Positive Linear Functionals on Ideals of Continuous Functions

By Junzo WADA

Let N be the set of all continuous functions on a compact Hausdorff space or the set of all continuous functions whose carriers are compact on a locally compact Hausdorff space. Then any positive linear functional T on N has an integral representation (Kakutani [12] and Halmos [8]), so any T has the condition (MA'), i.e. $T(f_n)$ converges to T(f) for any $f \in N$ and for any sequence $\{f_n\} \subset N$ with $f_n \uparrow f$. Let X be a locally compact space and let Y be the one-point compactification of X ([1], p. 93). Then we can regard the set of all continuous functions whose carriers are compact on X as an ideal (=l-ideal. § 1) of C(Y), the set of all real-valued continuous functions of Y. V.S. Varadarajan [16] raised the following question: Let X be a compact Hausdorff space and let Nbe an ideal of C(X). When can we say that all non-negative linear functionals on N satisfy the condition $(MA')^{1}$? An ideal N is said to satisfy the property (A) if T satisfies the condition (MA') for any nonnegative linear functional T on $N(\S 1)$. In this paper we consider more generalized problems. After some preliminaries in § 1 we consider in § 2 the above problem in the case where X is a completely regular space. We characterize ideals which satisfy the property (A) under some conditions (Theorem 4). In §3 we prove that any m-closed (ring-) ideal satisfies (A) (Theorem 5), and in § 4 we show that an α -ideal satisfies the stronger property (B) (§ 1) if it satisfies (A) in the case where X is a normal Q-space (Theorem 6).

§ 1. Preliminaries.

Throughout this paper, spaces are always completely regular Hausdorff spaces.

For a space X, a subset N in C(X) will be called an l-ideal²⁾ (or, briebly, an ideal) if the following conditions are satisfied:

- (i) if $f, g \in N$, then $f+g \in N$,
- (ii) if $f \in N$ and t is any real number, then $tf \in N$,
- (iii) if $f \in \mathbb{N}$, $|g|^{3} \leq f$, then $g \in \mathbb{N}$.

¹⁾ See, Bourbaki [3]. Varadarajan [16] used the term " σ -smooth" in place of "the condition (MA')". Numbers in bracket refer to the references cites at the end of the paper.

²⁾ See, Birkhoff [2].

³⁾ For any function f, |f|(x) = |f(x)|.

Let X be a space and let f be in C(X). Then we put

$$Z(f) = \{x \mid x \in X, f(x) = 0\},\$$

 $P(f) = \{x \mid x \in X, f(x) > 0\},\$
 $\mathfrak{P}(X) = \{P(f) \mid f \in C(X)\}.$

Let N be an ideal. Then we put

$$Z(N) = \bigcap_{f \in \mathbb{N}} Z(f),$$

 $\mathfrak{P}(N) = \{P(f) | f \in \mathbb{N}\}.$

Let N be an ideal and let T be a non-negative linear functional. Then T is said to satisfy the *condition* (MA') (resp. (MA)) if $T(f_n)$ (resp. $T(f_{\omega})$) converges to T(f) for any $f \in N$ and for any sequence $\{f_n\} \subset N$ (resp. for any directed set $\{f_{\omega}\} \subset N$) with $f_n \uparrow f$ (resp. $f_{\omega} \uparrow f)^{(4)}$. An ideal N is said to satisfy the *property* (A) (resp. (B)) if T satisfies the condition (MA') (resp. (MA)) for any non-negative linear functional T on N.

Let N be an ideal. Then we put

$$K = \{f | f \in C(X), \quad \varphi_{P(|f|)} \leq \text{some } h \in N\},$$

 $K^* = K \cap C^*(X),$

where $C^*(X)$ is the set of all bounded continuous functions. We denote by φ_A the characteristic function of a set A. We easily see that K and K^* are ideals and both are contained in N. If X is compact, then we have that $K=K^*=\{f|f\in C(X)$, the carrier of f is contained in some compact subset of $Y=X-Z(N)\}$.

Let N be an ideal. Then N is called an α -ideal if $f \in N$ for any $f \in C(X)$ with $|f| \land n \in N$ $(n=1, 2, 3, \cdots)$. If X is compact (or pseudo compact), then any ideal is an α -ideal, and if X is locally compact, the set of all continuous functions whose carriers are compact on X is an α -ideal. If N is an α -ideal and if $f \in K$, then we have that $K \supset \{g \mid g \in C(X), P(|g|) \subset P(f)\}$.

Let X be any space. Then E. Hewitt [10] introduced a Baire measure on $\mathfrak{P}(X)$. Let N be an α -ideal and let T be a non-negative linear functional. Similarly, we can introduce a countably additive measure on $\mathfrak{P}(K)$ as follows.

