The Extension of Groups and the Imbedding of Fields

By Yasumasa Akagawa

In this paper is solved the problem of imbedding a normal field of algebraic numbers in a larger field having local fields given in advance in case the order of a relative galois group is a prime. For this purpose, a theory of the extension of groups is discussed in the first half where a generalization of the usual will be found. If we can find the possibility to continue the process stated in this paper, we shall be able to construct a normal field with an arbitrarily given solvable galois group and local fields given in advance. We shall discuss this in a forthcoming paper.

The author is deeply indebted to Professor H. Nagao and Dr. N. Nobusawa for valuable discussion.

§ 1. The Extension of Groups

When there are given a group X with a set of operators Σ and its Σ-invariant subgroup Y, we shall use, in the following, the same notation Σ for the restriction of Σ into Y, and when specially Y is normal in X, we shall use the same Σ for the operator set of X / Y induced naturally by Σ.

We shall use the common symbol ι for the canonical or the identical mapping among several groups, if there is no confusion.

Let G_{0} be any group and A any abelian group, all having a set of operators Σ in common, and suppose that A has G_{0} as an operator group besides Σ, and that the following relations are satisfied:

$$
\begin{equation*}
\left(a^{g_{0}}\right)^{\sigma}=\left(a^{\sigma}\right)^{8_{0}^{\sigma}} \quad \text { for } \quad a \in A, g_{0} \in G_{0}, \sigma \in \Sigma \tag{1}
\end{equation*}
$$

We shall call a subset I of Σ a set of inner operators, if it has the following properties.

1) There is a one-to-one correspondence between I and a subset of G_{0}. The element of I which corresponds to g_{0} in G_{0} will be denoted by $\left\langle g_{0}\right\rangle$.
2) $h_{0}^{<g_{0}>}=g_{0}^{-1} h_{0} g_{0}$ for $h_{0} \in G_{0}$.
3) $a^{\left.<g_{0}\right\rangle}=a^{g_{0}}$.

Let G be another Σ-group, and suppose there are a Σ-isomorphism
\mathcal{P} from A into G and a Σ homomorphism ψ from G onto G_{0} with the kernel $\varphi(A)$, and they satisfy the following conditions:

1) If $\psi(g)=g_{0}$, then

$$
a^{g_{0}}=\mathscr{P}^{-1}\left(g^{-1} \mathcal{P}(a) g\right)
$$

2) If $\left\langle g_{0}\right\rangle \in \mathrm{I}$, then there is an element $g \in G$ such that $\psi(g)=g_{0}$ and

$$
g^{\prime<g_{0}>}=g^{-1} g^{\prime} g \quad \text { for } \quad g^{\prime} \in G
$$

In this case, $(G, \Sigma, \varphi, \psi)$ is called a Σ-extension of A by G_{0}
We shall introduce an equivalence relation to the set of such $(G, \Sigma, \varphi, \psi)$. Let ($G^{\prime}, \Sigma, \mathcal{P}^{\prime}, \psi^{\prime}$) be another Σ extension of A by G_{0}. $\left(G^{\prime}, \Sigma, \varphi^{\prime}, \psi^{\prime}\right)$ is said to be equivalent to (G, Σ, φ, ψ) if and only if there is a Σ isomorphism μ from G onto G^{\prime} such that

$$
\begin{equation*}
\mu(\sigma)=\sigma \quad(\sigma \in \Sigma), \quad \mu \varphi=\varphi^{\prime}, \quad \psi^{\prime} \mu=\psi . \tag{1.2}
\end{equation*}
$$

Classifying all (G, Σ, φ, ψ) by this equivalence relation, the class containing (G, Σ, φ, ψ) will be denoted by $[G, \Sigma, \varphi, \psi]$ or again by (G, Σ, φ, ψ) if there is no confusion. Σ in (G, Σ, φ, ψ) will be omitted when they are evident.

The addition of two classes

$$
\left(G, \mathscr{P}, \psi^{\prime}\right)+\left(G^{\prime}, \mathscr{\varphi}^{\prime}, \psi^{\prime}\right)
$$

will be defined as follows. In the group $G \times G^{\prime}$ with the operator domain $\Sigma \times \Sigma$,

$$
\widetilde{G}=\left\{\left(g, g^{\prime}\right) \mid \psi(g)=\psi^{\prime}\left(g^{\prime}\right)\right\}
$$

is a subgroup with the operator domain

$$
\tilde{\Sigma}=\{(\sigma, \sigma) \mid \sigma \in \Sigma\}
$$

$\tilde{\Sigma}$ can be identified to Σ by the correspondence $(\sigma, \sigma) \leftrightarrow \sigma . \quad \tilde{G}$ contains a Σ invariant normal subgroup

$$
N=\left\{\left(\varphi(a), \varphi^{\prime}\left(a^{-1}\right)\right) \mid a \in A\right\} .
$$

Then there are a Σ-isomorphism $\widetilde{\mathscr{P}}$ from A into \widetilde{G} / N and a Σ-homomorphism $\tilde{\psi}$ from \tilde{G} / N onto G_{0} which are defined respectively by

$$
\begin{equation*}
\widetilde{\mathscr{P}}(a)=\left(\varphi(a), e^{\prime}\right) N=\left(e, \varphi^{\prime}(a)\right) N \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\psi}\left(\left(g, g^{\prime}\right)\right)=\psi(g)=\psi^{\prime}\left(g^{\prime}\right) . \tag{1.4}
\end{equation*}
$$

$(\widetilde{G} / N, \widetilde{\mathscr{P}}, \tilde{\psi})$ is a Σ-extension of A by G_{0}, and the class [$\left.G / N, \varphi, \psi\right]$ does not depend on the choice of representatives (G, φ, ψ) and ($G^{\prime}, \varphi^{\prime}, \psi^{\prime}$) of $[G, \varphi, \psi]$ and $\left[G^{\prime}, \varphi^{\prime}, \psi^{\prime}\right]$ respectively. Thus we can define the addition by setting

$$
[G, \varphi, \psi]+\left[G^{\prime}, \varphi^{\prime}, \psi^{\prime}\right]=[\widetilde{G} / N, \widetilde{\varphi}, \tilde{\psi}]
$$

The following propositions are evident from the definition.
Proposition 1. The set of $[G, \varphi, \psi]$ becomes an additive group. $(G, \varphi, \psi)=0$ if and only if there is a Σ-invariant subgroup G_{0}^{\prime} of G such that $G=G_{0}^{\prime} \cdot \varphi(A)$ and $G_{0}^{\prime} \cap \varphi(A)=e . \quad-(G, \varphi, \psi)=\left(G, \varphi^{\prime}, \psi\right)$ where $\rho^{\prime}(a)=\varphi\left(a^{-1}\right)$.

This group composed of $[G, \varphi, \psi]$ is called a cohomology group of dimension 2 and denoted by $H^{2}\left(G_{0}, \Sigma, A\right)$.

1. The Restriction Mapping

Let $\Sigma^{\prime} \subset \Sigma,(G, \varphi, \psi)$ be a Σ-extension of A by G_{0}, and let H_{0} be a Σ^{\prime}-invariant subgroup of G_{0}. Put $\mathrm{I}^{\prime}=\left\{\left\langle h_{0}\right\rangle \in \mathrm{I} \cap \Sigma^{\prime} \mid h_{0} \in H_{0}\right\}$ and denote $\psi^{-1}\left(H_{0}\right)$ by H. Then $\left(H, \Sigma^{\prime}, \varphi, \psi\right)$ is a $\Sigma^{\prime}-$ extension of A by H_{0} defining I^{\prime} as the inner operator set. $\left[H, \Sigma^{\prime}, \varphi, \psi\right]$ is uniquely determined by $[G, \Sigma, \varphi, \psi]$. Thus we have a homomorphism [G, $\Sigma, \varphi, \psi] \rightarrow\left[H, \Sigma^{\prime}, \varphi, \psi\right]$ from $H^{2}\left(G_{0}, \Sigma, A\right)$ to $H^{2}\left(H_{0}, \Sigma^{\prime}, A\right)$. This is called the restriction mapping from $\left(G_{0}, \Sigma\right)$ to (H_{0}, Σ^{\prime}) and denoted by $r_{\left(G_{0}, \Sigma^{\prime}\right) \rightarrow\left(H_{0}, \Sigma^{\prime}\right)}$ or $r_{G_{0} \rightarrow H_{0}}$ if $\Sigma^{\prime}=\Sigma^{\prime}$.

2. The Induced Mapping

Let B be another abelian group with operator domains Σ and G_{0}, satisfying the condition (1.1), and those of inner operator set I. Suppose there is a Σ-homomorphism $f: A \rightarrow B$ such that $f\left(a^{\sigma}\right)=(f(a))^{\sigma}$ and $f\left(a^{g_{0}}\right)$ $=(f(a))^{g_{0}}$. To a Σ-extension (G, φ, ψ) of A by G_{0}, we can correspond a Σ-extension $\left(G^{*}, \varphi^{*}, \psi^{*}\right)$ of B by G_{0} as follows.

