or regular according as there
exists a root & such that A\(%,)=0 or not.
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Let H be the Lie subgroup of G corresponding to the Cartan sub-
algebra Y) of g. H is called the Cartan subgroup of G. One-dimensional
representations of H are called the characters of H. The differential A
at the identity element of a character A is a weight of #. Conversely,
every weight of § can be obtained in this way, and this gives a one-to-
one correspondence between the set of characters of H and the set of
weights of ). Now let (p, ') be a holomorphic” irreducible represen-
tation of G in a complex vector space F. The restriction of p on H is
denoted by py. The representation (py, F) of H is complety reducible.
Among the weights which appear as the irreducible components of (py, F'),
there is only one dominant weight A which is the highest among these
weights, the linear order being given by the fundamental root system
{&,, - ,&,}. The weight A is called the highest weight of the represen-
tation (p, F') of G and the corresponding character A is called the highest
character of (p, F').

Let X=G/U be a C-manifold and (p, F') a representation of U. We
denote by E(p, F') the homogeneous vector bundle over X defined by
(p, F). In particular, when (p, F') is a one-dimensional representation A
(i.e. A€ Hom (U, C*)), we simply write the line bundle E(p, F) as E,, or
sometimes E:, where A is the differential of A : A € Hom (11, C).

Lemma 1%, [f a representation p of U is completely reducible, then
the restriction of p on the closed normal subgroup N-(S) of U is trivial.
Conversely, if p(N™(S)) consists of the identity element alone, then p is
completely reducible provided that X is kdhlerian.

Proof. Let p’ be any one of irreducible components of p. The
radical of u being §,+w+1n"(S), its element is represented via p by trian-
gular matrices, and so the elements of n™(S) by nilpotent matrices, since
n~(S) is the derived algebra of the radical. Therefore by the theorem of
Engel and the irreducibility of p’ we see that p’(n"(S))={0}. Conversely,
for any kihlerian X, we have U=V<°-N(S) and so p{U)=p(V°)-p(IN(S)).
Since V is compact, p(U) is completely reducible if p{(N (S))= {1}.

Let E=E(p, ') be a homogeneous vector bundle over X=G/U
defined by a representation (p, F') of U. The p-th induced representation
(p*?, H?(X, E)) of .p, F) is defined by R. Bott, where H?(X, E) denotes
the p-dimensional cohomology group over X with coefficient in the sheaf
E of germs of holomorphic section of E (cf. Bott [7]); this represen-

1) Hereafter we shall often omit for brevity the adjective, holomorphic or complex analytic
for bundles, homomorphisms etc. as far as there are no fear of misunderstandings.

2) This lemma is partially stated in the proof of Theorem W,, Corollary 3 in [7], but
we state here for completeness’ sake.
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tation is the one induced on H?(X, E) from the natural action of G
on E=GXyF as the bundle automorphisms. We denote the highest
character of p¥#> by A? when p¥# is irreducible. Thus we recall the
main result of Bott;

Theorem of Bott. Let X=G/U be a kdhlerian C-manifold and let
(p, F) be an irreducible vepresentation of U. Let E=E(p, F). Then the
cohomology groups H*(X, E) (p=0) vanish except for at most one p.
More precisely, we have the following results: By Lemma 1, we can con-
sider (p, F) as a representation of the complex reductive Lie group
Ve=V(S)-H(S). H being a Cartan subgroup of V¢, let N be the highest
weight of the representation (p, F) of V. Then,

(i) if A+8 is singular, H*(X, E)={0} for all p=0;

() if A+8 is regular and Ind. (A+8) = p, then H'(X, E)={0} for
q==p. Moreover the p-th induced vepresentation (p*?, H*(X, E)) is irre-
ducible and its highest weight MN<? is determined by A\ as follows:

70\,#(1’)—{—8 = O_p(x‘i_g) ’

where o, is an element of the Weyl group uniquely determined by the
condition o ,(A+8) € B.

4. Line bundles over a C-manifold.

Let X=G/U be a C-manifold and assume that G is simply connetcted.
Denote by Hom (U, C*) the abelian group of all holomorphic homomor-
phisms of U into C*. We can define a homomorphism 7 of Hom (U, C*)
into the group H'(X, C*)® of the equivalent classes of complex line
bundles over X by assigning to every element A€ Hom (U, C*) the
corresponding homogeneous line bundle E, (in reality, the homogenous
C*-bundle P,).

Now we introduce the exact sequence of sheaves over X:
&
0->Z-C—C*¥-0,
where & is, as usual, defined by &(f)=exp27+/—1 f for every holomor-
phic function germ f on X. Let
& &+
(2) HYX, Z2)—-HYX, C) > H'X, C*) - HX, Z) - H*X, C)

be the corresponding cohomology exact sequence, where we denote again
by & the homomorphism induced by &: C— C*,

3) For a given complex Lie group A and a complex manifold X, we denote from now on
by A the sheaf (of groups) of germs of holomorphic mappings of X into A.
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The following theorem has been already obtained by Murakami (cf.
[18], Théoréme 3), but it is convenient for the later discussions to give
here a new proof®.

Theorem 1. (i) The homomorphism z:Hom (U, C*)— H (X, C*) is
bijective. In particular, every line bundle over a C-manifold is homogeneous.

(ii) H'(X, C*)=¢*H"(X, C¥)+EeH (X, C),
where ¢: X— X is the fundamental fibering.

Proof. First we shall prove the theorem when X is kihlerian (and
so X=X). Let E, be the homogenous line bundle over X defined by
A€ Hom (U, C*) and let P, € H(X, C*) be the corresponding C*-bundle.
Then &*%(P,) is the Chern class c¢(E,) of E,. On the other hand we
define the following isomorphisms :

Hom (U, C*) = Hom (H(S), C*) = Hom _(T(S), T
=~ H(T(S), Z) = H\V, Z),

where T(S) (resp. T') is the maximal toral subgroup of H(S) (resp. C*)
and Hom _(7T(S), T") is the group of all differentiable homomorphisms of
T(S) into T'. The first (resp. the fourth) isomorphism is obtained by
the fact that U (resp. 17) is the product of its commutator subgroup and
of H(S) (resp. T(S)); the second exists because H(S) is the complexifi-
cation of the maximal compact subgroup 7°(S); the third is defined by
Hom _(T(S), TY=Hom (=,(T(S), Z)=HT(S),Z). Let ¢:Hom (U, C*)—
HYV,Z) be the isomorphism which is the composition of the above
isomorphisms. Denoting by « the transgression in the differentiable
principal bundle K(X, X), it follows from a result of Borel-Hirzebruch
([5], Theorem 10. 3) that the following diagram is commutative.

Hom (U, C*) —é:»H‘(V, Z)

(3) "l 5 lT

HY(X, C*) —> H*X, Z)
Since K is simply connected and semi-simple, we see that = is bijective
(even if X is non-kidhlerian). On the other hand, it is known that
HY(X, C)=H*X,C)= {0} ([5], [7D. It follows then from the exact
sequence (2) that &* is bijective. Therefore we conclude by (3) that 7
is bijective. This prove (i) in this case.

4) The present proof might be essentially analogous to that of Murakami, but our inten-
tion lies in clarifying the relation between the line bundles over a (non-kihlerian) C-manifold
and those over the associated kihlerian C-manifold, which will become clear in the course of
the proof.
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To prove the theorem in the general case, we show that % is injec-
tive. Let A€ Hom (U, C*) be in the kernel of . Then E, is trivial.
We shall see later that A is the restriction on U of a homomorphism
A:G—C* (Lemma 3 in II). Since G is semi-simple, A(G)= {1} and hence
A is the identity element of Hom (U, C*). Thus 7 is injective.

We prove that # is surjective. Let X(X, U /U, ¢) be the fundamental
fibering of X. The exact sequences (2) for X and X imply the com-
mutative diagram :

. o R
0—-HYX,C*\—H*¥X,Z)—0
N
0—- H'X, C)— H'(X, C*) — H*X, Z) - 0.

We show that ¢* in the right hand side is surjective. In fact, let
vy:H \V,Z)—HV, Z) be the homomorphism induced by the inclusion
V V. Then it holds the commutative diagram :

H'(V, Z)— HXX, Z)
G
HYV, Z)— H*X, Z)

As we have seen that the transgressions T are bijective, it is sufficient
to see that  is surjective. While, using the isomorphisms H \V, Z)
=HYT(S), Z), H(V, Z)y=H Ty, Z) (where T, is the maximal toral sub-
group of Hy) and Ty, T(S), we infer immediately that ¢ is surjective.
Then, the diagram (4) implies that

HY(X, C*) = ¢*HY (X, C*)+EcH'(X, C).