Let G be any set in $\mathfrak{P}(K)$. We define the measure $\gamma(G)$ as sup T(f),

⁴⁾ Let A be a directed system. Then $\{f_{\alpha}\}_{{\alpha}\in A}$ is said to be a directed set if for any pair α_1 , α_2 with $\alpha_1\geqslant \alpha_2$, $f_{\alpha_1}\geqslant f_{\alpha_2}$. " $f_{\alpha}\uparrow f$ " means that $\lim_{\alpha}f_{\alpha}(x)=f(x)$ for any x. We see that a non-negative linear functional T on N satisfies (MA') (resp. (MA)) if $T(f_n)$ (resp. $T(f_{\alpha})$) converges to T(f) for any $f(\geqq 0)\in N$ and for any sequence $\{f_n\}\subset N$ (resp. for any directed set $\{f_{\alpha}\}\subset N$) such that $f_n\uparrow f$ (resp. $f_{\alpha}\uparrow f$) and $f_n\geqq 0$ for any n (resp. $f_{\alpha}\geqslant 0$ for any n) (Cf. $\lceil 14\rceil$).

where f runs through the set of all functions in K such that $0 \le f \le \varphi_G$. By the similar method as Hewitt [10], we have

- (1) a) $G \subset H$ implies that $\gamma(G) \leq \gamma(H)$,
 - b) $0 \leq \gamma(G) < +\infty$
 - c) $\gamma(0) = 0$,

G and H being arbitrary sets in $\mathfrak{P}(K)$.

- (2) $\gamma(G \cup H) \leq \gamma(G) + \gamma(H)$ for any G, H in $\mathfrak{P}(K)$.
- (3) If $G, H \in \mathfrak{P}(K)$ and $G \cap H = 0$, then $\gamma(G \cup H) = \gamma(G) + \gamma(H)$.
- (4) Let G_n , G be in $\mathfrak{P}(K)$ and let $G \subset \bigvee_{n=1}^{\infty} G_n$. Then $\gamma(G) \leq \sum_{n=1}^{\infty} \gamma(G_n)$.

For any subset $A \subset X$, we put

$$\gamma^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \gamma(G_n), A \subset \bigvee_{n=1}^{\infty} G_n, G_n \in \mathfrak{P}(K) \right\}$$

if this set is non-empty, and $\gamma^*(A) = +\infty$ otherwise.

Then we have

- (5) a) $0 \le \gamma^*(A)$ for any $A \subset X$,
 - b) $\gamma^*(A) \leq \gamma^*(B)$ if $A \subset B$,
 - c) $\gamma^*(\overset{\circ}{\underset{n=1}{\smile}}A_n) \leq \sum_{n=1}^{\infty} \gamma^*(A_n)$ for all $\{A_1, A_2, \cdots, A_n, \cdots\}$,
 - d) $\gamma^*(G) = \gamma(G)$ for any $G \in \mathfrak{P}(K)$.
- (6) Every set in $\mathfrak{P}(K)$ is measurable with respect to the outer measure γ^* .
- (7) The outer measure γ^* is countably additive on the family $\overline{\mathfrak{P}(K)}$, where $\overline{\mathfrak{P}(K)}$ is the smallest family which contains $\mathfrak{P}(K)$ and closed under the formation of complements and of countable unions.
- (8) For any non-negative function $f \in K$, there exists some a > 0 such that $\gamma \lceil x \mid x \in X$, $0 < f(x) \le a \rceil = \gamma(P(f))$.

If X is a locally compact space and if N is the set of all continuous functions on X whose carriers are compact, then we easily see that $\gamma(G) = \mu(G)$ for any $G \in \mathfrak{P}(N) = \mathfrak{P}(K)$, whose μ is the measure introduced by Halmos ([8], p. 247, Theorem 8).

By the similar method as Hewitt, we have that for any α -ideal N and for any $f \in K$, $T(f) = \int f(x)d\gamma(x)$. If T satisfies the condition (MA') and if f is a non-negative function in N, then $g_n = f - f \wedge n^{-1} \uparrow f$ and $g_n \in K$, so $T(f) = \int f(x)d\gamma(x)$. Therefore we have

Let N be an α -ideal. Then a non-negative linear functional T satisfies the condition (MA') if and only if there exists a countably additive measure γ on $\overline{\mathfrak{P}(K)}$ for which

$$T(f) = \int f(x)d\gamma(x) \quad (f \in N).$$

Let X be a space and let $\mathfrak{D}(X)$ be the set of all open subsets in X. By a Borel measure, we shall mean a real-valued function γ defined on $\overline{\mathfrak{D}(X)}$ which is countably additive, where $\overline{\mathfrak{D}(X)}$ is the smallest family which contains $\mathfrak{D}(X)$ and closed under the formation of complements and of countable unions.