Let $\left(G^{\prime}, \varphi^{\prime}, \psi^{\prime}\right)$ be a splitting Σ-extension of B by G_{0}, namely $\left[G^{\prime}, \mathscr{P}^{\prime}, \psi^{\prime}\right]=0$, and therefore we can suppose $G^{\prime}=G_{0} \cdot B, \mathscr{P}^{\prime}=\iota$, and $\psi^{\prime}=\iota$ by Proposition 1. In the group $G \times G^{\prime}$ with the operator domain $\Sigma \times \Sigma$,

$$
\widetilde{G}=\left\{\left(g, g_{0} b\right) \mid \psi(g)=g_{0}\right\}
$$

is a subgroup with the operator domain $\tilde{\Sigma}=\{(\sigma, \sigma) \mid \sigma \in \Sigma\}$ which is identified with Σ by $(\sigma, \sigma) \leftrightarrow \sigma . \quad G$ contains a Σ invariant normal subgroup

$$
N=\left\{\left(\mathcal{P}(a), f\left(a^{-1}\right)\right) \mid a \in A\right\}
$$

and there are a Σ-isomorphism φ^{*} from B into $G^{*}=\widetilde{G} / N$ and a Σ homomorphism ψ^{*} from \widetilde{G} / N onto G_{0} which are defined respectively by

$$
\begin{equation*}
\varphi^{*}(b)=(e, b) N \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi^{*}\left(\left(g, g_{0} b\right)\right)=g_{0} . \tag{1.6}
\end{equation*}
$$

Thus we have a Σ-extension $\left(G^{*}, \varphi^{*}, \psi^{*}\right)$ of B by G_{0} and $\left[G^{*}, \varphi^{*}, \psi^{*}\right]$ is uniquely determined by $[G, \varphi, \psi]$. Moreover $f^{*}:[G, \varphi, \psi] \rightarrow\left[G^{*}, \varphi^{*}, \psi^{*}\right]$ is a homomorphism from $H^{2}\left(G_{0}, \Sigma, A\right)$ into $H^{2}\left(G_{0}, \Sigma, B\right)$. This mapping f^{*} is said to be induced by f.

3. The Lift Mapping

Here, we shall suppose all elements of Σ are automorphisms of G_{0} and A. Let H_{0} be a Σ-invarient normal subgroup of G_{0}, and $A_{0}=A^{H_{0}}$ the subgroup of A composed of all elements fixed by H_{0}. Then A_{0} is Σ-invariant by the relation (1.1). Let (\bar{G}, φ, ψ) be a Σ-extension of A_{0} by G_{0} / H_{0}. In the group $G_{0} \times \bar{G}$ with the operator domain $\Sigma \times \Sigma$,

$$
F=\left\{\left(g_{0}, \bar{g}\right) \mid g_{0} H_{0}=\psi(\bar{g})\right\}
$$

forms a subgroup with the operator domain $\tilde{\Sigma}=\{(\sigma, \sigma) \mid \sigma \in \Sigma\}$ which is identified with Σ by $(\sigma, \sigma) \leftrightarrow \sigma$. Let φ_{F} be a Σ-isomorphism from A_{0} into F and ψ_{F} a Σ-homomoprhism from F onto G_{0} defined respectively by

$$
\begin{equation*}
\varphi_{F}\left(a_{0}\right)=\left(e_{0}, \varphi\left(a_{0}\right)\right) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{F}\left(\left(g_{0}, \bar{g}\right)\right)=g_{0} . \tag{1.8}
\end{equation*}
$$

It is evident that the class of $\left(F, \varphi_{F}, \psi_{F}\right)$ is uniquely determined by the class of (\bar{G}, φ, ψ). Denote by j the injection mapping $A_{0} \rightarrow A$. Then the lift mapping from G_{0} / H_{0} to G_{0} is a homomorphism from $H^{2}\left(G_{0} / H_{0}, \Sigma, A_{0}\right)$ into $H^{2}\left(G_{0}, \Sigma, A\right)$ defined by

$$
[\bar{G}, \varphi, \psi] \rightarrow j^{*}\left[F, \varphi_{F}, \psi_{F}\right] .
$$

This will be deonted by $\lambda_{G_{0} / H_{0} \rightarrow G_{0}}$ or briefly by $\lambda_{G_{0}}$.
We can prove easily the following
Theorem 1. Let f be a Σ-homomorphism from (A, Σ) into (B, Σ) and H_{0} a Σ-invariant subgroup of G_{0}. Then

$$
f^{*} r_{G_{0} \rightarrow H_{0}}[G, \varphi, \psi]=r_{G_{0} \rightarrow H_{0}} f^{*}[G, \varphi, \psi] .
$$

Theorem 2. If H_{0} is a Σ-invariant normal subgroup of G_{0}, then

$$
r_{G_{0} \rightarrow H_{0}} \cdot \lambda_{G_{0} / H_{0} \rightarrow G_{0}}=0 .
$$

Proof. By the definition of λ and r and by Theorem 1,

$$
r \lambda(\bar{G}, \varphi, \psi)
$$

is the image of $\left(H_{0} \times A_{0}, \iota, \iota\right)$ by j^{*}. By Proposition 1

$$
\left[H_{0} \times A_{0}, \iota, \iota\right]=0 .
$$

Therefore $r \lambda(\bar{G}, \varphi, \psi)=j^{*}(0)=0$.
Theorem 3. Let H_{0} be a Σ-invariant normal subgroup of $G_{0},\left\{\gamma_{i}\right\}$ a set of representative system of $G_{0} \bmod H_{0}$, and all $\left\langle\gamma_{i}\right\rangle$ contained in I . Then, from

$$
r_{G_{0} \rightarrow H_{0}}[G, \varphi, \psi]=0
$$

it follows that there is $a[\bar{G}, \bar{\varphi}, \bar{\psi}]$ in $H^{2}\left(G_{0} / H_{0}, \Sigma, A_{0}\right)$ such that

$$
[G, \varphi, \psi]=\lambda_{G_{0} / H_{0} \rightarrow G_{0}}(\bar{G}, \overline{\mathcal{P}}, \bar{\psi}) .
$$

Proof. By the assumption $r(G, \varphi, \psi)=0$ and Proposition 1, the group $\psi^{-1}\left(H_{0}\right)$ is $H_{0}^{\prime} \cdot \varphi(A)$ where $H_{0}^{\prime} \cong H_{0}$, and H_{0}^{\prime} as well as $\varphi(A)$ is Σ-invariant. Let g_{i} be elements in G such that $\psi\left(g_{i}\right)=\gamma_{i}$ and $g^{<\gamma_{i}>}=g_{i}^{-1} g g_{i}$ for $g \in G$. Put

$$
g_{i} g_{j}=g_{k} h_{i, j} \varphi\left(a_{i, j}\right)
$$

where $h_{i, j} \in H_{0}^{\prime}$ and $a_{i, j} \in A$. Now, the commutator of $\varphi\left(a_{i, j}\right)$ and any element h_{0} of H_{0}^{\prime} is the unit, because

$$
\begin{aligned}
h_{0}^{-1} \mathcal{P}\left(a_{i, j}\right)^{-1} h_{0} \varphi\left(a_{i, j}\right) & =h_{0}^{-1} g_{j}^{-1} g_{i}^{-1} g_{k} h_{i, j} h_{0} h_{i, j}^{-1} g_{k}^{-1} g_{i} g_{j} \\
& =h_{0}^{-1}\left(g_{k}^{-1} g_{i} g_{j}\right)^{-1}\left(h_{i, j} h_{0} h_{i, j}^{-1}\right)\left(g_{k}^{-1} g_{i} g_{j}\right) .
\end{aligned}
$$

Therefore it is in H^{\prime} and, on the other hand, it is evidently in $\varphi(A)$. Put similarly

$$
g_{i}^{\sigma}=g_{j} h_{i, \sigma} \mathcal{P}\left(a_{i, \sigma}\right) \quad \sigma \in \Sigma, h_{i, \sigma} \in H_{0}^{\prime}
$$

The commutator of $\mathcal{P}\left(a_{i, \sigma}\right)$ and any element h_{0} of H_{0}^{\prime} is again the unit, because

$$
\begin{aligned}
h_{0}^{-1} \varphi\left(a_{i, \sigma}\right)^{-1} h_{0} \varphi\left(a_{i, \sigma}^{\prime}\right) & =h_{0}^{-1}\left(g_{i}^{\sigma}\right)^{-1} g_{j} h_{i, \sigma} h_{0} h_{i, \sigma}^{-1} g_{j}^{-1} g_{i}^{\sigma} \\
& =h_{0}\left\{g^{-1}\left(g_{j} h_{i, \sigma} h_{0} h_{i, \sigma}^{-1} g_{j}^{-1}\right)^{\sigma^{-1}} g_{i}\right\}^{\sigma}
\end{aligned}
$$

is in H_{0}^{\prime} and, on the other hand, it is evidently in $\varphi(A)$.
Thus, we can construct an extension ($\bar{G}, \iota, \bar{\psi}$) of A_{0} by G_{0} / H_{0} as follows:
\bar{G} is composed of $\left\{\bar{g}_{i}, A_{0}\right\}$ and has the following relations:

$$
\begin{array}{lll}
\bar{g}_{i} \bar{g}_{j}=\bar{g}_{k} a_{i, j} & \text { if } & g_{i} g_{j}=g_{k} h_{i, j} \varphi\left(a_{i, j}\right), \\
\bar{g}_{i}^{\sigma}=\bar{g}_{j} a_{i, \sigma} & \text { if } & g_{i}^{\sigma}=g_{j} h_{i},{ }_{\sigma} \varphi\left(a_{i, \sigma}\right),
\end{array}
$$

and $\bar{\psi}\left(\bar{g}_{i} a_{0}\right)=\psi\left(g_{i}\right) H_{0}$
From the method of construction of \bar{G}, it is obvious that

$$
(G, \varphi, \psi)=\lambda_{G_{0} / H_{0} \rightarrow G_{0}}(\bar{G}, \iota, \bar{\psi}) .
$$