The theorem being proved for X, it is easy to see that »(Hom (U, C*)) >
¢*H (X, Cy4). Therefore, in order to show that » is surjective, it is
sufficient to prove that ¢H'(X, C) consists also of homogeneous bundles.
Because EH'(X, C) is the group of C*-bundles which are &-extensions of
C-bundles, this will be established if the homomorphism %’ : Hom (U, C) —
HY(X, C), which assigns to o€ Hom (U, C) the homogeneous C-bundle P,
defined by o, is bijective. We show that #’ is injective. In fact, if P,
is the trivial C-bundle, so is the C*-bundle &P,). Since the bundle &(P,)
is defined by &oo€ Hom (U, C*) and since # is injective, this implies
Gog=1. Then it follows at once that o is the identity element of
Hom (U, C). To see that 7 is surjective, we remark that ’ is a complex
linear mapping of the complex vector space Hom (U, C) into H'(X, C);
then we need only to show that dim Hom (U, C)=dim H'(X, C). To
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compute dim H'(X, C) we shall use the Leray’§ spectral sequence {E,}
associated with the fundamental fibering X(X, U/U, ¢) and the sheaf C
over X. We need the term E} and the final term E! associated to

HY (X, C). The C-module E}=E}°+E}*' is given by

E}° = HY(X, ¢°(C)), and E§'= H'X, ¢'(C)),
where ¢?(C) (p=0, 1) is the p-dimensional direct image sheaf over X
defined by the pre-sheaf ¢?(C)y=H?(¢"*(N),C) (for every open set N X).

We can see, by an easy argument, $?(C)=C®H?(U/U,C) (p=0, 1).
Therefore, by using H'(X, C)= {0}, we have

°= {0}, EY'=HYU/UC).

While the coboundary operator d, sends E$! into E#°=H?*X, ¢'(C))
=H*X, C)= {0}, so Ey'=E%!. Hence we infer that

HYX,C)=E! =E* =~ H'(U/U, C) = H*Y(U/ U, C).
As U/U is a complex torus, the above-obtained module is isomorphic to
w. On the other hand, Hom (U, C)=Hom (H, W, C)= Hom (W, C)

=~Hom (v, C). Therefore dim Hom (U, C)=dim H(X, C). This completes
the proof.

We add here that Murakami’s théoréme 3 in [18] can be proved in
the same manner as above. That is,

Theorem 1’ (MURAKAMI). Every principal holomorphic fiber bundle
over a C-manifold X with a connected complex abelian Lie group A as

structure group is always homogeneous, and wmore precisely we have
Hom (U, A)=H'(X, A).

From the proof of Theorem 1, we can derive several corollaries.

Corollary 1. A C-manifold X is kihlerian if and only if H'(X, C)
= {0}.

Proof. As is shown in the course of the above proof, dim H'(X, C)
=dim . On the other hand X is kihlerian if and only if = {0}.

Making use of a theorem of Borel-Weil [6], we derive the following
theorem of Bott ([7], Theorem V).

Corollary 2 (BotrT). Let E, be a line bundle over a C-manifold X
defined by A€ Hom (U, C*¥). Then HX, E,\)=={0} if and only if there
exists A€ Hom (U, C*) whose restriction to U is N and whose differential
\, considered as a linear from on 9(S) and so on %, belongs to the funda-
mental chamber P. In this case, the induced representation of G on
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H'(X, E,) is the irreducible representation with the highest character A.

Proof. Let X(X, Y, ¢) be the fundamential fibering of X. We show
first that if H%X, E,)=={0} then E, is induced by ¢ from a line bundle
over X. Let E,|Y be the restriction of E, on the fibre U/U=Y. Then
HX, E,)=={0} implies H%Y, E,|Y)={0}, because E, is homogeneous
(see, the proof of Lemma 2 in II). On the other hand, we see easily
that E,|Y is a homogeneous line bundle over the complex torus Y.
Then, by a result of Matsushima ([137], Proposition 3.6), E,|Y is trivial.
The bundle E, is, therefore, induced from a line bundle E{ over X by
¢, since M is the restriction of a homomorphism * ¢ Hom (U, C*) by
Lemma 3 in II. Moreover, the fibre Y being compact connected, we see
easily that the natural homomorphism H*X, E:)— H*(X, E,) is bijective.
The isomorphism so obtained clearly preserves the actions of G wvia the
induced representations. Our corollary now follows from the theorem of
Borel-Weil concerning the induced representation of G on HX, Ex).

Corollary 3. The divisor class group of a C-manifold X coincides
with ¢*H(X, C*).

Proof. As X is an algebraic manifold (cf. [67], [9] or §6, §7), we
know that any line bundle E over X is defined by a divisor D. Then
the line bundle over X induced from E by ¢:X—X is defined by the
divisor induced from D by ¢. This proves that the divisor class group
of X contains ¢*H*(X, C*). Conversely, let D be a divisor on X, and
let E the line bundle defined by D. We know that there are positive
divisors D*, D~ such that D=D*—D-. If E* (resp. E7) are the line
bundle defined by D* (resp. D7), then E=E*Q(E")* Since D" and D~
are positive, H(X, E*)=={0} and H°X, E")=={0}. Then, by Corollary 2,
there exist line bundles E*, E- over X such that E*=¢*E*, E-=¢*E-,
Thus, E=¢*(ETQ(E)*) € p*H'(X, C*). This completes the proof.

II. Tue CLASSIFICATION THEOREM FOR HOMOGENEOUS
VECTOR BUNDLES.

The complex analytic analogue of the topological classification
theorem of fibre bundles is valid for vector bundles, which has been
already formulated and proved by S. Nakano, K. Kodaira and J. P. Serre
(see [3], [19]). In this chapter we shall state a sharpened form of this
theorem for homogeneous vector bundles over C-manifolds and add a few
applications.
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5. Homogeneous vector bundles with sufficiently many sections.
The imbedding theorem.

Let X=G/U be a C-manifold, and E= E(p, F') the homogeneous vector
bundle over X defined by a representation (p, ) of dimensions m. We
can identify the O-dimensional cohomology group H°X, E) with the
complex vector space of all the holomorphic mappings s of G into F such
that s(gu)=p)s(g) for any geG and ue U, and the 0-th induced
representation p¥® is defined, under this identification, by (p¥®(g)s)(g’)
=s(g™'-g’) for any g, g’€G, (see [7]). Now we define a homomorphism
v of HYX, E) into F by

v(s) = s(e), ¢ = the unit element of G.

Then v is compatible with the U-module structures on H°X, E) and F.
Let F’ be the kernel of ». Then F’ is invariant under p*®(U) and we
obtain an exact sequence of U-modules :

0->F' — HYX, E)——F.

When v is surjective, we say that the vector bundle E has sufficiently
many sections, and in addition, if H?(X, E)= {0} (p=1), we say that E
is ample.

Lemma 2. If a homogeneous vector bundle E over a C-manifold X is
defined by an irreducible representation (p, F) of U (in particular, if Eis
a line bundle), then H(X, E)== {0} implies that E has sufficiently many
sections and that E is ample if X is kdhlerian.

Proof. If H(X, E)== {0}, then there exists a cross-section s € H*X, E')
such that s(e)==0, since s(g)=(p**(g)s)(e). Therefore vH(X, E)== {0}
and it is p(U)-invariant, which implies that » is surjective, since (p, F) is
irreducible. If X is kihlerian, H?(X, E)= {0} (p=1) by the theorem of
Bott.

Note that there are no ample homogeneous vector bundles over any
non-kdhlerian C-manifold X, because, for such a vector bundle E, the
Euler characteristic X(X, E)=0 (Theorem III, Corollary 1 in [7]).

Lemma 3. A homogeneous vector bundle E(p, F) over a C-manifold
X is trivial if and only if v is bijective, or p is the restriction of a
representation of G.

Proof. If p is the restriction of a representation p* of G, then the
cross-section % of the associated principal bundle P=GX yGL(F) is
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defined by A(gU)=(g, p*(g™"), (g€ G) and so E is trivial. Conversely if
E is trivial, then v is of course an isomorphism of U-modules and p can
be considered as the restriction of the induced representation p#® of p.

In the sequel we assume that E has sufficiently many sections and
set p¥?=p* Then we have

(1) 0—->F —-HX,E)-F—0,

(1%) 0—->F*—> HYX, EYx > F*—>0.

Set dim H%X, E)=n (=m). Then these exact sequences give rise
to the exact sequences of homogeneous vector bundles :

(2) O—-E —-I"-E—Q0,

(2%) 0—>FE*—>I* >E* -0,
where E’=E(p*, F'), E*=(p, F'*), E*=E(p*, F'*), I"=E(p*, H(X, E)) and
I*"=E(p*, H(X, Ey*) (p* denotes the contragredient representation of p¥).
The last two vector bundles are trivial by Lemma 3.

Next we shall define the classifying manifold and the universal
bundles. By GL(n, m; C) we mean the subgroup of GL(n, C) consisting
of the matrices of the form:

(A C> AeGL(n—m, C), Be€ GL(m, C),
0 B/,

Then, the coset spaces GL(n, C)/GL(n, m; C) and GL(n, C)/GL(n,
n—m; C) represent the complex Grassmann manifold G(n, m) and its
dual Grassmann manifold G(n, n—m) respectively. The group G(xn, m; C)
(resp. GL(n, n—m; C)) leaves an (n—m)-dimensional subspace C” ™ of
C"(resp. an m-dimensional subspace (C™)* of (C")*) invariant, and so we
have the exact sequences of GL(n, m: C)—(resp. GL(n, n—m; C)-) modules :

(3) 0-C"""->C"-C"—>0, C"=cC"/C"™,

(3%) 0 — (C™* — (C")* - (C""™)* - 0.