Let N be a set of continuous functions such that (i) N is a linear lattice, (ii) if $f \in N$, then $1 \land f \in N$ and (iii) for any closed subset F and for any point p with $p \notin F$, there is an $f \in N$ such that f(F) = 0, f(p) = 1 and $0 \leqslant f(x) \leqslant 1$. Then Ishii [11] proved the following: Let T be a positive linear functional on N having the condition (MA). Then there is a reducible Borel measure γ on X such that $T(f) = \int f(x) dr(x)$ ($f \in N$).

Similarly, we have

Let N be an ideal and let T be a positive linear functional on N having the condition (MA). Then there is a reducible Borel measure γ on Y=X-Z(N) such that

$$T(f) = \int_{Y} f(x)d\gamma(x) \qquad (f \in N).$$

§ 2. Property (A).

We first prove the following lemmas.

Lemma 1. Let N be an α -ideal and let T be a non-negative functional on N. Then the restriction T_0 on K of T satisfies the condition (MA').

Proof. By § 1, there is a measure γ such that for any $f \in K$ $T_0(f) = T(f) = \int f(x)d\gamma(x)$, so the lemma is clear.

This lemma can also be proved directly.

Lemma 2. If N is an α -ideal, then it is a ring, i.e. if $f, g \in N$, then $fg \in N$.

Proof. Let $f \in N$ $f \ge 0$ and let m be a natural number. Then $mf - (f^2 \wedge m) \ge mf - f(f \wedge m) = f(m - f \wedge m) \ge 0$, or $mf \ge f^2 \wedge m$. Since $f \in N$ and N is an α -ideal, $f^2 \in N$. If $f, g \in N$, then $fg \in N$ since $(|f| + |g|)^2 \ge 4|fg|$.

We can prove the following theorem.

Theorem 1. Let N be an α -ideal. Then the following conditions are equivalent:

⁵⁾ A measure γ on X is said to be reducible if there is a closed subsets F in X such that F is measurable and $\gamma(X-F)=0$. (Cf. $\lceil 13 \rceil$).

- (1) N satisfies the property (A).
- (2) If T is a non-negative functional on N such that $T(K^*)=0$, then T is identically zero.
- (3) If T is a non-negative functional on N such that T(K)=0, then T is identically zero.

Proof. (1) \rightarrow (2). Suppose that there is a positive functional T on N such that $T(K^*)=0$ and T(f)=1 for som $f \in N$, $f \geq 0$. Put $f_n=(f-n) \vee (f \wedge n^{-1})$. Then $f_n \downarrow 0$. We easily see that $\varphi_{p(f-f_n)} \leqslant nf \in N$ and $0 \leqslant f-f_n \leqslant n$, so $f-f_n \in K^*$ and $T(f)-T(f_n)=0$, or $T(f_n)=T(f)=1$ for any n. This shows that (1) does not hold.

 $(2) \rightarrow (3)$. Clear.

 $(3) \rightarrow (1)$. Let T be a non-negative linear functional on N. For any $f \in N$ $f \geq 0$, we put $T'(f) = \inf \lim_{n \to \infty} T(f_n)$, where $f_n \geq 0$ $(n=1, 2, 3, \cdots)$ and $f_n \uparrow f$, and the infinium is taken for all sequences $\{f_n\}$ such that $f_n \uparrow f$, $f_n \geq 0$ and $f_n \in N$. Then we have that for any $f, g \in N$ $f, g \geq 0$, T'(f+g) = T'(f) + T'(g) and for any real number $t \geq 0$, T'(tf) = tT'(f). For any arbitrary function $f \in N$, we define $T'(f) = T'(f^+) - T'(f^-)$, where f^+ and f^- denotes $f \vee 0$ and $f^- \vee 0$ respectively. Then $f^- \vee 0$ is a linear functional on $f^- \vee 0$ and $f^- \vee$

If N is an ideal which is not an α -ideal, we can easily see that Theorem 1 does not always hold.

DEFINITION. An ideal $N(=N_{f_0})$ will be called a *principal ideal* if there exist a non-negative function $f_0 \in N$ such that $N = \{g \mid g \in C(X), \mid g \mid \leq \alpha f_0 \text{ for some } \alpha \geq 0\}$. An ideal N will be called a 0-principal (resp. ∞ -principal) if there exists a non-negative s-function (resp. an unbounded function) f_0 such that $N = \{g \mid g \in C(X), \mid g(x) \mid \leq \alpha f_0(x) \text{ on } U_m \text{ for some } \alpha > 0 \text{ and some natural number } m\}$ (resp. $N = \{g \mid g \in C(X), \mid g(x) \mid \geq \alpha f_0(x) \text{ on } V_m \text{ for some } \alpha > 0 \text{ and } m\}$), where $U_m = \{x \mid x \in X, 0 < f(x) < m^{-1}\}$ and $V_m = \{x \mid x \in X, f(x) > m\}$. A positive function f is said to be an s-function if it admits any small value, i.e. U_m is not empty for any m. If X is compact, then any 0-principal ideal is principal, but it is not true in general.