4. $(S / T, A)$

Let S be a Σ-group and let $S \supset T \supset U$ be a Σ-normal series, and suppose it has the properties as follows:

1) there is an onto Σ-homomorphism $\xi: S / U \rightarrow G_{0}$ with the kernel T / U.
2) there is a Σ-isomorphism η from T / U into A.
3) each element $\left\langle g_{0}\right\rangle$ of I is an inner automorphism by some element in $\xi^{-1}\left(g_{0}\right)$.
Then $[S / U, \iota, \xi]$ is a Σ-extension of T / U by G_{0}, and $\eta^{*}[S / U, \iota, \xi]$ is a Σ-extension of A by G_{0}. Taking all such U in T, the group generated by $\eta^{*}[S / U, \iota, \xi]$ is denoted by $(S / T, A)$

Theorem 4. Suppose each element of A is fixed by a Σ-invariant normal subgroup H_{0} of G_{0}. Then, under the same assumption as Theorem 3 , the sequence

$$
0 \rightarrow\left(G_{0} / H_{0}, A\right) \xrightarrow{\iota} H^{2}\left(G_{0} / H_{0}, \Sigma, A\right) \xrightarrow{\lambda} H^{2}\left(G_{0}, \Sigma, A\right) \xrightarrow{r} H^{2}\left(H_{0}, \Sigma, A\right)
$$

is exact, where ι is the injection, λ is the lift and r is the restriction mapping.

Proof. Let $[\bar{G}, \overline{\mathcal{P}}, \bar{\psi}] \in H^{2}\left(G_{0} / H_{0}, \Sigma, A\right)$ and suppose

$$
\lambda(\bar{G}, \overline{\mathcal{P}}, \bar{\psi})=(G, \mathcal{P}, \psi)=0 .
$$

Then, from the definition,

$$
G=\left\{\left(g_{0}, \bar{g}\right) \mid g_{0} H_{0}=\bar{\psi}(\bar{g})\right\} \subset G_{0} \times \bar{G},
$$

and it must be decomposed into

$$
G=G_{0}^{\prime} \cdot \varphi(A)
$$

where G_{0}^{\prime} is a Σ-invariant subgroup Σ-isomorphic to G_{0} by the mapping $\left(g_{0}, \bar{g}\right) \rightarrow g_{0}$. The mapping $\xi: g_{0} \rightarrow \bar{g}$ defined by $\left(g_{0}, g\right) \in G_{0}^{\prime}$ is a Σ-homomorphism from G_{0} into \bar{G}. If its kernel is denoted by N,

$$
(\bar{G}, \overline{\mathscr{P}}, \bar{\psi})=\xi^{*}\left(G_{0} / N, \iota, \iota\right) .
$$

5. The Automorphism of $\boldsymbol{H}^{2}\left(\boldsymbol{G}_{0}, \Sigma, \boldsymbol{\Sigma}\right)$

Suppose there are given a Σ-automorphism of G_{0} and a Σ-automorphism of A. We shall denote them by a common symbol ρ. Suppose it satisfies the condition

$$
\rho\left(a^{g_{0}}\right)=(\rho(a))^{\rho\left(g_{0}\right)} .
$$

For any $(G, \varphi, \psi) \in H^{2}\left(G_{0}, \Sigma, A\right)$ we can define

$$
\rho(G, \varphi, \psi)=\left(G, \varphi \rho, \rho^{-1} \psi\right)
$$

Thus ρ induces an automorphism of $H^{2}\left(G_{0}, \Sigma, A\right)$ which will be denoted by the same notation ρ.

Theorem 5. ρ can be extended to a Σ-automorphism $\bar{\rho}$ of G if and only if $[G, \varphi, \psi]$ is ρ-invariant. Here the extension $\bar{\rho}$ of ρ means a Σ automorphism of G such that

$$
\bar{\rho}(\mathcal{P}(a))=\varphi(\rho(a)) \quad \text { for } \quad a \in A
$$

and

$$
\psi\left(\bar{\rho}\left(g^{\prime}\right)\right)=\rho(\psi(g)) \quad \text { for } \quad g \in G
$$

Proof. Suppose $\rho(G, \varphi, \psi)=(G, \varphi, \psi)$. From the definition of equivalence, there must be a Σ-isomorphism $\bar{\rho}$ (therefore Σ-automorphism in this case) between G and G which coincides with $\rho \rho \rho^{-1}$ on $\varphi(A)$ and with $\psi^{-1} \rho \psi$ on $G / \mathcal{\rho}(A)$. So, $\bar{\rho}$ is an extension of ρ. Necessity is trivial from the definition.

6. Applications and Examples

Let A be a group of order p (a prime), G a p-group and H its normal subgroup such that

1) $[G: H]=p$,
2) there are into isomorphisms $\varphi_{i}: A \rightarrow G ; i=1,2, \cdots, n, 1 \leqq n \leqq p$ and $\varphi_{i}(A) \cap\left(\bigcup_{j \neq i} \varphi_{j}(A)\right)=e$,
3) $\bigcup_{i} \mathscr{P}_{i}(A)$ is normal in G and contained in the centre of H,
4) there exists an element g_{0} of G out of H, satisfying

$$
\begin{aligned}
& g_{0}^{-1} \varphi_{1}(a) g_{0}=\varphi_{1}(a), \\
& g_{0}^{-1} \mathcal{P}_{i}(a) g_{0}=\varphi_{i-1}(a) \varphi_{i}(a) \quad \text { for } \quad a \in A(2 \leqq i \leqq n) .
\end{aligned}
$$

Put $B_{0}=\{e\}, B_{i}=\bigcup_{i \geqq j \geqq 1} \varphi_{j}(A), C_{i}=\bigcup_{j \neq i} \varphi_{j}(A), H_{i}=H / B_{i}(0 \leqq i \leqq n)$, and $\bar{H}_{i}=$ $H / C_{i}, 1 \leqq i \leqq n$, and suppose G is an identical operator set of A. Then $\left(H_{i}, \iota \varphi_{j+1}, \iota\right)$ is supposed to be contained in $H^{2}\left(H_{i+1},\langle G\rangle, A\right)$ and ($\left.\bar{H}_{i}, \iota \varphi_{i}, \iota\right)$ in $H^{2}\left(H_{n}, \phi, A\right)$.

Theorem 6. There are relations, in $H^{2}\left(H_{i+1}, \phi, A\right)$:
i) $\left(H_{i}, \iota \varphi_{i+1}, \iota\right)=\lambda_{H_{n} \rightarrow H_{i+1}}\left(\bar{H}_{i+1}, \iota \varphi_{i+1}, \iota\right)$
ii) $\quad\left(\bar{H}_{i}, \iota \varphi_{i}, \iota\right)+\left(\bar{H}_{i+1}, \iota \varphi_{i+1}, \iota\right)=g_{0}\left(\bar{H}_{i}, \iota \varphi_{i}, \iota\right)$.

Proof. i) is an immediate consequence of the definition of the lift mapping. Let us prove ii). Put

$$
\tilde{H}=H / C_{i} \cap C_{i+1}
$$

and

$$
D=\left\{\mathcal{P}_{i}(a) \mathscr{P}_{i+1}\left(a^{-1}\right)\left(C_{i} \cap C_{i+1}\right) \mid a \in A\right\} \subset \tilde{H} .
$$

By the definition of the addition

$$
\begin{aligned}
\left(\bar{H}_{i}, \iota \rho_{i}, \iota\right)+\left(\bar{H}_{i+1}, \iota \varphi_{i+1}, \iota\right) & =\left(\tilde{H} / D, \iota \rho_{i}, \iota\right) \\
& =g_{0} \cdot g_{0}^{-1}\left(\tilde{H} / D, \iota \varphi_{i}, \iota\right) \\
& =g_{0}\left(\tilde{H} / D, \iota \varphi_{i}, g_{0}\right)
\end{aligned}
$$

Now, the inner automorphism of G caused by the element g_{0} maps \tilde{H} / D on \bar{H}_{i} and specially $\mathscr{\rho}_{i}(a) D$ on $\mathscr{\rho}_{i}(a) C_{i} ; a \in A$. These show

$$
\left(\widetilde{H} / D, \iota \varphi_{i}, g_{0}\right)=\left(\bar{H}_{i+1}, \iota \varphi_{i}, \iota\right) .
$$