C = a matrix of (—m)-rows and m-columns.

We obtain the corresponding exact sequences of homogeneous vector
bundles :

(4) 0— Ws—1I"—> Wg—0
(4%) 0—W§—I*x"—> Wi —0

over G(n, m) (resp. G(n, n—m)) in the same manner as above. In fact,
if we denote by o, the m-dimensional representation of GL(n, m; C)

defined by
AC
(1 S)-
0 B
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then o} defines the homogeneous vector bundle W, over GL(n, C)
/GL(n, m; C) for which H%G(n, m), Wy) is of dimension #n. Identifying
H(G(n, m),Wy) with C”, the induced representation (o;,)* of o, is nothing
but the identity one of GL(n, C) as is easily checked. Thus, the exact
sequences (3), (3*) (4) and (4*) are the special cases of (1), (1*), (2) and
(2*%) respectively. The bundle Wy (resp. W) is called the universal sub-
bundle and Wy (resp. W*) the universal quotient bundle over the classifying
manifold G(n, m) (resp. G(n, n—m)). We know that H*(G(n, m), Wy)
=H*(G(n, n—m), W§)={0} and that both W, and W% are ample (see
[71, Proposotion 14. 3).

Now we take a basis {%,, -+, &,_,,, -+, £,} of the complex vector space
H(X, E) whose first (n—m)-vectors {5, .-, &,_,} belong to F’, and
identify the two exact sequences (1) and (3). Then we have the holomor-
phic homomorphism p* of G into GL(%n, C) such that p*(U)C GL(n, m; C),
which induces a holomorphic mapping f, of X into G(xn, m) defined by
FfolgU)=p*g)-GL(n, m; C). As is easily seen, the exact sequence (2) is
induced from the exact sequence (4):

E = f¥(Wo), E = f¥Ws).

We note that this mapping f, coincides with the classifying mapping
f& associated to E defined by Nakano and Serre (cf. [3], [19]). In fact,
the isomorphism 7 of homogeneous vector bundle GXx /H°(X, E) onto
I"=XxC” in (4) is defined by 7[ g, s]=(gU, p*g)s) for every g€ G and
s€ H(X, E), hence the fibre E., of E’ over a point x=gUé¢€ X corresponds
via 7 to the (»—m)-dimensional subspace p*g)-F’ of HX, E)=C" and
p¥g)-F’ represents the point p¥ g)-GL(n, m: C) in our coset space form
of G(n, m). Therefore f,=fx.

These arguments run quite similarly for the vector bundle E’* and
the contragredient representation p*. Thus we obtain

Theorem 2. Let E(p, F) be a homogeneous vector bundle with suf-
ficiently many sections over a C-manifold X. Then the induced representa-
tion p* defines a classifying holomor phic mapping f, of X into the classifying
manifold G(n, m) and E is induced from the universal quotient bundle Wg
by the mapping f,. Similarly p* defines the mappz'ngf,, of X into G(n, n—m)
and E is induced from Wq by f,.

This theorem is usually called the imbedding theorem (cf. [197]).

Proposition 2. For any kihlerian C-manifold X=G/ U, the classifying
mapping f, in the imbedding theorem is biregular if and only if (p, F)
can not be extended to a representation of any C-subgroup U’ of G contain-
ing U.
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Proof. Set U’'={geG|p*(g)F'=F’}. Then U’ is a closed complex
subgroup of G such that U’>U and the compact homogeneous space
X’'=G/U’, can be biregularly imbedded in G(n, m) by the mapping f’
defined by f(gU)=p*QF’ for any g€G. Now let K be a maximal
compact subgroup of G which acts transitively on X. Then K also acts
on X’ transitively and X’ is represented as K/V’ (V/'=U'nK). The
canonical kidhlerian metric on G{(n, m) which is invariant under the actions
of U(n) induces a K-invariant kidhlerian metric on X’. Therefore X'=K/V’
is simply connected since K is semi-simple (cf. [4]). Hence X'=G/U’
is a kdhlerian C-manifold and U’ is a (connected) C-subgroup. Moreover
the representation (p, F) of U is extendable to a representation (p’, F)
of U’ using the exact sequence (1). Conversely if (p, F) is the restriction
of a representation (p’, F) of a C-subgroup U’ such that U’ =2 U, then
fo=foroyr where v is the canonical projection of G/U onto G/U’. Hence
fo is not biregular.

6. The case of tangential bundles.

For a compact complex manifold X, the condition that X is homo-
geneous is equivalent to the condition that the tangential vector bundle
® of X has sufficiently many sections. Bott [7] proved that ® is ample
for any kihlerian C-manifold X. So the imbedding theorem can be ap-
plied to the tangential bundle of a C-manifold X. Let X=G/U be a
C-manifold with G=A%X). Then the exact sequence of U-modules (under
the adjoint actions):

0—-u—-g—>g/u—>0

gives rise to Atiyah’s exact sequence for the principal bundle G(X, U, =)
(cf. [2] and [7], p. 232):

0—LG) — QC) ——>©—0, ©— E(Ad, g/11).

We see that these exact sequences are nothing but the exact
sequences (1) and (2} for ®. In fact, we can identify g with H%(X, ©);
for every x€g we define s,€ HY(X, ®) by setting s.(g)==(Ad(g")x).
Then vu(s,) =s,.(e) = #(x), moreover we have (p*(2)s,)(g")=s.(g7' g
=7(Ad(g’'@x)==(Ad(g’")Ad(g)-x). This means, under the above identi-
fication g=H°(X, 0), that p*(g)=Adg; therefore we have the classifying
mapping f,q of X into G(n, m) such that

faagU) = Adg-u € G(n, m),

where n=dim G, m=dim X and we may regard G(n, m) as the set of all
(n—m)-dimensional subspaces of g. If X is k#hlerian, then G is semi-
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simple and we can easily check by (1) in I that the normalizer of u
coincides with u itself. Hence, by Proposition 2, f.4 is a biregular imbedd-
ing of X into G(n, m).

The above consideration is the main part of Gotd’s preceding studies
[9]. In fact, he proved moreover that f,,(X) has the structure of a
rationol variety.

7. The case of line bundles.

Let E, be a (homogeneous) line bundle over a C-manifold such that
dim H%X, E,)=n(=1) (cf. Lemma 2). Then the classifying manifold
G(n, 1) is nothing but the (n—1)-dimensional complex projective space
P*', and the universal quotient bundle Wy, is the line bundle of hyper-
planes of P"'. The induced representation p* of A is irreducible and A
is the restriction of the highest character A* of p* (for the precise mean-
ing, see Theorem 1, Corollary 2). Now let X be kihlerian. Then,
the character A being a representation of H(S), A is expressed as
A= n}éjsp,-l\,-, p:=0. If A is extendable to a representation of a C-

subgroup U’ corresponding to a subset S’ of fundamental roots contain-
ing S, then, in the above expression of A, we have p;=0 for «&;€S’.
Therefore, by Proposition 2, the classifying mapping f, is a biregular
projective imbedding if and only if quzsp,.[\,- with p; >0 (cf. [5]).

These results are due to Borel-Weil [6]:zlgnd so we call the biregular
imbedding £, @ Borel-Weil’s imbedding of a kidhlerian C-manifold X. For
such an imbedding f,, the dimension of P""'is computable from the well-
known Weyl’s formula. This dimension attains its minimum by the

character M such that A= 37 A;, and the corresponding projective imbedd-
& ¢S
ing f, will be called the canonical imbedding of X. For example, the

Pliicker coordinates of the complex Grassmann manifold G(xn, m) and the
Segre representation of a multiply complex projective space amount to the
canonical imbeddings of these manifolds, as is easily verified.

8. A generalization of Severi’s theorem.

In this section we shall discuss an application of our imbedding
theorem.