Theorem 2. (1) A principal ideal $N (=N_{f_0})$ fulfills the condition (A) if and only if $Z(f_0)$ is open, $Y=X-Z(f_0)$ is pseudo-compact⁶⁾ and $N=\{f|f\in C(X), f(Z(f_0))=0\}$ (it is lattice-isomorphic to C(Y)).

⁶⁾ A topological space X is said to be pseudo-compact if any continuous function on X is bounded.

(2) Any 0-principal (or ∞ -principal) ideal $N(=N_{f_0})$ does not fulfill the condition (A).

Proof. (1) Suppose that N fulfills (A). Then we put $U_n = \{x \mid x \in X, x \in X\}$ $0 < f_0(x) < n^{-1}$. If for any n U_n is not empty, we can select a point x_n in U_n . We put $M = \{g \mid g \in N, \lim_{n \to \infty} g(x_n)/f_0(x_n) \text{ exists}\}$. For any $g \in M$, we define $T(g) = \lim_{n \to \infty} g(x_n)/f_0(x_n)$. Then T is a positive linear functional on M. For any $g \in N_{f_0}$ there exists an m > 0 such that $|g| \le mf_0$. Since $mf_0 \in M$, T is extended to a positive linear functional on N_{f_0} (Cf. [4] p. 20). We denote it again with T. If $f_n = f_0 \wedge 1/n$, we have that $f_n \downarrow 0$ and $T(f_n)=1$ for any n. Since T satisfies (MA'), it is a contradiction. This fact shows that U_m is empty for some m, or $f(x) \ge m^{-1}$ for any xwith $f(x) \neq 0$. Therefore $Z(f_0)$ is open, so $Y = X - Z(f_0)$ is open and closed. Let f' be the restriction of f on Y. Then $N_{f'}(\subset C(Y))$ satisfies the property (A). For any non-negative linear functional T^* on $C^*(Y)$ and for any $h \in N_{f'}$, we define $T_1(h) = T^*(h/f')$. Then $T^*(g) = T_1(f'g)$ for any $g \in C^*(Y)$. We easily see that $C^*(Y)$ satisfies (A). By Glucksberg [5], Y is pseudo-compact and $N_{f'}=C^*(Y)=C(Y)$. The converse is clear by [5].

(2) We define U_n , M and T as (1). Then T is a positive linear functional on M. For any $g \in N$, there are a positive integer m and $\alpha > 0$ such that $|g(x)| \le \alpha f_0(x)$ on U_m . We put $h = \alpha f_0 \vee |g|$. Then $h \in M$ and $|g| \le h$, so T is extended to a positive functional on N. If $f_n = f_0 \wedge n^{-1}$, then $T(f_n) = 1$ for any n and $f_n \downarrow 0$. This is a contradiction.

REMARK. If X is an infinite (completely regular) space, then there is an α -ideal in C(X) which does not satisfy (A). For, if X is infinite, then there is an s-function $f \in C(X)$, so the 0-principal ideal N_f does not satisfy (A) (Theorem 2. (2)). We easily see that N_f is an α -ideal.

DEFINITION. A directed set⁴⁾ $\{f_{\omega}\}_{\omega \in A}$ of positive functions $(\subset N)$ is called a *base* of an ideal N if for any $f \in N$ there is an f_{ω} such that $|f| \leq mf_{\omega}$ for some m.

Let f be a positive s-function in C(X) and let g be any function in C(X). Then we define

$$\overline{\lim_{f\to 0}} g/f = \lim_{n\to \infty} \sup_{\overline{U}_n} g(x)/f(x) ,$$

$$\underline{\lim_{f\to 0}} g/f = \lim_{n\to \infty} \inf_{\overline{U}_n} g(x)/f(x) ,$$

where $U_n = \{x \mid x \in X, 0 < f(x) < n^{-1}\}$.

If $\overline{\lim}_{h\to 0} g/f = \underline{\lim}_{f\to 0} g/f$, we write simply $\lim_{f\to 0} g/f$ (admits $+\infty$).

Theorem 3. Let N be an α -ideal and let $\{f_{\omega}\}_{\omega \in A}$ be a base in N. If for any s-function f_{ω} there is an f_{β} such that $\lim_{f_{\omega} \to 0} f_{\beta}/f_{\omega} = \infty$, then N satisfies the property (A).