Theorem 7. Let G and G^{\prime} be two p-groups satisfying the conditions of Theorem 6, and let $\varphi_{i}^{\prime} i=1,2, \cdots, n^{\prime}\left(1 \leqq n^{\prime} \leqq p\right), H^{\prime}, g_{0}^{\prime}, B_{i}^{\prime}, C_{i}^{\prime}, H_{i}^{\prime}$ and \bar{H}_{i}^{\prime} be defined similarly as G, and let $n \leqq n^{\prime}$. Suppose there is an onto homomorphism $\theta: G^{\prime} \rightarrow G / B_{n}$ with a kernel $B_{n^{\prime}}^{\prime}$ such that $\theta\left(H^{\prime}\right)=H_{n}$ and $\theta\left(g_{0}^{\prime}\right)$ $=g_{0} B_{n}$. Define $f: B_{n} \rightarrow B_{n^{\prime}}^{\prime}$ by $f\left(\varphi_{i}(a)\right)=\varphi_{i}^{\prime}(a)$. Then from the relation

$$
\left(\bar{H}_{1}^{\prime}, \iota \varphi_{1}^{\prime}, \theta\right)=\left(\bar{H}_{1}, \iota \mathcal{\rho}_{1}, \iota\right),
$$

in $H^{2}\left(H_{n}, \phi, A\right)$, it follows that

$$
\left(H^{\prime}, \iota, \theta\right)=f^{*}(H, \iota, \iota)
$$

in $H^{2}\left(H_{n}, \phi, B_{n^{\prime}}^{\prime}\right)$.
Proof. From the relation ii) of Theorem 6

$$
\begin{aligned}
\left(\bar{H}_{i}^{\prime}, \iota \varphi_{i}^{\prime}, \theta\right) & =\left(g_{0}-1\right)^{i-1}\left(\bar{H}_{1}^{\prime}, \iota \varphi_{1}^{\prime}, \theta\right) \\
& =\left(g_{0}-1\right)^{i-1}\left(\bar{H}_{1}, \iota \varphi_{1}, \iota\right) \\
& =\left\{\begin{array}{lll}
\left(\bar{H}_{i}, \iota \rho_{i}, \iota\right) & \text { if } 1 \leqq i \leqq n \\
0 & \text { if } n+1 \leqq i \leqq n^{\prime} .
\end{array}\right.
\end{aligned}
$$

The last relation follows from the fact that $\left(\bar{H}_{n}, \iota \varphi_{n}, \iota\right)=\left(H_{n-1}, \iota \varphi_{n}, \iota\right)$ and it is g_{0}-invariant on account of Theorem 5. Now, our assertion follows from the definition of f^{*}.

Theorem 8. Under the same conditions as Theorem 7, assume specially that the isomorphism ε defining $\left(\bar{H}_{1}, \iota \varphi_{1}, \iota\right)=\left(\bar{H}_{1}^{\prime}, \iota \varphi_{1}^{\prime}, \theta\right)$ satisfies the following conditions that we can choose representative systems h_{i} of $H \bmod C_{1}$ and h_{i}^{\prime} of $H^{\prime} \bmod C_{1}^{\prime}\left(i=1,2, \cdots,\left[H: C_{1}\right]\right)$,

$$
\varepsilon\left(h_{i} C_{1}\right)=h_{i}^{\prime} C_{1}^{\prime} \quad \text { and } \quad \varepsilon\left(g_{0}^{-j} h_{i} g_{0}^{j} C_{1}\right)=g_{0}^{\prime-j} h_{i}^{\prime} g_{0}^{\prime j} C_{1}^{\prime}(0 \leqq i \leqq p-1)
$$

Then it follows that

$$
f^{*}\left(H, g_{0}, \iota, \iota\right)=\left(H^{\prime}, g_{0}, \iota, \theta\right)
$$

Proof. Put

$$
\begin{aligned}
\widetilde{G} & =\left\{\left(g, g^{\prime}\right) \mid g B_{n}=\theta\left(g^{\prime}\right)\right\} \subset G \times G^{\prime} \\
\widetilde{H} & =\widetilde{G} \cap\left(H \times H^{\prime}\right), \\
D & =\left\{\left(\varphi_{1}(a) \varphi_{2}\left(a^{\prime}\right) \cdots \varphi_{n}\left(a^{(n-1)}\right), \varphi_{1}^{\prime}(a) \varphi_{2}^{\prime}\left(a^{\prime}\right) \cdots\right.\right. \\
& \left.\left.\varphi_{n}^{\prime}\left(a^{(n-1)}\right)\right) \mid a, a^{\prime}, \cdots, a^{(n-1)} \in A\right\},
\end{aligned}
$$

and

$$
E=\left\{\left(\mathscr{P}_{1}(a) C_{1}, \mathscr{P}_{1}^{\prime}(a) C_{1}^{\prime} \mid a \in A\right\}=\left(C_{1}, C_{1}^{\prime}\right) \cup D \subset \widetilde{H}\right.
$$

Let φ be a monomorphism $B_{n} \rightarrow \tilde{H} / D$ defined by $\rho(b)=(b, e) D\left(b \in B_{n}\right)$ and ψ an epimorphism $\tilde{H} / D \rightarrow H_{n}$ defined by $\psi\left(\left(h, h^{\prime}\right) D\right)=h B_{n}$. Then, from the fact that $(\tilde{H} / D, \varphi, \psi)=f^{*}(H, \iota, \iota)-\left(H^{\prime}, \iota, \theta\right)$, we have only to show

$$
\tilde{H} / D=H^{\prime \prime} / D \times\left(B_{n}, B_{n^{\prime}}^{\prime}\right) / D
$$

where $H^{\prime \prime}$ is a normal subgroup of \tilde{G}.
From the assumption of theorem, it follows that

$$
\tilde{H} / E=H^{\prime \prime \prime} / E \times\left(B_{n}, B_{n^{\prime}}^{\prime}\right) / E
$$

where $\quad H^{\prime \prime \prime}=\left\{\left(h_{i} C_{1}^{\prime}, h_{1}^{\prime} C_{1}\right)\right\}=\left\{\left(g_{0}^{-5} h_{i} g_{0}^{j} C_{1}, g_{0}^{\prime-5} h_{0}^{\prime} g_{0}^{\prime-s} C_{1}^{\prime}\right)\right\}(0 \leqq j \leqq p-1)$.
Now

$$
\bigcap_{0 \leqq j \leqq p-1}\left(g_{0}, g_{0}^{\prime}\right)^{-j} E\left(g_{0}, g^{\prime}\right)^{j}=D
$$

Therefore it follows that

$$
H^{\prime \prime}=\bigcap_{0 \leqq j \leqq p-1}\left(g_{0}, g_{0}^{\prime}\right)^{-j} H^{\prime \prime \prime}\left(g_{0}, g_{0}^{\prime}\right)^{j}=\left\{\left(h_{i}, h_{i}^{\prime}\right) D\right\}
$$

is normal in $\widetilde{G}, H^{\prime \prime} \cap\left(B_{n}, B_{n^{\prime}}^{\prime}\right)=D$, and $H^{\prime \prime} \cup\left(B_{n}, B_{n^{\prime}}^{\prime}\right)=\widetilde{H}$.
Example 1. Let G be a 2-group generated by three elements a, b, and c in such a way that

1) $B=\{b\}$ is of order $2^{n}(n \geqq 2)$ and $C=\{c\}$ is of order 2 and there is a normal series $G>\left\{b^{2}, c\right\} \supset\left\{b^{2^{n-1}}, c\right\} \supset\{e\}$.
2) C is not centric but commutative with B.
3) denoting $\left\{b^{2^{n-1}}\right\}$ by $N, G / N$ by $G_{0}, B / N$ by B_{0} and $C \cup N / N$ by
$C_{0}, G_{0} / C_{0}$ is the reflexive group ${ }^{1}$.
Then, after replacing b by other element if necessary, we may suppose

$$
a^{2}=b^{2 n-1}, a^{-1} b a=b^{-1} \quad \text { and } \quad a^{-1} c a=c b^{2 n-1}
$$

We can find (Q, φ, ψ) and $\left(G^{\prime}, \iota, \iota\right)$ in $H^{2}\left(G_{0} / C_{0}, \phi, N\right)$ and in $H^{2}\left(G_{0} / B_{0}\right.$, ϕ, N) respectively, where Q is the generalized quaternion group and $G^{\prime}=\{a\} \cup C \cup N$ is the non abelian and nonquaternion group of order 8 , and there is a relation

$$
(G, \iota, \iota)=\lambda_{G_{0} / B_{0} \rightarrow G_{0}}\left(G^{\prime}, \iota, \iota\right)+\lambda_{G_{0} / C_{0} \rightarrow G_{0}}(Q, \varphi, \psi) .
$$

Example 2. Let G be a p-group which is not cyclic, not reflexive and not quasi-reflexive, and A a normal subgroup of G of order p. Then G has a normal subgroup M of order p^{2}, containing A and not cyclic $^{2)}$. Denote G / A by G_{0} and M / A by M_{0}. If

$$
r_{G_{0} \rightarrow M_{0}}\left(G,\left\langle G_{0}\right\rangle, \iota, \iota\right)=0
$$

in $H^{2}\left(G_{0},\left\langle G_{0}\right\rangle, A\right)$, namely if M is contained in the centre of G, then there is a $(\bar{G}, \mathscr{P}, \psi)$ in $H^{2}\left(G_{0} / M_{0},\left\langle G_{0}\right\rangle, A\right)$ such that

$$
(G, \iota, \iota)=\lambda_{G_{0} / M_{0} \rightarrow G_{0}}(\bar{G}, \mathscr{P}, \psi) .
$$

On the other hand, if

$$
r_{G_{0} \rightarrow M_{0}}\left(G,\left\langle G_{0}\right\rangle, \iota, \iota\right) \neq 0,
$$

then M is not centric and all the elements of G commutative with any element of M form a normal subgroup H and $[G: H]=p$. Thus G has the structure of the group of Theorem 6 in this case.