Let X be an algebraic manifold with the biregular projective imbedd-
ing f into the complex projective space P, and identify X with the pro-
jective manifold f(X). We shall discuss here when every positive divisor
D of X can be obtained as a hypersurface section X-S of X (the dot - means
the intersection product and S denotes a hypersurface of P). It has been
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proved by Severi that this is the case if X is a complex Grassmann
manifold and f its projective imbedding by the Pliicker coordinates (cf.
for example, [137]). If the above property is satisfied for the couple (X, f),
then we say that Sewveri type’s theorem is valid for it. In order to consider
this problem, we first recall some concepts related with the divisors over
an algebraic manifold Y (cf. [12]). Let D denote a positive divisor on Y.
We denote by L(D) the complex vector space of all meromorphic functions
on Y which define the divisors multiple of —D, and by |D]| the complete
linear system consisting of all positive divisors which are linearly equivalent
to D. If we denote by [D] the line bundle corresponding to D, then
we can identify H°(Y, [D]) with L(D) canonically and |[D| with the
associated projective space of L(D). Recall that every positive divisor of
the complex projective space P is nothing but a hypersurface of some
degree. Now assume that D is a positive divisor of X of the form X-S
for some hypersurface S. Then [D] coincides with the induced bundle
f*[S] from the definition of intersection product. Therefore there exists
a natural homomorphism ¢ of H°(P, [S]) into HX, [D]), or what is
the same, of L(S) into L(D), which induces naturally the mapping ¥ of
|S| into |D|. Hence the linear system ¥|S| is complete if and only if
the homomorphism ¢ is surjective. Next we have a commutative diagram :

H'(X, C*) > H2,(X, Z) — 0

(5) I
O—)HI(P)C*)——)H%l(Paz) :HZ(P,Z)_)(),

where H?2 (X, Z) denotes the subgroup of H?*(X, Z) which consists of 2-
cohomology class containing a closed form of type (1.1) and ¢ denotes
the characteristic homomorphism. We note that H'(P, C*)=H*P, Z)=27
and that H?,(X, Z)=={0}.

Assume that Severi type’s theorem is valid for the couple (X, f).
From the above considerations we see the following facts. First
f* in the left hand side in (5) is bijective and so we have H'(X, C*)
= H3% (X, Z)=Z and the Picard variety of X is trivial. Moreover if we
denote by W the line bundle of hyperplanes of P, f*(W) is the generator
of H'YX, C*) which has sufficiently many sections, since so is W of
HY(P, C*). Therefore the imbedding f is determined uniquely up to the
equivalence in the sense of the general classification theorem as far as
X is given. Next, for the line bundle W’"(=the r-copies tensor product
of W) corresponding to the hypersurface S” of degree », we write the
mapping v as ¢ in this case:

(6) ¥y HY(P, W) - HX, f*(W")).
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Then ™ must be surjective for every positive integer ». Conversely
the properties derived above are sufficient for the validity of Severi
type’s theorem for (X, f), as is easily seen.

Now we consider the case of a kihlerian C-manifold X. Let E, be
an ample line bundle over X and let dim H°X, E,)=N(=1). Then
E,=f\(W), where f, is the Borel-Weil’'s imbedding of X associated to
E, and W is the line bundle of hyperplanes in the ambient projective
space PV' of the algebraic manifold f,(X). Consider the mapping &
for W and Ej=FfW"):

v H(PY™, W) — HY(X, EY),

where W7” and E7 are defined by (o) and A respectively. If we denote
by of, and p¥, the induced representations of (¢¥V)" and A", then the
linear homomorphism < is given by

Y(s)(Q) = s(phy(g)), for se H (PN, W), geG

under the usual expression for cross-sections. The group G acts on
H°(X, E}) via pf, and similarly GL(N, C) acts on H(P¥™', W) via o, so
that G acts also on HYPN', W) via ot,opf,. Now we see that these
actions of G and ¢ are compatible :

Pi(8) =y (s) = 4 ((0t,)0 08, (2))s) -

Therefore  is surjective if the image of ¥ does not vanish, as the
representation pf, is irreducible. On the other hand the image of
does not vanish, because there exists at least one hypersurface S of degree
r >0 passing through each point of X. Hence al/ the hypersur face sections
of a given positive degree v constitute a complete linear system. Next, we
know that H*(X, Z)=H} (X, Z) for any kihlerian C-manifold X (cf. [5]).
Therefore HYX, C*)=H? (X, Z)=Z if and only if the second Betti
number 5*(X) of X equals 1, and such a X is nothing but a maximal
C-manifold in our terminology.
We prove now the following

Theorem 3. Let X be a maximal C-manifold and let f be the canonical
imbedding of X into the complex projective space PN™'. Then every positive
divisor D of X can be represented as a hypersurface section in PN, i.e.
there exists a hypersurface S, of degree r such that

D = f(f(X)-S,),
where v is the degree of D (=the Chern class of [ D]).
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Proof. X being a maximal C-manifold, the group HX, C*) of all
line bundles is a cyclic group with the generator E, where A is the
fundamental weight defined by A(%;)=0 for all fundamental roots &; € S.
The line bundle E, realizes the canonical imbedding f=f,. We note here
that for the projective space P¥* our E, is nothing but W. Therefore
the correspondence E’, «» W’ gives rise to the canonical isomorphism
¥ H(PY ', C¥)= H'(X, C*¥). All the other requirements have already
been satisfied.

Corollary (SEVERI). Every positive divisor on G(n, m) is the complete
intersection of G(n, m) and a hypersurface of the complex projective space
PN into which G(n, m) is imbedded by using the Pliicker-coordinates, where

N:(Z) (cf. [13]).

9. The classification theorem®

To state the so-called classification theorem, it is necessary to formu-
late the condition of equivalence between two homogeneous vector bundles
in terms of the representation.

Let E(p,, F,) and E,(p,, F,) be two m-dimensional homogeneous vector
bundles with sufficiently many sections over a C-manifold X and we
assume dim H(X, E,)=dim HX, E,)=n. We have then the exact se-
quences with the same meaning as (1), (2):

O—>F§‘>H°(X, Ei)—>Fi—>0,
O0—-E,->I"-E;,—0, (z=1,2).
Proposion 3. Two vector bundles E, and E, are equivalent (isomor phic

as vector bundles) if and only if there exists a linear isomorphism ¢ of
H(X, E)) onto H'(X, E,) such that

P(PI(Q)F1) = pi(Q)F;
for every element g€G.

Proof. First we recall that E, = FE, as vector bundles if and only if
there exists a holomorphic mapping % of G into Hom (F,, F,) such that
each Z(g) (g€ G) is an isomorphism and 7#{gu)=p,(u ")h(g)p,(w) for any
g€G and u€ U. Assume that such a mapping % exists. Then we can
define a linear isomorphism @ =@(k) of H(X, E,) onto H°(X, E,) by setting
(P(s)(g)=h(g)-s(g) under the identifications :

5) This section is not new in its contents, but is added to the present chapter only for
completeness’ sake, since there are no explicit statements in the literature concerning the clas-
sification theorem (see [3]). Not necessarily homogemeous case can be treated quite analogously.
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H(X, E;) = {s: G—>F;|s(gu) = p,(u"")s(g),
for any ge G, uec U}, Z=1,2).

Then s(¢)=0 implies (@(s))-(e)="h(e)-s(e)=0, which means @(F{)=F}.
Moreover for every g€ G and s€F{, we have (p{(g ")p-pi(g):s)-(e)=0
and so @(p}(g)F1)=pi(g)F;.

Conversely if there exists such a linear isomorphism ¢, we can difine
a holomorphic mapping % of G into Hom (F,, F,) by setting A(g)é=p(s)-g
for geG, £€F, and se HYX, E,) such that s(g)=§&. In fact, #(g)=0
(te H(X, E,)) means (pi(g ))(e)=0 and so pi(g ")i=¢t € F’, which implies
o(8) =p(pi(g)') € pi(g)F;. This shows that @(¢£)-g=0. On the other hand
h(gu)é = p(s)-(gu) = p(u")(P(8)g) = p,(u " Y(g)s(g) = p,(u)h(g)p,(u)s(gu) for
s(gu)=E&. This furnishes the proof.

Now let 92(X) be the set of all equivalent classes of m-dimensional
homogeneous vector bundles E over a C-manifold X which have suffi-
ciently many sections with dim H%(X, E}=n, and let I, (X) denote the
set of all holomorphic mappings f7 of X into G(n, m) which are induced
by the homomorphisms p of G into GL(»n, C) such that p(U)GL(n, m; C).
Let 93(X)=\J 9%(X) and M, (X)=\J M4(X). By Theorem 2, to every

element E=E\p, F) € 95,(X) corresponds an element fz=f; € M (X). Con-
versely let f;€ 9, (X) and let E=f;W, be the bundle induced from the
universal quotient bundle W, by the mapping f;. Then E is an m-
dimensional homogeneous vector bundle over X ; in fact,

E = E(p,F), p = onop; U— GL(F) = GL(m, C),
where Wo=E(on, F). Then we have the commutative diagram :

HG(n, m), Wg) "> F = C" — 0
v .
H(X,E) —>F

where « is the linear mapping defined by (s)-(g)=s(p(g)) for every ge€G
and se€ H(G(n, m), Wy) (the verification of «(s)€ H%X, E) is trivial!),
and where v;, is the mapping » for the ample vector bundle Wy,. The
commutativity of the above diagram is checked as follows; for any
element s€ H(G(n, m), W), viy(s))=v(s)p(e)=s(p(e)) =s(e,) = vn(s) (e, is
the unit matrix in GL(»n, C)). This shows that » is surjective and hence
E has sufficiently many sections, that is £€ $3(X). It is noted that the
processes thus obtained : E(p, F)— f,=f,¢* and f;— E(p, F) are not revers-
ible in general, since for f;€ WM, (X) it does not necessarily hold E(p, F)
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€ 92(X), and that v is not surjective in general (cf. the case of Theo-
rem 3). We shall now introduce in I, (X) an equivalence relation. Let
fi=F5 € Mai(X) (i=1, 2) and let E;=fF(W;)=E(p;, F;), where W; (i=1, 2)
are the universal quotient bundles over G(n;, m), p;=omiop; and F;=C”
=C"%/C%™ (i=1,2). We say that f, and f, are equivalent if the following
conditions are satisfied : there exists a suitable complex Grassmann manifold
G(n, m) and two holomorphic mappings p; (i=1,2) of fi(X) into G(n, m)
such that (i) @of,=@,of, and (i) ¢¥(W)=W,; on f(X) (¢=1, 2), where W
is the universal quotient bundle of G(n, m). Denote by I, (X) the set of
all equivalent classes in M, (X). We have then the so-called classification
theorem :

Theorem 4. The correspondence E(p, F)— f, given in Theorem 2
defines a ome-to-one correspondence between D5(X) and M, (X).