Proof. Suppose that N does not satisfy (A). By Theorem 1 there exists a positive functional T such that T(K)=0 and T(f)=1 for some positive function $f \in N$. Since $\{f_{\sigma}\}_{\sigma \in A}$ is a base in N, there is an f_{σ} and a positive constant c such that $0 \leqslant f \leqslant cf_{\sigma}$. Now let f_{σ} be an sfunction. Then by the hypothesis, there is an f_{β} such that $\lim_{f_{\sigma} \to 0} f_{\beta}/f_{\sigma} = \infty$. Therefore, for any positive number M there is an m such that $f_{\beta}(x) \geqslant Mf_{\sigma}(x)$ if $x \in U_m$. We set $W_m = \{x \mid x \in X, 0 \le f_{\sigma}(x) < m^{-1}\}$ and $F = X - W_m$. Then if $x \in W_m$, $f_{\beta}(x) \le Mf_{\sigma}(x)$. Let h be a function in K^* such that h(F)=1. Then we easily see that $Mf_{\sigma}h+f_{\beta} \ge Mf_{\sigma}$, or $cMf_{\sigma}h+cf_{\beta} \ge cMf_{\sigma} \ge Mf$. Since $f_{\sigma}h \in K$, $T(f_{\sigma}h)=0$, so $cT(f_{\beta}) \ge M$. But M is an arbitrary positive number. This is a contradiction.

Next, let f_{σ} be not an s-function. Then if $f_{\sigma}(x) \neq 0$, $f_{\sigma}(x) \geq \delta$ for some positive number δ . The set $P = \{x \mid x \in X, f_{\sigma}(x) > 0\}$ is open and closed and $N \supset \{f \mid f \in C^*(X), f(Z(f_{\sigma})) = 0\}$. Since N is an α -ideal, $N \supset N_0 = \{f \mid f \in C(X), f(Z(f_{\sigma})) = 0\}$ and $K \supset N_0$. Since T(K) = 0, $T(N_0) = 0$. But $f \in N_0$ and T(f) = 1. This is a contradiction.

Finally, we characterize ideals which satisfy the property (A) under some conditions. We see that these conditions are necessary as the later example shows.

Theorem 4. Let N be an α -ideal and let it have a base $\{f_{\alpha}\}$ such that for any s-function f_{α} and for any f_{β} with $\beta \geqslant$ some α' (α' depends on α), $\lim_{f_{\alpha} \to 0} f_{\beta}/f_{\alpha}$ exists (admits $+\infty$). Then N satisfies the property (A) if and only if N is not 0-principal.

Proof. If N satisfies (A), then by Theorem 2. (2), N is not 0-principal. Conversely, suppose that N is not 0-principal. Then for any f_{σ} which is an s-function, there exists an f_{β} such that $\overline{\lim}_{f_{\sigma}^{0\to}} f_{\beta}/f_{\sigma} = \infty$. For, otherwise, there would exist an s-function f_{σ} such that for any $f_{\gamma} \in \{f_{\sigma}\}$ $\overline{\lim}_{f_{\sigma}^{0\to}} f_{\gamma}/f_{\sigma} \leqslant \text{some } M_{\gamma} \leqslant +\infty$, i.e. if $x \in U_m$, then $f_{\gamma}(x) \leqslant M'_{\gamma} f_{\sigma}(x)$ for some m and $M'_{\gamma} > 0$, so N would be a 0-principal ideal $N_{f_{\sigma}}$. This is a contradiction. We can here assume that for any α the above $\beta \geqslant \alpha'$. Therefore, by the hypothesis, for any s-function f_{σ} there is an f_{β} such that $\underline{\lim}_{f_{\sigma}} f_{\beta}/f_{\sigma} = \infty$. By Theorem 4 N satisfies (A).

Let X be a locally compact space and let N be the set of all continuous functions on X whose carriers are compact. Then $N^+ = \{f | f \in N,$

 $f\geqslant 0$ } forms a base which satisfies the hypothesis of Theorem 4. The ordering of the directed system for the base can be defined as follows: $\alpha \geqslant \beta$ if $f_{\alpha} \geqslant \varphi_{P(f_{\beta})}$ for any f_{α} , f_{β} in N^+ .

EXAMPLE. The hypothesis in Theorem 4 is necessary. The following example shows it. Let X be the closed interval [0,1] and let N be an ideal having a base $\{f_n\}$. For any n we define: $f_n(x)=x$ if $x=2^{-2m}$ or x=0 $(m=0,1,2,\cdots),$ $f_n(x)=x^{1/n}$ if $x=2^{-(2m+1)}$ $(m=0,1,2,\cdots)$ and it is linear on the intervals $[2^{-(m+1)},2^{-m}]$ $(m=0,1,2,\cdots)$. We see that N is an α -ideal (since X is compact) and is not 0-principal. But N does not satisfy (A). For, Put $M=\{f|f\in N,\lim_{n\to\infty}2^{2n}f(2^{-2n}) \text{ exists}\}$. Define $T(f)=\lim_{n\to\infty}2^{2n}f(2^{-2n})$ for any $f\in M$. T is extended to a positive linear functional on N (Cf. [4]. p. 20) Set $g_m=f_1\wedge m^{-1}$. Then we have that $g_m\downarrow 0$ and $T(g_m)=1$ for any m, so N does not satisfy (A).

§ 3. Ring-ideals.

A subset N in C(X) is called a ring-ideal⁷⁾ if it satisfies the following conditions:

- (i) if $f, g \in N$, then $f+g \in N$,
- (ii) if $f \in N$ and if $h \in C(X)$, then $hf \in N$.