§ 2. The Imbedding of Fields

Let k_{1} be a finite normal extension of a finite algebraic number field k. Suppose there are given a finite group G with a normal subgroup N and an isomorphism

$$
\begin{equation*}
G / N \cong \mathscr{G}\left(k_{1} / k\right) . \tag{2.1}
\end{equation*}
$$

Then, we can naturally consider G as a group of automorphisms of k_{1} / k identifying G / N with $\mathscr{S}\left(k_{1} / k\right)$ by (2.1). The so-called imbedding problem is to find an extension K / k_{1} such that it is normal over k and

$$
\begin{equation*}
G \cong \mathfrak{G}(K / k), \tag{2.2}
\end{equation*}
$$

[^0]which is an extension of (2.1)
We shall treat here a little more complicated problem. Let $l=\{\mathfrak{q}\}$ be a finite set of primes in k containing all the primes ramified at the exstension k_{1} / k, and let $l_{1}=\left\{\mathfrak{l}_{1}\right\}$ be a set of primes in k_{1} composed of ones selected from each decomposition of $l \in \mathfrak{l}$ in k_{1} / k. We shall assume the following conditions which we shall call L-condition.

Each local field $k_{1 \mathfrak{I}_{1}} / k_{\mathfrak{I}} ; \mathfrak{l} \in l$ has a local normal larger field $K \mathfrak{Z} / k_{\mathfrak{1}}$ and there are monomorphisms $\left\{\nu_{\lceil } \mid \mathcal{L} \in l\right\}$ from $\mathscr{B}\left(K_{\mathfrak{R}} / k_{\mathrm{\jmath}}\right)$ into G respec(L) tively, such that
i) $\quad \nu_{1}\left((8)\left(K \mathfrak{q} / k_{11_{1}}\right)\right)<N$
ii) the monomorphisms induced naturally by $\left\{\nu_{\mathrm{l}}\right\}$ from $\mathbb{S}\left(k_{1_{1}} / k_{\mathrm{f}}\right)$ into $\mathfrak{G}\left(k_{1} / k\right)$ coincide to the canonical ones.
Then our aim is to construct larger fields K which satisfy the following K-conditions besides those in the ordinary imbedding problem.
i) Each $\mathfrak{I} \in l$ has a prime divisor \mathbb{E} respectively in K and each completion of K at these prime divisors is isomorph to $K_{\mathbb{Z}}$ over (K) $\quad k_{11_{1}}$ respectively
ii) If the completion of K at \mathbb{Z} is identified to $K \mathfrak{Z}$, each ν_{1} is the canonical monomorphism from $\left(\mathscr{S}\left(K_{\mathfrak{R}} / k_{\mathfrak{1}}\right)\right.$ into G.
Now, when the set $L=l \cup\left\{K_{\Omega}\right\} \cup\left\{\nu_{1}\right\}$ satisfying L-condition are given, we shall say that we can formulate an (exact) imbedding problem and it is denoted by

$$
P\left(k_{1} / k, G, L\right)
$$

A field K satisfying K-condition is called a solution of $P\left(k_{1} / k, G, L\right)$. It is necessary of course for the solvability of the ordinary imbedding problem that there is formulated

$$
P\left(k_{1} / k, G, L\right)
$$

with an adequate L.
The following lemmas are almost evident.
Lemma 1. Suppose there is formulated

$$
P\left(k_{1} / k, G, L\right)
$$

Then l can be enlarged to contain any \mathfrak{q} in k.
Proof. Let $\mathfrak{q} \notin l$. Then \mathfrak{q} is not ramified at the extension k_{1} / k by the assumption of l. Therefore, the decomposition group of \mathfrak{q}_{1}, which is a prime divisor of \mathfrak{q} in k_{1}, is cyclic. Let it be $\{g\} \cup N / N$. Then we can set $K \mathfrak{\Omega} / k_{\mathrm{q}}$ to be the non-ramified extension of degree $[\{g\}: e]$, and $\nu_{q}: \mathscr{S}\left(K \mathfrak{a} / k_{q}\right) \rightarrow G$ will be defined evidently (not necessarily uniquely).

Lemma 2. Let there be formulated

$$
P\left(k_{1} / k, G, L\right)
$$

and let M be any normal subgroup of G. Denote by k_{2} the fixed field of $N \cup M / M$ in k_{1} and by $\bar{K}_{\mathfrak{Z}}$ the fixed fields of $\left.\nu_{\mathfrak{l}}^{-1}\left(\nu_{\mathfrak{l}}\left(\mathbb{(}\left(K \mathfrak{Z} / k_{\mathfrak{l}}\right) \cap M\right)\right) \mid \mathfrak{l} \in l\right\}$ in $K_{\mathfrak{R}}$ respectively. Then the monomorphisms

$$
\overline{\mathcal{L}}_{\mathfrak{l}}: \mathbb{E}\left(\bar{K}_{\mathfrak{R}} / k_{\mathfrak{l}}\right) \rightarrow G / M
$$

are naturally defined by ν_{1} for any $\mathfrak{I} \in l$. We can thus formulate uniquely

$$
P\left(k_{2} / k, G / M, \bar{L}\right)
$$

by $\bar{L}=l \cup\left\{\bar{K}_{\mathfrak{R}}\right\} \cup\left\{\bar{\nu}_{\mathfrak{l}}\right\}$. If the former has any solution K / k, then the latter has the solution as the fixed field of M in K.

Lemma 3. Let there be formulated

$$
P\left(k_{1} / k, G, L\right)
$$

and let H be any normal subgroup of G containing N. Denote by k^{\prime} the fixed field of H / N in k_{1}. Then

$$
P\left(k_{1} / k^{\prime}, H, L^{\prime}\right)
$$

is formulated by L^{\prime} defined as follows.
Let l^{\prime} be the finite set of primes in k^{\prime} composed of all prime divisors of the primes in l. Let $\Gamma_{\mathfrak{l}}=\{\gamma\}$ be a representative system of the left cosets of G modulo $M \cup \nu_{\mathfrak{l}}\left(\mathbb{S}\left(K_{\mathfrak{R}} / k_{\mathfrak{l}}\right)\right)$. Then $\mathfrak{l} \in l$ is decomposed in k^{\prime}

$$
\mathfrak{Y}=\left(\prod_{\gamma \in \Gamma} \mathfrak{I}^{\prime \gamma}\right)^{e}\left(\mathfrak{Y}^{\prime \gamma} \in l^{\prime}\right) .
$$

Take as local fields

$$
K \mathfrak{Q}^{\gamma} / k_{\mathfrak{l}^{\prime \gamma}}^{\prime}
$$

among which the isomorphisms over k_{1} exist such that

$$
K \mathbb{R}^{\gamma} \ni a^{\gamma} \leftrightarrow a \in K_{\mathfrak{R}} \quad \text { if } \quad a \in k_{1} .
$$

Then monomorphisms $\nu_{\mathfrak{l}^{\prime \gamma}}^{\prime}$ are defined by

$$
\left(\mathbb{S}\left(K \mathfrak{R}^{\gamma} / k_{\mathfrak{l}^{\prime} \gamma}^{\prime}\right) \xrightarrow{\nu} \mathbb{G}\left(K \mathfrak{Z} / k_{\mathrm{I}}\right) \xrightarrow{\nu_{\mathfrak{l}}} G \xrightarrow{\langle\gamma\rangle} G,\right.
$$

where ν means the monomorphism defined naturally by the preceding isomorphisms and $\langle\gamma\rangle$ means the inner automorphism by means of γ. Thus we may set

$$
L^{\prime}=l^{\prime} \cup\left\{K_{\mathfrak{L}^{\gamma}} / k_{\mathfrak{l}^{\prime \gamma}}^{\prime \gamma} \mid \mathfrak{l}^{\prime \gamma} \in l^{\prime}\right\} \cup\left\{\nu_{\mathfrak{l}^{\prime \gamma}}^{\prime \gamma} \mid \mathfrak{l}^{\prime \gamma} \in l^{\prime}\right\} .
$$

If the former problem has any solutions, they are solutions of the latter at the same time.

We shall give here a notice concerning group theory. Let G and G^{\prime} be any two groups, N_{1} and N_{2} normal subgroups of G, and N_{1}^{\prime} and N_{2}^{\prime} normal subgroups of G^{\prime}. Suppose $N_{1} \cap N_{2}=\{e\}, N_{1}^{\prime} \cap N_{2}^{\prime}=\left\{e^{\prime}\right\}$, and there is a commutative sequence

where ν^{i} are monomorphism and ι are canonical homomorphism. Then there is a unique monomorphism $\nu^{1} \cup \nu^{2}$ from G^{\prime} into G such that

are commutative. So, we can give the following lemma.
Lemma 4. Let $G>N=N_{1} \times \cdots \times N_{r}$ where each N_{i} is a normal subgroup of G. Put

$$
N^{i}=N_{1} \times \cdots \times N_{i-1} \times N_{i+1} \times \cdots \times N_{r} .
$$

If there are formulated

$$
P\left(k_{1} / k, G / N^{i}, L^{i}\right)
$$

for every i by $L^{i}=l^{i} \cup\left\{K_{\mathfrak{R}}^{i}\right\} \cup\left\{\nu_{1}^{i}\right\}$, then we can formulate

$$
P\left(k_{1} / k, G, L\right)
$$

where L is determined as follows. Enlarging l^{i} if necessary, we may assume $l^{1}=l^{2}=\cdots=l^{r}$. Let $l=l^{i}, K \mathfrak{R}=\bigcup_{i} K_{\mathfrak{R}}^{i}$ and $\nu_{\mathfrak{l}}=\cup \nu_{\mathfrak{l}}^{i}$, and set $L=l \cup\left\{K_{\mathfrak{R}}\right\} \cup\left\{\nu_{1}\right\}$. If all the former exact imbedding problems have solutions K^{i} and they are independent over k_{1} from each other, then the latter has the solution $K=\bigvee_{i} K^{i}$.