Proof. The above correspondence is clearly injective; in fact, take
two vector bundles E; € 92%(X) (=1,2) and let f; be the canonical map-
pings f,, associated to E; in Theorem 2. Suppose that f, and f, are
equivalent. Then @¥(W)=W, on fi(X) ((=1, 2) and @,of,=@,of,. Since
E;=f¥(W;) by Theorem 2, we obtain E,=FE,.

We shall now show that our correspondence is surjective. Take a
mapping 7, € M (X) which is induced by a homomorphism p, of G into
GL(n,, C) such that p(U) CGL(n,, m; C), and let E,= f¥(W,) be the induced
bundle of the universal quotient bundle W, of G{n,, m) by f,. Assuming
that dim H°(X, E,)=n(=m), we take the complex Grassmann manifold
G(n, m) and its universal quotient bundle W. The bundle E, is defined
by p,=omop,. We define the holomorphic homomorphisms +, of p,(G)
into GL(n, C) and the induced holomorphic mapping @, of f,(X) into
G(n, m) by setting :

7(p:(£)) = pi(g)
?.(p(g)-GL(n,, m; C)) = p¥(g)-GL(n, m; C),

where p{ means the induced representation of p,. We shall show that
these definitions are well defined. To see this, we have only to verify
that p,(g)=e, implies pi(g)=¢ (¢, and ¢ denote the unit elements of
GL(n,, C) and GL(n, C) respectively), and that g,(g) € GL(n,, m; C) implies
pi(g)€GL(n, m; C). Let G'={geGlp(g)=¢} and U = {geCG|p(g)e
GL(n,, m; C)} >G’. Then p, induces the natural biregular mapping f}
of G/U into G(n,, m; C) such that f,; G/U—-G/U —-Gn,, m; C) and p,
is extendable to a homomorphism of U’ into GL(m, C) for which the
induced representation coincides with p* itself, therefore p#(U)C GL(n, m ;
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C). Moreover we can identify G/U' =G/G'/U /G’. Now we may regard
P as an isomorphism of G/G’ into GL(n,, C), and so p as a homomorphism
of U'/G' into GL(m, C). Hence the induced representation of p can be
considered as a representation of G/G’, and therefore p*(G')={e}. We
have @,of,=f, and @f(W)=W, on f,(X) by the definition of ¢,. Let
E(p, F)e ©(X) and let E=E,. By Proposition 3 there is a biregular trans-
formation @ of G(n, m) such that @(p¥(g)GL{n, m; C))=p*(g)GL(n, m; C).
We have then @of, =f,. Therefore (pop,)of,=f, and (po@)¥(W)=W,
on f,(X). The mapping @op, is the required one and the proof is
completed.

REMARK. The imbedding theorem and the classification theorem are
formulated only for vector bundles with sufficiently many sections, in
particular for ample vector bundles. The relation between the general
vector bundles and these ones is given by the fundamental theorem of
J. P. Serre [20] if the base manifold is algebraic. Kihleian C-manifolds
being algebraic, Serre’s theorem is applicable. For non-kihlerian C-mani-
folds, the analogue of Théoréme A in [20] is not true in general. In
fact, let £ be a homogeneous vector bundle over a non-kihlerian C-
manifold X with the associated fundamental fibering X (X, Y, ¢), where
Y=U/U is a complex torus. Then the restriction E, of E on Y is also
homogeneous, so it decomposes into the direct sum of indecomposable
homogeneous vector bundles E;, E, =E, & PE,, E; =E|QE} (1<i<k),
where E; is a homogeneous line bundle and E} a homogeneous inde-
composable vector bundle obtained by a successive extension by trivial
line bundles (see, for detail, Matsushima [16]). Moreover H(Y, E,)=
H(Y, E)+--+H(Y, E,), and H(Y, E;))== {0} if and only if Ej} is trivial
([16], Lemma b5, 2). If E has sufficiently many sections, the same is
true for E;(1<i<k), which implies that all £{(1<7{<k) are trivial line
bundles. Now let E'=¢*EDE,, where E and E, are non-trivial line bundles
over X and X respectively such that E, is not the induced one from a
line bundle over X and that the Chern class of E, is zero. Since any
line bundle over X is homogeneous by Theorem 1, E’ is homogeneous.
Suppose now that £=FE'QF has sufficiently many sections for a suitable
line bundle F. Then E is also homogeneous and it follows from the above
consideration that Ey,=I®I, I=(¢*E),QFy, I=(E))y®Fy, I denoting a
trivial line bundle over Y. Clearly (¢*E)y=1 and hence Fy=1I. Therefore
(E,)y=1 and this is a contradiction. Thus E'®F can not have sufficiently
many sections for any line bundle F.
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III. O~ A CONJECTURE OF A. GROTHENDIECK.

Let €, (X) be the set of equivalent classes of m-dimensional vector
bundles over X, and let ¥ ,(X) be the subset of & (X) of the classes
containing a vector bundle whose structure group is reducible to the
group A(m, C) consisting of triangular matrices with coefficients 0 under
the diagonal. Let &, (X) be the subset of €,(X) of the classes con-
taining a vector bundle which is the direct sum of m line bundles. Ob-
viously we have

C.(X)>T,(X)>6,(X), (m=1).

Moreover let ©,,(X) denotes the subset of &, (X) of the classes containing
a homogeneous vector bundle. Theorem 1 implies

Ou(X)2>6,X) (m=1),

since the direct sum of homogeneous vector bundles is again homoge-
neous. A. Grothendieck [107] proved that if X is a complex projective
line P!, then every vector bundle is decomposed into the direct sum of
line bundles, that is

G (PYHY =&, (PY, (m=1).
Therefore
G (P) = D,.(P) = T, (P) = S,(PY, (m=1).
We shall study here mutual relations between ¥,(X), &,(X) and 9,,(X)

for higher dimensional C-manifolds. Note that dim X >1 is equivalent
to dim G_>3 or /=rank G_>1.

10. Vector bundles over a flag manifold

Proposition 4. If X is a flag manifold whose dimension is greater
than 1, then we have

T (X)=9,X)=26,,X)
for any positive integer m =2.

Proof. Since X=G/U is a flag manifold, U is a maximal solvable
subgroup of G. For any m-dimensional holomorphic representation p of
U, the image p(U) is considered to be contained in A(m, C) by Lie’s
theorem and this implies 9,(X)Cg,(X). To prove that T (X)=229,.(X)
=26, (X), it is sufficient to show that T,(X)=29,(X)=2S,X), because if
there exist E€ I,(X) and E’ € 9,(X) such that E¢ 9,(X) and E' ¢ S,(X)
respectively then EQI"*€ E,(X), €9,,(X) and E'PI" € D, (X), £¢6,(X)
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by Théoréme 2 in [15] and the uniqueness theorem for the direct sum
decomposition in [17.

Every vector bundle E€ Z,(X) is obtained by an extension of a line
bundle by another one and conversely. We consider here the extension
E of the trivial line bundle I by a line bundle E, :

E:0—-E,->-E—->I—->0, EeZ,(X).
From the exact sequence E, we derive the following three exact sequences.

E¥:0—->I—>E*—>Ef—>0,
E*QE,: 0— E, - Hom (E, E,) = 1—0,
E*®QE : 0 — Hom (E, E,) - Hom (E, E) - E* - 0.

The second exact sequence E*®E, induces the cohomology exact
sequence :

0 — H(X, E,) -~ H'(X, Hom (E, E;)) - H(X, C)
ok
— H'(X, E,) > H(X, Hom (E, E,)) -~ H'(X, C),

where H(X, C)=C, HY(X, C)={0} and &*(1)e H'(X, E,) represents the
obstruction class of 5. As is well known, there is a one-to-one corres-
pondence between the set of equivalent classes of extensions of type E
and the group H'(X, E,) given by {E}«06*(1), and E is the trivial ex-
tension if and only if 6*%(1)==0 (cf. [2]). Therefore if H(X, E,)== {0},
there is a non-trivial extension E for which 6%(1)==0 and in this case
&% is injective. Since H°(X, E,)= {0} by Bott’s thorem, H°X, Hom (E,
E,))={0}. Thus we obtain:

5%
0> HX, C)—> H'X, E,) > H(X, Hom (E, E,)) - 0.