A ring-ideal N is said to be m-closed if N is closed in the m-topology C(X). Any neighborhood of $f \in C(X)$ in the m-topology is the set $\{g \mid g \in C(X), |g-f| < \pi\}$ for some everywhere positive function $\pi \in C(X)$ according to Hewitt [9]. Shirota [15], and Gillman, Henrikson, and Jerison [7] proved that any m-closed ring-ideal is an intersection of some maximal ring-ideals. We shall show that any m-closed ring-ideal is an α -ideal and it satisfies (A) (Cf. Theorem 5).

The following lemma is proved by [16] in the case where X is compact.

Lemma 3. Let N be an α -ideal and let it have the property such that if $f \in N$ then $|f|^{1/2} \in N$. Then N satisfies the property (A).

Proof. Suppose that a positive functional T on N satisfies the property such that T(K)=0 and T(f)=1 for some positive $f \in N$ (Cf. Theorem 1). We put $g_n=(nf-f^{1/2})\vee 0$. Then $n^2f \geq \varphi_{P(g_n)}$ and $g_n \in K$. $0=T(g_n) \geq T(nf-f^{1/2})$, or $T(f^{1/2}) \geq nT(f)=n$ for any n. This contradiction proves the lemma.

We can easily prove the following lemmas.

⁷⁾ We use the word "ring-ideal" to avoid the confusion.

Lemma 4. If N is a maximal ideal (=l-ideal), then it satisfies the property (A).

Proof. By Lemma 3, it is sufficient prove that (i) for any positive f in N, $f^{1/2} \in N$ and (ii) N is an α -ideal.

- (i) Suppose that $f \in N$ and $f^{1/2} \notin N$. Since N is maximal, the set $\{h \mid h \in C(X), \ \lambda f^{1/2} + g \geq |h| \ \text{for some positive } g \in N \ \text{and for some } \lambda > 0\}$ is identical to C(X). Therefore $\lambda f^{1/2} + g \geq f^{1/4}$ for some positive $g \in N$ and for some $\lambda > 0$, or $g \geq f^{1/4} \lambda f^{1/2} = f^{1/4}(1 \lambda f^{1/4})$. For any x in X with $f(x) \leq (2\lambda)^{-4}$, $g(x) \geq 1/2f^{1/4}(x)$, or $2g(x) \geq f^{1/4}(x)$. For any x in X with $f(x) > (2\lambda)^{-4}$, $(2\lambda)^3 f(x) f^{1/4}(x) = f^{1/4}(x)((2\lambda)^3 f^{3/4}(x) 1) \geq 0$, or $(2\lambda)^3 f(x) \geq f^{1/4}(x)$. Therefore $2g \vee (2\lambda)^3 f \geq f^{1/4}$, and so $f^{1/4} \in N$. By Lemma 2, we have $f^{1/2} \in N$. This contradication proves (i).
- (ii) Let f be a positive function in C(X) such that for any n
 otin N
 otin N and $f \notin N$. Since N is a maximal ideal, the set $\{h | \lambda f + g \ge |h| \text{ for some positive } g \in N \text{ and for some } \lambda > 0\}$ is identical to C(X). Therefore $\lambda f + g \ge f^2$ for some positive $g \in N$ and $\lambda > 0$, or $g \ge f^2 \lambda f = f(f \lambda)$. For $x \in X$ with $f(x) \ge 1 + \lambda$, we have $g(x) \ge f(x)$. For $x \in X$ with $f(x) < 1 + \lambda$, we can select a natural number n such that $n \ge 1 + \lambda$. If we put $f_n = f \wedge n$, then $(1 + \lambda)^{1/2} f_n^{1/2}(x) \ge f(x)$. Therefore $g \vee (1 + \lambda)^{1/2} f_n^{1/2} \ge f$. Since $f_n^{1/2} \in N$ by (i), $f \in N$.

Lemma 5. A maximal ring-ideal is a maximal ideal.

Proof. Let M be a maximal ring-ideal. Then we must first prove that it is an ideal. We put $M_0 = \{f | f \in C(X), |f| \le \alpha g \text{ for some positive } g \in M \text{ and some } \alpha > 0\}$. Then M_0 is a proper ring-ideal (for, $M_0 \not\ni 1$ since $M \not\ni 1$), and $M \subset M_0$, so $M = M_0$, i.e. M is an ideal. To prove the lemma, it is sufficient to show that if N is a maximal ideal, then it is a proper ring-ideal. We put $N_0 = \{f | f \in C(X), |f| \le hg \text{ for some positive } h \in C(X) \text{ and some } g \in N\}$. Then N_0 is an ideal and $N \subset N_0$. Therefore it is sufficient to prove that N_0 is proper. Suppose that $N_0 = C(X)$. Then there exist $h \in C(X)$ and $g \in N$ such that $hg \gg 1$, so g is everywhere positive. If we put $N' = \{fg^{-1}; f \in N\}$, then N' is a maximal ideal and $N' \ni 1$. By the proof of Lemma 4, N' is an α -ideal, so N' = C(X) and N = C(X). This is a contradiction.