Lemma 5. Let N be an abelian group A, and

$$
(F, \varphi, \psi)=\left(G, \varphi^{\prime}, \psi^{\prime}\right)+\left(H, \varphi^{\prime \prime}, \psi^{\prime \prime}\right)
$$

in $H^{2}\left(G\left(k_{1} / k\right), \phi, A\right)$. If two problems

$$
P\left(k_{1} / k, G, L^{\prime}\right) \quad \text { and } \quad P\left(k_{1} / k, H, L^{\prime \prime}\right)
$$

are formulated, then the third problem

$$
P\left(k_{1} / k, F, L\right)
$$

is uniquely formulated as follows. Put

$$
\bar{F}=\left\{(g, h) \mid \psi^{\prime}(g)=\psi^{\prime \prime}(h)\right\} \quad \text { and } \quad M=\left\{\left(\varphi^{\prime}(a), \mathscr{P}^{\prime \prime}\left(a^{-1}\right)\right) \mid a \in A\right\},
$$

then we can suppose

$$
F=\bar{F} / M
$$

by the definition of adition. Identifying $\bar{F} /\left\{\left(e, \mathscr{P}^{\prime \prime}(A)\right)\right\}$ to G and $\bar{F} /\left\{\left(\varphi^{\prime}(A), e\right)\right\}$ to H naturally, we can set

$$
P\left(k_{1} / k, F, L\right)
$$

in the way of Lemma 5 and Lemma 2. If two of them have solutions independent over k_{1} from each other, then the third will have a unique solution.

Now we shall give the following
Main Theorem. Let G be a proup and let the order of N be p. Then, if an exact imbedding problem

$$
P\left(k_{1} / k, G, L\right)
$$

is formulated, it has always infinitely many solutions.
Proof. As l can be enlarged in infinitely different ways by Lemma 1, we have only to show the existence of a solution for a given problem.

Case 1. G is abelian.
Enlarge l, if necessary, to contain a representative system of basis of the ideal class group of k. It is possible by Lemma 1 . Let W be the multiplicative subgroup of $k^{*}=k-\{0\}$ composed of all numbers which are local units outside l. Set

$$
\chi(\alpha)=\prod_{\mathfrak{l} \in l} \nu_{\mathfrak{l}}\left(\frac{K_{\mathfrak{l}} / k_{\mathfrak{l}}}{\alpha}\right) \quad \alpha \in k^{*} .
$$

Then $\chi\left(k^{*}\right) \cup N=G$ because any element of $\mathfrak{G}\left(k_{1} / k\right)$ is contained in the decomposition group of at least one prime in l. By the product formula of norm residue symbols and L-condition ii),

$$
\chi(W) \subset N
$$

and therefore

$$
\chi\left(w^{p}\right)=e \quad w \in W
$$

We shall show, enlarging l if necessary,

$$
\begin{equation*}
\chi(w)=e \quad w \in W \tag{2.3}
\end{equation*}
$$

for the W defined at first, and

$$
\begin{equation*}
\chi\left(k^{*}\right)=G . \tag{2.4}
\end{equation*}
$$

Denote by \bar{k} the field extended by the primitive p-th root of unity over k. Then, we can see

$$
W \cap \bar{k}^{* p}=W^{p} .
$$

So, $\pi \chi$ is a character of $W / W \cap \bar{k}^{* p}$, where π is an isomorphism from N to the group of p-th roots of 1. Because, $W \cap \bar{k}^{* p} \supset W^{p}$ is trivial, and conversely if $v=u^{p} ; v \in W, u \in \bar{k}^{*}$, then

$$
N_{\bar{k} / k} v=\left(N_{\bar{k} / k} u\right)^{p} .
$$

Therefore the assertion follows from the fact that $N_{\bar{k} / k} v=v^{[\bar{k}: k]}$ and $[\bar{k}: k]$ is prime to p.

There is the well known correspondence
an ideal class group of $\bar{k} \rightleftarrows \mathscr{G}\left(\bar{k}\left({ }^{(} \sqrt{ } \bar{W}\right) / \bar{k}\right)$
\rightleftarrows a character group of $W / W \cap \bar{k}^{* p}$.
This correspondence is given actually by the relation

$$
\overline{\mathfrak{b}} \rightleftarrows \text { Frobenius transposition of } \overline{\mathfrak{b}} \rightleftarrows\left(\frac{\overline{\mathfrak{b}}}{}\right)_{p}
$$

Let \mathfrak{q} be a k-prime out of l, decomposed at the extension \bar{k} / k and one of its \bar{k}-prime divisor corresponding to χ^{-1}. By Lemma 1 , we can enlarge l to contain \mathfrak{q} and $K \mathfrak{Q} / k_{1 q_{1}}$ is the unramified extension of degree p or 1 . Then

$$
\chi_{\mathfrak{q}}(*)=\pi^{-1}\left(\frac{*}{\mathfrak{q}}\right)_{p} \nu_{\mathfrak{q}}\left(\frac{K \mathfrak{a} / k_{\mathfrak{q}}}{*}\right)
$$

is a mapping from k_{q}^{*} into G and its kernel determines a local extension $K_{\mathfrak{Q}}^{\prime} / k_{\mathfrak{q}}$ and a monomorphism ν_{q}^{\prime} such that

$$
\chi_{\mathfrak{q}}(*)=\nu_{\mathfrak{q}}^{\prime}\left(\frac{K_{\mathfrak{Q}}^{\prime} / k_{\mathfrak{q}}}{*}\right)
$$

can be defined. Reforming L by these $K_{\mathfrak{Q}}^{\prime}$ and ν_{q}^{\prime}, we have achieved (2.3) and (2.4).

Let us introduce a "Größencharakter" Φ on the ideal group of k. Let \mathfrak{x} be any ideal in k prime to any primes in l. Then we can put

$$
\mathfrak{c x}=x ; \quad x \in k^{*}
$$

with an ideal composed of primes in l. As x is uniquely determined $\bmod W$, we can define

$$
\begin{equation*}
\Phi(\mathfrak{x})=\chi(x) \tag{2.5}
\end{equation*}
$$

The univalence of (2.5) is given by (2.3).
The field K which corresponds to Φ by the class field theory is a solution of the initial problem. For, let $\mathfrak{l} \neq \mathfrak{q}$ belong to l. We shall prove

$$
\nu_{\mathfrak{l}}\left(\frac{K \Omega / k_{q}}{\alpha}\right)=\left(\frac{\alpha, K / k}{\mathfrak{l}}\right) \quad \alpha \in k .
$$

Let α be any element of $k^{*}, \mathfrak{r}^{e}, \mathfrak{m}^{e^{\prime}}, \cdots$ the conductors of the extensions $K_{\mathfrak{R}} / k_{\mathfrak{l}}, K_{\mathfrak{M}} / k_{\mathfrak{m}}, \cdots \in L$, and β an element of k^{*} such that

$$
\beta \equiv \alpha \bmod \mathfrak{l}^{e}, \quad \beta \equiv 1 \bmod \mathfrak{m}^{e \prime}, \cdots
$$

Then $\left(\beta^{\prime}\right)=\mathfrak{l}^{n} \mathfrak{b}$ where \mathfrak{b} is prime to any prime in l, and

$$
\begin{aligned}
\left(\frac{\alpha, K / k}{\mathfrak{l}}\right) & =\left(\frac{K / k}{\mathfrak{b}}\right)=\Phi_{\mathfrak{\prime}}(\mathfrak{b})=\chi_{(\beta)} \\
& =\nu_{\mathfrak{l}}\left(\frac{K_{\mathfrak{I}} / k_{\mathfrak{l}}}{\beta}\right)=\nu_{\mathfrak{l}}\left(\frac{K_{\mathfrak{L}} / k_{\mathfrak{f}}}{\alpha}\right) .
\end{aligned}
$$

Thus ν_{l} is natural. On the other hand, observing $\Phi \bmod N$ it is just the "Größencharakter" of k_{1}, which means $K \supset k_{1}$. Thus we have a solution K in this case.

Case 2. G is not abelian but reflexive or quasi-reflexive.
Enlarge l by Lemma 1 , if necessary, so that any element of $\left.(\mathscr{S}) k_{1} / k\right)$ is contained in at least one of $\nu_{\square}\left(\mathscr{G}\left(K \mathfrak{Q} / k_{1}\right)\right\rangle N$. Let B be any cyclic subgroup of G of maximal order and k_{2} the fixed field of B / N. By Lemma 3, we can formulate

$$
P\left(k_{1} / k_{2}, B, L^{\prime}\right)
$$

Suppose G is, for example, the generalized quaternion group. B being abelian, this has a solution K^{\prime} by Case 1. If K^{\prime} / k is normal, © $\left(S^{\prime}\right)(k)$ must be the generalized quaternion group, because any element of $\mathfrak{G}\left(k_{1} / k\right)$ increases its order by p-times in $\mathscr{G}\left(K_{1} / k\right)$. By Lemma 5, we have only to solve

$$
P\left(k_{1} / k, \mathscr{G}\left(k_{1} / k\right) \times N, L_{0}\right)
$$

defined uniquely in that lemma. The solvability of this has been proved in Case 1. If K^{\prime} / k is not normal, take its conjugate $K^{\prime \prime} . K^{\prime} \cup K^{\prime \prime}$ is normal over k and $\mathfrak{S}\left(K^{\prime} \cup K^{\prime \prime} / k\right)$ is isomorphic to G of Example $1, \S 1$. Again by the last description of that example, Lemma 5 and Lemma 2, we have only to solve the uniquely defined problem

$$
P\left(k_{1} / k, H, L_{1}\right),
$$

where H is the non abelian and non quaternion group of order 8. This will be solved in the next step. Even if G is not generalized quaternion, the same result will be gained.