Next, from E*QE we get:
S*

0 — H(X, Hom (E, E)) - HX, E*) — H'(X, Hom (E, E),)) .

Suppose that E is decomposable and let E=E,PE,, E; € E(X). Then
there are two linearly independent elements s,, s,€ H(X, Hom (E, E)),
which are defined by the properties that s,(x) (resp. s,(x)) is the identical
automorphism on (E,), (resp. on (E,),) and the zero homomorphism on
(E,), (resp. on (E,),). Therefore dim H(X, Hom (E, E))=2 (cf. IV, §14)
and we have dim H°(X,E*) =2 by the above exact sequence. While, from
E* we have

0—HX, C) -~ H(X, E¥) - H(X, EY) - 0.
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It follows that dim H°X, E¥)=1. From these arguments and Bott’s
theorem, we have

Lemma 4. Let M be a character satisfying the following conditions :
i) A+8 is regular and Ind. A+8)=1, ii) —A+8 is singular or regular and
Ind. (—A+8)>>0. Then, for any non-trivial extension E, E is indecom-
posable and hence E & S (X), E € I,(X).

Next we shall consider the condition that the 2-dimensional vector
bundles defined as above should be homogeneous.

Lemma 5. Assume that E is a non-trivial extension. Then the vector
bundle E is homogeneous if dim H'(X, E,)=1.

Proof. Let dim H'(X, E,)=1. The structure group of E is reducible
to the group A2, O)= {(8 ’{) e GL(2, C)}. The associated principal

A2, C)-bundle of E will be denoted by P(X, A2, C), w). For the bundle
P, we consider Atiyah’s exact sequence and the corresponding cohomology
exact sequence :

0 L(P) - Q(P) —>© 0,

0 — HY(X, L(P)) - f(P) — > a(X) — HX, L(P)).

00
is the Lie algebra of A, (2, C) and the action of A2, C) on 8,2, C) is the

adjoint one. For any element u:<g 1{>6A1(2, 0), Adu:<‘6 [{> in a

suitable basis of 6,2, C), so that we have L(P)=E. The corresponding
cohomology exact sequence of E is
S*

0—-H'X,E)—-HX,C)— H'X, E,) > H'X, E)—0.

Now we note that L(P)=Px 8,2, C), where 8,2, C)— {(* *>egr(2, C)}

Since E is non trivial, the image of % does not vanish (cf. [3] Lemma 13),
and so we have H°X, E)= H'X, E)= {0}, and hence H°X, L(P))=
H'(X, L(P))={0}. Therefore from the above exact sequence we have
w : f(P)=a(X), which implies that P is homogeneous. The bundle E is
thus homogeneous.

Now we shall construct vector bundles satisfying the conditions of
Lemma 4 and Lemma 5 respectively.

(@). Let p(1<k=1) denotes the maximum of p, which is the k-th
coefficient in any positive root &:Zl p:&;, and let g, be an arbitrary
i=1

integer not less than 3p,. We define the weights A, by setting:
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A = =28+ quA+ o A+ AL+ e A

/
Then, for any positive root @=>" p,&; different from ¢,, we have
i=1

(o +-8)(h) = 37 Q‘(J%)l 5:Cvco+ )(h)

__ (6’( ’ CD o (&iy C"(t) A >~
- (C‘;’ &)k { pk+§(&k’ &k)pz(qk_l_]-)} /0 ’

and (A, +8)(h)=—2+1<"0. Therefore Ind. (A, +6)=1. On the other
hand, (—AXg,+8)(h)=1—¢,<0 for any i=k. This means that —3X,,+§
is singular or regular and Ind.(~i<k>+3)>0. Thus the character A,
satisfies the conditions i) and ii) in Lemma 4.

(b). Let pgo——¢&, (1<k=10). Then, pu+56=0c,5), where o, is
the element of the Weyl group T corresponding to &,, and we have
(a8, &) = (6, (@) >0 for any de 3V, d=d,, and (fp+95, &)=
(3,—&k)< 0. Moreover o,(8) is clearly regular and on the other hand,
"/’4<k>+3:c"vk+t§ is singular, or regular and of positive index. Thus i)
and ii) in Lemma 4 are satisfied for the character u,,. Now, by the
theorem of Bott in I, uf’=1, so that we have dim H'(X, E,,)=1, which
is the condition of Lemma 5.

Now we shall return to the proof of Proposition 4. First, 9,(X)
=6,(X) is obvious from Lemma 4, Lemma 5 and the examples in (b).
We show that any vector bundle E given by Lemma 4 and the examples
in (a) is not homogeneous. We have then <,(X)=29,(X) and the proof
will be complete.

Assume that E is a homogeneous vector bundle E(p, F'). Then there
exists an exact sequence of U-modules : 0— (A, C*)—(p, F)—(\,, C')—0,
and the corresponding one of homogeneous vector bundles: 0—E, —E
—E,,—~0. The last extension being not splittabe by E ¢ &,X), the
coboundary operator &*: HX, I) — H'(X, E,.,;1) is injective as G-
modules under the induced representations, and moreover the obstruction
class &*%(1) is G-invariant. Therefore, by Bott’s theorem, we have
dim H'(X, E, .,;1)=1. There exists then a fundamental root &,(1=i</)
such that o'i(7°\-1—5»2+5)zg or A,—XA,= —¢;. On the other hand, considering
the 1st Chern class of E, we have A.,=x +X, (cf. 3) in I). Now, from
the exact sequence of homogeneous vector bundles : 0 - E¥ — E* - E¥ —0,
we haVe the cohomology exact sequence :

0— HX, EY) - H(X, E*) > H(X, E}) —

which is compatible with G-module structures. While we see that
dim H°(X, E*)=1 since HX, E%,)= {0}, therefore it must be

)
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dim H(X, E¥)=1 or dim H(X, E¥)=1, which means A,=0 or X,=0 by
Lemma 3 and Theorem 1 (or by Bott’s theorem). Thus we obtain
Ap=+¢&;. This is a contradiction, since ¢; >3 (i=+k) and the absolute
values of the Cartan integers are at most 3. Our Proposition 4 is now
completely established.

REMARK. In Theorem 1’ we have proved that every holomorphic
principal bundle over a C-manifold with a complex abelian group as
structure group is homogeneous. On the other hand, Proposition 3 in
[17] and Proposition 1 implies that ewvery holomorphic principal bundle
over a kihlerian C-manifold with a complex nilpotent group as structure
group is also homogeneous. (We do not know whether this result is still
valid for non-kihlerian C-manifolds or not). Thus, Matsushima has raised
the question if the above result is true for bundles over kidhlerian C-
manifolds with a complex solvable group as structure group. Now
Proposition 4 above gives a negative answer to this question. In fact,
let GL(m, C) (resp. &2(m, C)) be the sheaf of germs of holomorphic map-
pings of a flag manifold X (3=P") into GL(m, C) (resp. A(m, C)). The
injection j: A(m, C)— GL(m, C) induces the mapping j: H'X, A(m, C))—
H'(X, GL(m, C). The image of j coincides with T (X). If HY(X, &(m, C))
consists only of homogeneous A(m, C)-bundles, then ¥, (X) does so, but
tne latter contradicts Proposition 4 for m=2.

11. Vector bundles over a maximal C-manifold

Proposition 5. If X is a maximal C-manifold whose dimension is
greater than 1, then we have

LX) = 6,(X)
for any positive integer m, and

9,(X) =2 S,.(X)
for any m=dim X.

For the proof of the Proposition, we need the

Lemma 6. Let g be a complex simple Lie algebra with the rank
greater than 1, Y a Cartan subalgebra of g and {&,, &,, -, &} (1=2) a
fundamental root system. Let N be a weight on 9 such that Mh;)=0 for
all fundamental roots &; except for a single one &,. Then A+ 6 is singular
or, \+8 is regular and Ind. (A +8)==1.

Proof. We set A+8=A and Mh)=c (c=integer). If ¢=0, then
A(hy)=c+1>0 and so A(h,)>>0 for any positive root & Therefore A
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is regular and Ind. A=0. If ¢=—1, then A(%,)=0 and so A is singular.
Finally let c<< —2. Note that, for any fundamental root &; different from
&, and for a positive integer p, we have

Coon 1 e o
Ahy) = @ @) {(d;, @)A(h)+p(d,, &)A(R,)}
1 o o o e
= (Cu(, &) {(ai) ai)_p(ak’ ak)} ’

where &=, + p&, is a positive root.