Now we can prove the following theorem.

Theorem 5. Any m-closed ring-ideal is an α -ideal and it satisfies the property (A).

Proof. Let N be an m-closed ring-ideal. Then N is an intersection of some maximal ideals M_{α} ([15] or [7]). Any M_{α} is a maximal ideal

(Lemma 5) and by the proof of Lemma 4, any M_{σ} is an α -ideal and has the property such that for any positive $f \in M_{\sigma}$, $f^{1/2} \in M_{\sigma}$. Therefore N is an α -ideal and has the property such that for any positive $f \in N$, $f^{1/2} \in N$. By Lemma 3, N satisfies (A).

REMARK. If X is a P-space (Cf. Gillman and Henriksen [6]), then any ring-ideal in C(X) satisfies (A) since any ring-ideal is m-closed ([6]. p. 345).

EXAMPLE. An m-closed ideal (not a ring-ideal) does not always satisfy the property (A). Such an example is the following: Let X be the semi-line $[0, \infty)$ and let $N = \{f | f \in C(X), | f(x)| \le \alpha x \text{ for some } \alpha > 0 \text{ and for } x \ge 1\}$. Then we easily see that N is an m-closed ideal but it does not satisfy (A) since N is ∞ -principal (Cf. Theorem 2. (2)).

§ 4. Property (B)

Let X be a locally compact space and let N be the set of all continuous functions whose whose carriers are compact on X. McShane [14] proved that N has the propety (B). We can regard N as an ideal in $C(X_0)$, where X_0 is the one-point compactification of X. We here consider ideals in C(X), where X is a Q-space. Q-spaces are considered in [9]. Any separable metric space or any locally compact Hausdorff space which is sum of countable compact subsets is always a Q-space [9]. We here show that an α -ideal satisfies the property (B) if it satisfies (A) in the case X is a normal Q-space.

We first prove the following

Lemma 6. Let X be a normal Q-space and let F be a closed subset in X. Let Y be the decomposition space⁸⁾ consisting of F and all elements in X-F. Then Y is also a Q-space.

Proof. Let φ be the mapping such that $\varphi^{-1}(y_0) = F$ and $\varphi^{-1}(y)$ is a set consisting of only one point for any $y \in Y$, $y \neq y_0$. Then φ is continus. Now suppose that Y is not a Q-space. Then there exists a family

⁸⁾ Let X be a topological space and let $\{F_{\alpha}\}$ be a division by closed sets of X, i.e. $X=\bigcup F_{\alpha}$, any F_{α} is closed and elements of $\{F_{\alpha}\}$ are mutually disjoint. We can consider new space Y whose points are $\{F_{\alpha}\}$. This space is called the decomposition space of X if for any open set $U \supset F_{\alpha}$, there exists an open set $V \supset F_{\alpha}$ such that $F_{\beta} \supset V \neq 0$ implies that $F_{\alpha} \subset U$. For anypoint $y_0 = F_{\alpha}$ in the decomposition space Y, any neighborhood of Y_0 is the set $\{y \mid y = F_{\beta}, F_{\beta} \subset U\}$ for some open set U in X (Cf. [1]). Then there exists a continuous mapping from X onto Y.