Case 3. General case.
Here we shall prove the problem by induction on the order of G. If $\left(\mathscr{S}\left(k_{1} / k\right)\right.$ is cyclic, then G is abelian, and we have proved it in Case 1. From the argument of Case 2 and Example 2 of $\S 1$ we have only to solve it in the case where there exists a normal subgroup M of G containing N and of type (p, p). Put

$$
M=B_{1} \times C_{1} \quad\left(B_{1}=N\right) .
$$

If C_{1} is contained in the centre of G, then we can formulate naturally

$$
P\left(k_{2} / k, G / C_{1}, \bar{L}\right)
$$

by Lemma 2. From the assumption of induction, it has solutions $\bar{K} \neq k$ and $K=k_{1} \cup \bar{K}$ is a solution, of $P\left(k_{1} / k, G, L\right)$ by Lemma 4.

In the next place, assume C_{1} is not centric and H is the proper normal subgroup of G composed of all elements commutative with each element of C_{1}. Let

$$
k_{1} \supset k_{2}>k^{\prime} \supset k
$$

be the series of fields corresponding to

$$
N \subset M \subset H \subset G
$$

Enlarge l, if necessary, so that each element of H is contained in at least one of $\left.\nu_{l}\left(G_{S}, K \mathfrak{Z} / k_{1}\right)\right)(\mathfrak{l} \in l)$. And then, we shall formulate the uniquely defined problem

$$
\begin{equation*}
P\left(k_{2} / k^{\prime}, H / C_{1}, \bar{L}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

by Lemma 3 and Lemma 2. The solution K^{\prime} of it exists by the assumption of induction. $\quad K^{\prime} / k$ is not a normal extension because of L-condition
defined in Lemma 2 and Lemma 3. Let \bar{K} be the field composed of all conjugates of K^{\prime} over $k . G$ and $(\mathscr{G}(\bar{K} / k)$ have the structures of G and G^{\prime} introduced in Theorem 7 and Theorem 8, and we shall use the same notation as there identifying $\widetilde{G} /\left(k, B_{n^{\prime}}^{\prime}\right)$ with G, and $\widetilde{G} /\left(B_{2}, e\right)$ with G^{\prime} naturally ($n=2$ in our case). Specially we may suppose K^{\prime} is the fixed field of C_{1}^{\prime}.

Suppose first, $\bar{K} \supset k_{1}$. Then k_{1} is the fixed field of $B_{n^{\prime}-1}^{\prime}$. Let K_{0} be the fixed field of $B_{n^{\prime}-2}^{\prime}$. Put

$$
\left(G, \varphi_{1}, \iota\right)=\left(G^{\prime} / B_{n^{\prime}-2}^{\prime}, \iota \varphi_{n^{\prime}-2}^{\prime}, \iota\right)+\left(G^{\prime \prime}, \varphi^{\prime \prime}, \psi^{\prime \prime}\right)
$$

in $H^{2}\left(\mathscr{S}\left(k_{1} / k\right),\left\langle\circlearrowleft\left(k_{1} / k\right)\right\rangle, A\right)$. We can formulate uniquely

$$
P\left(k_{1} / k, G^{\prime \prime}, L^{\prime \prime}\right)
$$

by Lemma 5, and the existence of its solution means that of $P\left(k_{1} / k\right.$, G, L) again by the lemma. But

$$
r_{\left(\mathbb { G } (k _ { 1 } / k) \rightarrow \left(\mathbb{S}\left(k_{1} / k_{2}\right)\right.\right.}\left(G^{\prime \prime}, \varphi^{\prime \prime}, \psi^{\prime \prime}\right)=r\left(G, \varphi_{1}, \iota\right)-r\left(G^{\prime} / B_{n^{\prime}-2}, \iota \varphi_{n^{\prime}-2}^{\prime}, \iota\right)=0
$$

and the solvability of $P\left(k_{1} / k, G^{\prime \prime}, L^{\prime \prime}\right)$ have been given already. Therefore we can suppose $\bar{K} \cap k_{1}=k_{2} \subset k_{1}$. We can formulate

$$
\begin{equation*}
P\left(k_{2} / k, \widetilde{G}, \widetilde{L}\right) \tag{2.7}
\end{equation*}
$$

uniquely from Lemma 4. If a solution \tilde{K} of it exists and the fixed field of ($B_{1}, B_{n^{\prime}}^{\prime}$) is just k_{1}, then the fixed field of ($e, B_{n^{\prime}}^{\prime}$) will be the solution of $P\left(k_{1} / k, G, L\right)$. Denote the fixed field of B_{1}^{\prime} and B_{2}^{\prime} in \bar{K} by K_{1} and K_{2}. The fact that

$$
\left(B_{1}, e\right) \cap\left(D \cap\left(B_{1}, B_{1}^{\prime}\right)\right)=(e, e) \quad \text { and } \quad\left(B_{1}, e\right) \cup\left(D \cap\left(B_{1}, B_{1}^{\prime}\right)\right)=\left(B_{1}, B_{1}^{\prime}\right)
$$

and the existence of the solution $\bar{K} \cup k_{1}$ of $P\left(K_{1} \cup k_{1} / k, \tilde{G} /\left(B_{1}, e\right)\right.$, $\left.L^{1}\right)$ formulated from (2.7) by Lemma 2 show us, because of Lemma 4, that (2.7) is reduced to find a solution of $P\left(K_{1} \cup k_{1} / k, G / D \cap\left(B_{1}, B_{1}^{\prime}\right), L^{2}\right)$ defined uniquely from that by Lemma 2 , which is independent of $\bar{K} \cup k_{1}$ over $K_{1} \cup k_{1}$ or, more sufficiently, to find infinitely many solutions of this. Here we shall need some words about $L^{1}=l^{1} \cup\left\{K_{\mathfrak{R}}^{1}\right\} \cup\left\{\nu_{1}^{1}\right\}$ and $L^{2}=l^{1} \cup\left\{K_{\mathfrak{R}}^{2}\right\} \cup\left\{\nu_{\mathfrak{1}}^{2}\right\}$ because l^{1} must contain all the k-primes ramified at the extension K_{1} / k_{2}. But their formulations are possible, of course, from the existence of the solution of the problem corresponding to the former. Making use of Lemma 4 again, this $P\left(K_{1} \cup k_{1} / k, \widetilde{G} / D \cap\left(B_{1}, B_{1}\right), L^{2}\right)$ is reduced to find infinitely many solutions of the uniquely defined problem

$$
\begin{equation*}
P\left(\Omega / k, \widetilde{G} / D, L^{3}\right) \quad\left(L^{3}=l^{1} \cup\left\{K_{\mathfrak{R}}^{3}\right\} \cup\left\{\nu_{\mathfrak{l}}^{3}\right\}\right), \tag{2.8}
\end{equation*}
$$

where Ω is the fixed field of $D \cup\left(B_{1}, B_{1}^{\prime}\right)$. Here we shall make use of Theorem 8, $\S 1$ and its proof. Then, from the L-condition of Lemma 3, \tilde{H} / D can be decomposed into

$$
\tilde{H} / D=H^{\prime \prime} / D \times\left(B_{2}, B_{n^{\prime}}^{\prime}\right) / D
$$

where $H^{\prime \prime}$ is normal in \widetilde{G} and $\nu_{\mathfrak{l}}^{3}\left(G\left(K_{\mathfrak{R}}^{3} / k_{\mathfrak{f}}\right)\right) \cap \tilde{H} \subset H^{\prime \prime}$.
Thus we have reduced the original problem to

$$
\begin{equation*}
P\left(\Omega_{1} / k, T, L^{0}\right) \quad\left(L^{0}=l^{1} \cup\left\{K_{\Omega}^{0}\right\} \cup\left\{\nu_{\mathfrak{l}}^{0}\right\}\right) \tag{2.9}
\end{equation*}
$$

where $T=\widetilde{G} / H^{\prime \prime}, \Omega_{1}$ fixed field of $H^{\prime \prime} \cup\left(B_{1}, B_{1}^{\prime}\right)$ in Ω, L^{0} uniquely defined from (2.7) by Lemma 2, and all k-primes in l are fully decomposed at Ω_{0} / k^{\prime}.