If g is one of the type A,(/<1), D,(!=4) or B,(/=6, 7, 8), then there
exists a positive root of the form &;+ &, for any given &, such that
(&;, &)=(&,, &,). So that for such a &=¢&;+&, we have A(h,)<0. For
the other types of g, this argument is still valid except for the case
&,=q,; in the type B,(/=2), the case &,=«,_, in the type C, (/=3), the
case &,=dq, in the type G, and finally the case &,=¢, in the type F,.
However for these exceptional cases we may take the positive root &
such that A(k,)<<0 as follows (the corresponding figures are the Schlifli
diagrams)® ;

N . N &1 &2 C08171 dcl
B(l=2), a=q,_,+d; O—QOQ—- — O
. X . a  aq, &, «q
Cl(lgg’)» & = al~1+a1+1; O'—‘O'— -
&1 &2
Gzy @ = a1+3&2; Q(EO
&1 &2 &3 &4
F4: C(:C(4+C¥3; O—OQO—Q'

Therefore in any case, A is singular or A is regular and Ind.A=2.
The lemma is thus proved.

Proof of Proposition 5. Let X=G/U be a maximal C-manfold, and
let S={«&, &,,---,&,_,, &,.,, -, &}. Any line bundle E, over X can be
defined by a character A whose differential A satisfies the assumption of
Lemma 6. Therefore by Bott’s theorem, we have H'(X, E,)= {0}.

We shall prove ¥,_(X)=&, (X) by induction on m. Suppose that
T, (X)=6,,_.(X). By the definition of ¥, (X), every vector bundle E¢€
Z,,(X) is an extension of a vector bundle E’'€¥,,_(X): 0>E'—-E—E, —0,
where E, is a line bundle and E’ is isomorphic to the direct sum of
(m—1)-line bundles E,, ---, E,,_,. The obstruction class corresponding to

6) For the roots of complex simple Lie algebras, we refer to the book of N. Iwahori,
“Theory of Lie groups II” (in Japanese).
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the above extension is an element of the cohomology group H'(X, Hom
(E,,, E')) = 'nZlH‘(X, Hom (E,, E;)), where Hom (E,, E;) (1=i=m—1)

are line bundles. Therefore H'(X, Hom (E,, E'))={0} and E=~E’ ®E,,
=E® - PE,€6S,(X). The proof of T, (X)=&,,(X) is now complete.

Next we consider the tangential vector bundle ® of X. This bundle
is homogeneous but is not contained in &,(X) (#=dim X). In fact if
®ec &, (X) then ®*e€ S (X) also, so that H'(X, €*) has to vanish. On
the other hand H'(X, @*)=H'X, Q)Y=H"'(X, C)=H*X, C)== {0} which is
a contradiction. Our proposition is now completely established.

12. A characterization of the complex projective line.

Theorem 5. A C-manifold X is a complex projective line P' if and
only if the following property is satisfied :

G (X)=6,X), forany m=1.
For the proof, the following lemma is essential (cf. [10]).

Lemma 7. Let ¢ be a holomorbhic mapping of a complex manifold X
onto another complex manifold X' such that ¢~'(x') is a compact connected
complex submanifold of X for every point x' € X', and let E be a (complex
analytic) vector bundle over X'. Then E is indecomposable if and only if
the induced bundle ¢*E is indecomposable.

Proof of Theorem 5. Let X be a C-manifold such that € (X)=8&,(X)
for m=1. Suppose X=2 and we shall derive a contradiction from this.
Let X(X, Y, ¢) be the fundamental fibering of X. Then dim X==2, since
there is essentially only one C-subgroup of SL(2, C). Moreover we have
G, (X)=©,(X) by Lemma 7. Therefore we may assume from the biginn-
ing that X is kihlerian. If X is a maximal C-manifold, we have
D(X)26,(X) for m=dim X by Proposition 5” and so € (X)=+&,(X)
for such m. Hence X can not be a maximal C-manifold. Consider the
fibering X(X,,, U,/ U, {,). Suppose that X is not a product of several
complex projective lines. Then we can choose X,, so that dim X,,=2.
By Lemma 7 and by our assumption E(X)=6,(X) (n=1), we get
C(X )=6,X,)) for n=1. This is a contradiction as we have shown
above. Therefore X must be a product of complex projective lines. Then
X is a flag manifold. It follows from Proposition 4 that € (X)4&, (X)
for m =2, since we have supposed dim X =2. These contradictions show

7) If we are only concerned with the proof of Theorem 5, we can apply Theorem 6 in
IV instead of Proposition 5.
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that dim X=1. Then we see clearly that X=P'. Theorem 5 is thus
proved.

REMARK. As we have mentioned in the Introduction, Theorem 5 gives
a partial answer to a problem posed by Grothendieck [10].

IV. TANGENTIAL VECTOR BUNDLES.

13. Certain cohomology groups over a non-kihlerian C-manifold.

Let X=G/U be a non-kihlerian C-manifold and let X(X, U/U, b)
be the fundamental fibering of X. Consider Atiyah’s exact sequence over
X associated with the fundamental fibering :

(1) 0> LX)>QX)— 60

(cf. [2] and [17], p. 165), where ® denotes the tangential bundle of X.
As is readily seen, this is nothing but the exact sequence of homogeneous
vector bundles defined from the exact sequence of U-modules under the
adjoint actions :

(2) 0—1t/u—>g/u—>g/i—0.

The vector bundle L(X) is trivial, since 1t is an ideal of 11 and so the
structure group Ad U acts trivially on 1t/u. Moreover we remark that
the standard fibre of L(X) may be regarded as w=1/u and that
H(X, L(X)) is identified with . Recall that H°(X, ®) is the complex Lie
algebra a(X) and that H*X, Q(X)) is identified with the complex Lie
algebra f(X) of all infinitesimal bundle automorphisms of X(X, U/ U, ¢)
(i.e. holomorphic vector fields over X which is invariant under the right
translations of the structure group, cf. [17]). Thus corresponding to the
exact sequence (1), we obtain an extension of complex Lie algebras:

0—m— f(X) i’» a(X) - H'(X, L(X)) = {0}.

Here v is not only an abelian ideal of f(X) but also is contained in the
centre of f(X). For v is the Lie algebra of the abelian structure group
U/U, and every vector field in f(X) is invariant by the actions of the
elements of U/U. Since a(X) is known to be a complex semi-simple Lie
algebra by Matsushima [15], it follows that f(X) is isomorphic to the
direct sum of ®m and a(X).

On the other hand, the exact sequence of U-modules (2) induces the
exact sequence of homogeneous vector bundle (1t is an ideal of 1!):
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(3) 0->1"—>0—¢*0 -0,

where ®=E(Ad, g/u), ®=E(Ad, g/1t) (over G/U) and I’=E(Ad, ft/u) is
a trivial vector bundle over X of r-dimension (r=dim 1t/u). This exact
sequence is clearly the one induced by ¢ from Atiyah’s exact sequence (1).
Now we consider the cohomology exact sequence corresponding to (3):

0— H'X, C") - H(X, ® — H'(X, $*®)
(4) e
— Hi(X, C") - Hi(X, ®) — Hi(X, $*@) —

where H(X, ® =a(X) =~ H'(X, Q(X)), H(X, $*®) ~ H*(X, ) and H(X, C")
=~ H(X, L(X)). Therefore we conclude that f(X)=a(X). Hence we
have the following result which sharpens a result of H.C. Wang ([22],
Theorem 3).

Proposition 6. Let X be a (non-kdhlerian) C-manifold with the
Fundamental fibering X(X, U/ U, ¢). Then a(X) is isomorphic to the direct
sum of W and a(X); in particular A%X) is a complex reductive Lie group
whose conmected centre is isomorphic to UJU.

Proof. We have only to prove the last statement. For any element
#e U, we define a bundle automorphism f; of the principal fibering
X(X, U/U, $) by setting fiu(gU)=galU for every gUe X=G/U, which is
well-defined since U is a normal subgroup of U. Then the kernel of the
homomorphism : #— f; is clearly U. Moreover fi(¢ ' (£))=¢"'(£) for every
2¢ X. Therefore the group {fuslde U} coincides with the subgroup of
AYX) generated by ® and is isomorphic to U/U. This completes the
proof.

Corollary. A C-manifold X is kdhlerian if and only if the connected
automor phism group AX) is semi-simple.

ExampLE. As an illustration of the above proposition, we take Calabi-
Eckmann’s example (cf. [8]). Namely, let X be the complex coset space
G/ U, where G=GL(m+1, C)xGL(/+1, C) (k, /=1) and U is the connected
complex closed subgroup of G consisting of the matrices AXB:
AeGL(k+1, C), BeGL(/+1, C) such that,

* ( *
* : * P
0,,0] ¢ 0, 0] e

where z is any complex number. Then a maximal compact subgroup
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K of G and V=KnU are given by K=U(k+1)x U(/+1), V=U(k) x U(l).
And as is easily seen, K acts transitively on X and so X=G/U=K/V
=Ul+1)/Uk)x U(l+1) U{l)=S*""x S**'. Moreover let U=GL(k+1,1;
C)XGL(I+1,1; C)>U. Then X=G/U=PtxP?and U/U=T'. Thus the
fundamental fibering X (X, T", $) coincides with the well-known fibering
(S S (P x P!, T, ¢). Note that G acts on X not effectively but
the quotient group G'=G/N acts effectively and transitively, where N is
a normal subgroup of G consisting of the matrices AXB; A€ GL(k+1, C),
BeGL(l+1, C) such that,
e [ e’z

. 0 ‘ 0
A= , + B=
.. 0 .. ,

e ! eV 1z

where z runs all the complex numbers. Therefore we have G’ C A°(X).
On the other hand, A%X)=SL(k+1, C)xSL(+1,C) and dim
G'=dim A°(X)+1. Hence we conclude that G'= A°%X) by Proposition 6.