We shall take here another assumption of induction that all k-primes out of l ramified at a solution can be taken so as to have the absolute degree 1, if necessary. This can be fulfilled in Case 1. Adapt this to the construction of K^{\prime} which was a solution of (2.6). Then we can see easily any primes in l^{1} out of l have the relative degree 1 and fully decomposed at the extension k^{\prime} / k. This means $K_{\mathfrak{2}}^{0} / k_{\mathfrak{l}}$ is abelian extensions for any $\mathfrak{l} \in l^{1}$. Denote $\tilde{H} / H^{\prime \prime}$, $\left(e, B_{i}^{\prime}\right) H^{\prime \prime}$, and $\left(g_{0}, g_{0}^{\prime}\right) H^{\prime \prime}$ by \bar{H}, \bar{B}_{i}, and g. Enlarge l^{1} of (2.9), if necessary, adding k-primes which are all fully decomposed at k^{\prime} / k, so that a representative system of the basis of the absolute ideal class group of k^{\prime} is contained in the k^{\prime}-prime divisors of k-primes in l^{1}. Let

$$
\begin{equation*}
P\left(\Omega_{1} / k^{\prime}, \bar{H}, L^{4}\right) \quad\left(L^{4}=l^{1 /} \cup\left\{K_{\mathfrak{R}}^{4}\right\} \cup\left\{\nu_{\mathfrak{l}^{\prime}}^{4}\right\}\right) \tag{2.10}
\end{equation*}
$$

be the problem uniquely defined from (2.8) by Lemma 3. If $\nu_{1^{\prime}}^{4}$ is not trivial or, phrased in another way, $K_{\mathfrak{R}}^{4} \supsetneq k_{\mathfrak{l}^{\prime}}^{\prime}$, then $k \cap \mathfrak{l}^{\prime} \in l^{1}-l$ and it is fully decomposed at k^{\prime} / k. Therefore we can put all such k^{\prime}-primes in the form

$$
m \cup m^{g} \cup \cdots m^{g^{p-1}} \quad\left(m^{g^{i}} \cap m^{g j}=\phi \quad \text { if } \quad i \neq j\right),
$$

where $m^{\varepsilon^{i}}=\left\{\mathfrak{m}^{g^{i}} \mid \mathfrak{m} \in m\right\}$.
Let us define a mapping $\chi: k^{*} \rightarrow \bar{H}$ by the following

$$
\chi(\alpha)=\prod_{\mathfrak{l}^{\prime} \in l^{1}} \nu_{\mathfrak{l}^{\prime}}^{4}\left(\frac{K_{\mathfrak{l}^{2}}^{4} / k_{\mathfrak{l}^{\prime}}^{\prime}}{\alpha}\right) \quad \alpha \in k^{\prime *}
$$

Then, as easily seen, χ is an onto mapping. Let W be the multiplicative subgroup of k^{*} composed of all elements which are local units outside $l^{1 /}$. Then

$$
\begin{equation*}
\chi(W) \subset \bar{B}_{1} \tag{2.11}
\end{equation*}
$$

because

$$
\begin{aligned}
\chi(w) \bmod \bar{B}_{1} & =\prod_{\mathfrak{l}^{\prime} \ni l^{l}} \nu_{\mathfrak{l}^{\prime}}^{4}\left(\frac{K_{\mathfrak{Z}}^{4} / k_{\mathfrak{l}^{\prime}}^{\prime}}{w}\right) \bmod \bar{B}_{1} \\
& =\prod_{\mathfrak{l}^{\prime} \in l^{l^{\prime}}}\left(\frac{w, \Omega_{1} / k^{\prime}}{\mathfrak{l}^{\prime}}\right) .
\end{aligned}
$$

This is the unit because of the product formula of norm residue symbols and the fact that all the primes ramified at Ω_{1} / k^{\prime} are contained in $l^{1 /}$. Put

$$
\begin{aligned}
W_{0} & =\left\{w_{0} \in W \mid N_{k^{\prime} / k} w_{0} \in k^{*^{p}}\right\} \\
& =\left\{\alpha_{0} w^{1-g} \mid \alpha_{0} \in W \cap k, w \in W\right\} .
\end{aligned}
$$

We shall show

$$
\begin{equation*}
\chi\left(w_{0}\right)=e \quad w_{0} \in W_{0} . \tag{2.12}
\end{equation*}
$$

From (2.11) and L-condition $g^{-1} \nu_{\mathfrak{l}^{\prime}}^{4}\left(\frac{K_{\mathfrak{Z}}^{4} / k_{\mathfrak{l}^{\prime}}^{\prime}}{w}\right) g=\nu_{\mathfrak{l}^{\prime} g}^{4}\left(\frac{K_{\mathfrak{Q}} / k_{\mathfrak{l}^{\prime}}^{\prime}}{w^{g}}\right)$ of Lemma 3, it follows that

$$
\chi\left(w^{g}\right)=(\chi(w))^{g} .
$$

Therefore

$$
\chi\left(w^{1-g}\right)=e .
$$

On the other hand,

$$
\begin{aligned}
\chi\left(\alpha_{0}\right) & =\underset{\mathfrak{l}^{\prime} g_{i} \in l^{1}}{\Pi} \nu_{\mathfrak{l}^{\prime} g^{i}}^{4}\left(\frac{K_{\mathfrak{\mathfrak { P }} g^{i}}^{4} / k_{\mathfrak{l}^{\prime g} g^{i}}^{\prime}}{\alpha_{0}}\right) \\
& =\left(\prod_{\mathfrak{m} \in m} \nu_{\mathfrak{m}}^{4}\left(\frac{K_{\mathfrak{M}}^{4} / k_{\mathfrak{m}}^{\prime}}{\alpha_{0}}\right)\right)^{1+\boldsymbol{g}+\cdots g^{p-1}}
\end{aligned}
$$

If the order of \bar{H} does not surpass p^{p-1}, then this becomes the unit after easy calculation. If the order of \bar{H} is p^{p}, then there exists one and only one cyclic subgroup of T not contained in \bar{H} and of order p except the congruent ones $\bmod \bar{B}_{p-1}$. Therefore every $\nu_{\mathfrak{l}}^{0}\left(\mathbb{S}\left(K_{\mathfrak{R}}^{0} / k_{\mathfrak{l}}\right)\right)$ $\left(\mathfrak{l} \in l^{1}\right)$ is contained in it $\bmod \vec{B}_{p-1}$. We may put it $\left\{g \bar{B}_{p-1}\right\}$. Denote by Ω_{2} the fixed field of $\left\{g \bar{B}_{p-1}\right\}$ in Ω_{1}. All primes in l are fully decomposed at Ω_{2} / k. Thus

$$
\prod_{\mathfrak{m} \in \mathfrak{m}} \nu_{\mathfrak{m}}^{4}\left(\frac{K_{\mathfrak{M}} / k_{\mathfrak{m}}^{\prime}}{\alpha_{0}}\right) \bmod \bar{B}_{p-1}=\prod_{\mathfrak{m} \in m}\left(\frac{\alpha_{0}, \Omega_{2} / k}{\mathfrak{m} \cap k}\right)
$$

and it becomes the unit by the product formula of norm residue symbol. So, again $\chi\left(\alpha_{0}\right)$ becomes the unit by the same calculation as the former case. Thus we can put

$$
\chi(w)=\chi_{0}\left(N_{k^{\prime} / k} w\right)
$$

where χ_{0} is a mapping $k^{*} \cap N_{k^{\prime} / k} W \rightarrow \bar{B}_{1}$. By the same method as Case 1 , we can find a k-prime q of absolute degree 1 , if necessary, a local extension $K \mathfrak{Q} / k_{\mathfrak{q}}$, and a mapping ν_{q}^{0} such that

$$
\chi(w) \nu_{q}^{0}\left(\frac{K \Omega / k_{q}}{N_{k^{\prime} / k} w}\right)=e
$$

Let \mathfrak{x} be any k^{\prime}-ideal. Then

$$
\mathfrak{c x}=x \quad\left(x \in k^{\prime *}\right),
$$

where c is a k^{\prime}-divisor composed of primes in $l^{1 /}$. By

$$
\Phi(\mathfrak{x})=\chi(x) \nu_{\mathrm{q}}^{0}\left(\frac{K \mathfrak{Q} / k_{\mathfrak{q}}}{N_{k^{\prime} / k} x}\right)
$$

a "Grössencharakter" Φ is introduced. Let K be the field corresponding to $\Phi . K / k$ is normal, because from $\Phi(\mathfrak{x})=e$ it follows that $\Phi\left(\mathfrak{c}^{g}\right)=e$ and there is a relation

$$
r_{T / \overline{B_{1}} \rightarrow \bar{H} / \bar{B}_{1}}\left(T,\left\langle\mathbb{S}\left(\Omega_{1} / k\right)\right\rangle, \iota, \iota\right)=r_{T / \bar{B}_{1} \rightarrow \bar{H} / \overrightarrow{B_{1}}}\left(\mathbb{S}(K / k),\left\langle\mathbb{S}\left(\Omega_{1} / k\right)\right\rangle, \iota, \iota\right) .
$$

Thus by the same reason stated in the beginning of this step, the problem is reduced to

$$
P\left(k^{\prime} / k, U, L^{5}\right),
$$

where U is a group of order p^{2} namely abelian and infinitely many solutions of it had been given in Case 1. Hereby the proof of theorem is conplete.
(Received April 23, 1960)

References

1) We shall call a 2-group R generated by two elements X and Y a reflexive group if i) $\{Y\}$ is a normal subgroup of order $2^{n}(n \geq 1)$ and $[R:\{Y\}]=2$, ii) $X^{-1} Y X=Y^{-1}$, and a 2-group $R^{\prime}=\left\{X^{\prime}, Y^{\prime}\right\}$ a quasi-reflexive group if i) Y^{\prime} is normal and of order $2^{n}(n \geqq 3)$, and $\left[R^{\prime}:\left\{Y^{\prime}\right\}\right]=2$, ii) $X^{\prime-1} Y^{\prime} X^{\prime}=Y^{\prime-1+2^{n-1}}$. If the order of X is $4, R$ is the so-called generalized quaternion.
2) Let $G \quad H \quad N([H: N]=p)$ be a normal series where N is one of cyclic, reflexiv and quasi-reflexive but so H. It is easy to see that H has a unique normal subgroup of type (p, p) which can be taken as M.

[^0]: 1), 2). See References at the end of this paper.