Next we shall compute the cohomology groups Hi(X, ®) (:==1) which
have an important meaning in connection with Kodaira-Spencer’s defor-
mation theory of complex structures. (The following results shall be
needed on another occasion).

For this sake, we shall show that in the exact sequence (4) there
hold the following extensions :

(5) 0— HiX,C")— HiX, ®) - Hi(X, $*™) -0, ({=0).

Lemma 8. Let E=E(p, F) be a homogeneous vector bundle over
X=G/U such that HiX, E)={0} for i=1. Then Hi(X, p*E) is
isomorphic to H'X, EYQH{(U/U, C) (i=0) in a natural manner.

Proof. Take a spectral sequence {E,} such that E_ is associated to
H*(X, p*E) and E£?=H?*(X, $°(¢*E)) (for the notations, see the proof
of Theorem 1in I). Then the analytic sheaf ¢?(¢p*E) is by Bott ([7],
Theorem VI) the sheaf of germs of holomorphic sections of the homo-
geneous vector bundle Gx yHY(U/U, Ey), where E, denotes the homo-
geneous vector bundle Ux ,F (the restriction of ¢*E on U/U) and the
action of U on H%U/U, Ey) is the induced one from the defining repre-
sentation of E,. Now we can identify E, with the trivial vector bundle
U/UxF via the correspondence [, £]—aUx p(@)§ for #€ U and E€F.
Therefore we can also identify HY(U/U, Ey) with HYU/U, C)QF. The
action of U on the last module, under this identification, is the composition
of those on H%U/U, C) and F'; the first one is trivial since it is the one
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induced from the left translations of U and U/U is kihlerian, and the
second is clearly that of p. This implies that the homogeneous vector
bundle GxgHYU/U, Ey) is E®QHYU/U,C). Therefore we have
E2?={0} for p=1 by the assumption of the lemma and so E;=E%}‘=
HX, EQH*(U/U, C). On the other other hand, d,: Ey*—E%‘'= {0}.
Hence Hi(X, ¢p*E)~E' ~Ei=HX, E)YQH(U/U, C).

Now recall that H#(X, C)=H:X, #)={0} (¢=1) (cf. [7], Theorem
VII). Hence Hi(X, Q(X))={0} (=1). The vector bundles of (1),
therefore, satisfy the assumptions of Lemma 8, and we have the following
commutative diagram :

- H|(|X ,C)—H Oﬁ C) - Hi(X, $*8) —
[
(5') H°X, LX)RA - HX, QX)QA - H'(X, ®)QA¢,

where Ai=Hi(U /U, C) and the exact sequence (5’) coincides with the one
induced from (1), in accompany with the module A:. Thus we have from
the earlier discussions the following :

0= HICX, €)= X, 7) = I, ¢ ) =0
I Nl
0-wRA! - a(X)RA - a(XYQRAi -0,
where we note that Ai= {0} if ;> and that dirnA"=< :) if 1<r.

Proposition7.” For a C-manifold X with the fundamental fibering
X()A(, U/U, ¢), we have
HiX,C) = Hi(X,®) = {0}, if i >7r
dim Hi(X, C) = (j)
ifoi<r.
dim Hi(X, 7) — (: >dim a(X)

8) In Propositions 6 and 7 we have showed that Hi(X, ®)=Hi{(X, C")+Hi(X, d>*€?) for
every 1>>0. However we remark here that the extension (3) is not splittable. In fact, if (3)
is splittable, so is (1). This can be seen from the following commutative diagram and the
argument of obstruction classes of extensions:

o* A
Ho(X, Hom (I, I")) — H'(X, I' ® +*g*)

o i
H(X, Hom (L(X), L(X))) 2 HA(X, LX) ® 6%)

where ¢* in the right side is proved to be bijective using the spectral sequences. This implies

by Atiyah [2] that the fundamental fibering X()A{', T7, ¢) has a holomorphic connection. Then
we see by a result of Murakami ([18], Théoréme 5) that our fibering must be trivial. But
this clearly contradicts to the simply-connectedness of X.
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14. The indecomposability of the tangential vector
bundle of a kihlerian C-manifold.

Here we shall discuss the indecomposability of the tangential vector
bundle of a kihlerian C-manifold. We recall at first a criterion of inde-
composability of a general vector bundle due to Atiyah (cf. [2], Proposi-
tion 16). Let E be an m-dimensional vector bundle over a compact
complex manifold X and consider the vector bundle Hom (E, E)=FE*QE
whose fibre Hom (E, E), at a point x € X consists of the endomorphisms
of the fibre E, of E at x; Hom (E, E),=Hom (E,, E,). Now the 0-di-
mensional cohomology group H%X, Hom (E, E)) has the natural algebra
structure ; for s, t€ H(X, Hom (E, E)) the product sof is the section
defined by (sofj(x)=s(x)-#(x) (in the product of Hom (E,, E,)) at every
point x€X. For every x€X we define the mapping v, of HX,
Hom (E, E)) into Hom (E,, E,) by setting »,(S)=s(x) for every section s.
The linear mapping v, is obviously an algebra homomorphism and the
image of v, is a linear subalgebra of Hom (E,, E,), which we denote by
S(E),. A result of Atiyah [2] asserts that E is indecomposable if and
only if the algebra S(F), is written as

S(E), = C-I,+N(E), for every x€ X,

where I, denote the identity element in Hom (E,, E,), N(E), a subalgebra
of S(E), consisting of matrices, in suitable basis of E,, of the form:

(070 {7

In particular, if H°(X, Hom (E, E)) is of dimension 1, then E is inde-
composable.

When E is the tangential vector bundle ® of X, the cohomology
group H°(X, Hom (®, ®)) is the linear space of all holomorphic tensor
fields of type (1.1). While we know the following result (cf. Yano-

Bochner [21]).

Lemma 9 (BoCHNER). If X is a compact complex manifold with a
kdahlerian, Einstein metric, every holomorphic temnsor field of type (p,q)
(p=1, g=1) is parallel.

Therefore, if X is an irreducible compact kdhlerian Einstein manifold
(i.e. whose restricted homogeneous holomony group V¥, at a point x€ X
is irreducible), then every element of ¥, commutes with that of
v.(H(X, Hom (8, ®))=5(®), for any x<€ X. So that, by Schur’s lemma,
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S(®), has to be spanned by I,, or what is the same, H°(X, Hom (8, 8))
is of dimension 1. Hence ® is indecomposable.

On the other hand, a kihlerian C-manifold X is decompsed into the
direct product of a certain number of irreducible kidhlerian C-manifolds
X; (1<i<k); therefore for a reducible kihlerian C-manifold X, @ is
decomposable. However an irreducible kdhlerian C-manifold is necessarily
an Einstein manifold (cf. [14]). Here, recall that X is irreducible if and
only if G is (complex) simple (cf. [11]). Hence we have

Theorem 6. The tangential vector bundle of a kihlerian C-manifold
X=G/U (for any almost effective Klein form) is indecomposable if and
only if G is simple.

REMARKS. As mentioned in the Introduction, the problem of charac-
terizing the indecomposable homogeneous vector bundles in terms of their
defining representations seems to be rather interesting. The defining
representation of an indecomposable homogeneous vector bundle is not
necessarily irreducible as Theorem 6 shows (Note that a C-manifold
X=G/U is an irreducible hermitian symmetric space if and only if the
linear isotropic representation of U is irreducible), and moreover such a
vector bundle is not necessarily isomorphic to the one defined by an
irreducible representation; in fact a homogeneous vector bundle over a
flag manifold is a line bundle if its defining representation is irreducible,
but there are indecomposable two dimensional homogeneous vector bundles
over it (III. Proposition 4). However it seems to us very plausible that
any homogeneous vector bundle over a kdhlerian C-manifold defined by an
irreducible representation of the isotropy subgroup is indecomposable. On
the other hand, from the view-point of the classification problem of
homogeneous vector bundles over a given ki#hlerian C-manifold, it is
desirable to obtain a condition of equivalence between two homogeneous
vector bundles which is more precise than Theorem 4. For example, if
two homogeneous vector bundle E\(p, F,) and E,(p,, F,) are equivalent and if
both (p,, F\) and (p,, F,) are irreducible, then are these representations
equivalent? We add that this problem has a negative answer for the
differentiable homogeneous vector bundles.

(Received July 1, 1960)

9) The original proof of this theorem is valid only for hermitian symmetric spaces, and
depends entirely upon the theorem of Bott. The present proof is due to Matsushima.
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