 $\mathfrak{F} \subset \mathfrak{Z}(Y)^{\mathfrak{g}_0}$ such that (i) \mathfrak{F} is Z-maximal, (ii) any countable family of \mathfrak{F} has a non-void intersection and (iii) $\bigcap_{B \in \mathfrak{F}} B = 0$ (Cf. [9]). Let $\mathfrak{H} = \{A \mid A\}$ $\in \mathfrak{F}(X), A \supset \varphi^{-1}B$ for some $B \in \mathfrak{F}$. Then we shall first prove that \mathfrak{F} is Z-maximal. If \mathfrak{D} is not Z-maximal, then there exists an $A_0 \notin \mathfrak{D}$ $(A_0 \in \mathfrak{Z}(X))$ such that $\varphi^{-1}B \cap A_0 \neq 0$ for any $B \in \mathcal{F}$. Since $A_0 \notin \mathcal{F}$, $A_0 \not\ni \varphi^{-1}B$ for any $B \in \mathcal{F}$, so $\varphi A_0 \supset B$ for any $B \in \mathcal{F}$. For, if $\varphi A_0 \supset B$ for some $B \in \mathcal{F}$, by (iii), there exists a $B_1 \in \mathcal{F}$ such that $\varphi A_0 \supset B_1$ and $B_1 \not\ni y_0$. Therefore $A_0 \supset \varphi^{-1}B_1$. This is a contradiction, so $\varphi A_0 \supset B$ for any $B \in \mathcal{F}$. Let $A_0 = \mathbb{Z}(f)$ $(f \in \mathbb{C}^*(\mathbb{C}))$ and let $V(y_0)$ be a neighborhood of y_0 in Y. Then $f\varphi^{-1}$ is continous on $Y-V(y_0)$. Let g be an extended continuous function of $f\varphi^{-1}|(Y-V(y_0))$ on Y (Y is a normal space). Then we have $Z(g) \subset \varphi A_0 \cup V(y_0)$. We take a $B_2 \in \mathfrak{F}$ $B_2 \not\ni y_0$ and $V(y_0)$ such that $V(y_0) \cap B_2 = 0$. To prove that $Z(g) \notin \mathfrak{F}$, we suppose that $Z(g) \in \mathcal{F}$. Then $\varphi A_0 \supset \varphi A_0 \cap B_2 = (\varphi A_0 \cup V(y_0)) \cap B_2 \supset Z(g) \cap B_2$ and $Z(g) \cap B_2 \in \mathcal{F}$, this is a contradiction. Since \mathcal{F} is Z-maximal, there exists a $B \in \mathcal{F}$ such that $B \cap Z(g) = 0$. We can assume that $B \not\ni y_0$ and $B \cap V(y_0) = 0. \quad 0 = \varphi^{-1}B \cap \varphi^{-1}(Z(g)) \supset \varphi^{-1}B \cap \varphi^{-1}(\varphi A_0 - V(y_0)) = \varphi^{-1}[B \cap (\varphi A_0 - V(y_0))] = \varphi^{-1}[B$ $V(y_0) = \varphi^{-1}(B \cap \varphi A_0) = \varphi^{-1}B \cap A_0$. But $\varphi^{-1}B \cap A_0 \neq 0$. This contradication shows that δ is Z-maximal. We easily see that any countable family of $\mathfrak D$ has non-empty intersection and $\bigcap_{A \in \mathfrak D} A = 0$. Therefore X is not a Q-space. This shows that Y is a Q-space.

By this lemma, we have

Theorem 6. Let X be a normal Q-space and let N be an α -ideal. Then N satisfies the property (B) if and only if N satisfies the property (A).

Proof. It is sufficient to prove that if N satisfies (A), then it satisfies (B). Suppose that N satisfied (A). Let T be a positive liner functional on N and let f be a positive function N. Then we define $T'(f) = \inf_{\alpha} T(f_{\alpha})$, where any f_{α} of a directed set $\{f_{\alpha}\}$ is non-negative and $f_{\alpha} \uparrow f$, and the infinimum is taken for all directed sets $\{f_{\alpha}\}$ such that $f_{\alpha} \uparrow f$, $f_{\alpha} \geq 0$ and $f_{\alpha} \in N$. Then we have that for any $f, g(\geq 0) \in N$, T'(f+g)=T'(f)+T'(g) and T'(tf)=tT'(f) for any $t\geq 0$. For any $f\in N$, we put $T'(f)=T'(f^+)-T'(f^-)$. Then T' is linear functional on N. If we put T''=T-T', then $T''\geq 0$. To prove that T=T', it is sufficient to show that T''(K)=0 (Theorem 1). Therefore we have only to show that for any positive function $f\in K$, $T\mid K_f$ satisfies the condition (MA), where $K_f=\{g\mid g\in K,\ P(\mid g\mid)\subset P(f)\}$. Since N is an α -ideal, $K_f=\{g\mid g\in C(X),\ P(\mid g\mid)\subset P(f)\}$. If we put $F=\overline{P(f)}^{10}$, we can regard K_f as the set of

⁹⁾ For any topological space X, we denote by $\mathfrak{Z}(X)$ the family $\{Z(f)|f\in C(X)\}$.

¹⁰⁾ For any subset A, \bar{A} denotes the closure of A.

all functions in C(F) vanishing of F-P(f). Therefore to prove the Theorem, we have only to show that if M is the set of all functions in C(F) (F is a Q-space) vanishing on a fixed closed subset A in F, then M satisfies (B).

- (i) If A is the empty set, then M=C(F). If T is a positive linear functional on M, then there are a Baire measure γ on F and a compact set $C \subset F$ with $T(f) = \int_C f(x) d\gamma^*$ ($f \in M$) ([10]. Theorem 18). Therefore M fulfills $(B)^{(1)}$.
- (ii) Let A be a set consisting of one point and let A = (p). Let T be a positive linear functional. Then T is continuous, i.e. $||T|| = \sup_{0 \le f \le 1} T(f) <$
- $+\infty$. We can assume that ||T||=1. We put for any $f \in C(F)$, $T^*(f)=T(f-f(p))+f(p)$. We easily see that T^* is a positive linear functional on C(F). By (i) T^* satisfies (MA) and so does T.
- (iii) If A is an arbitrary closed subset in F, let Y be the decomposition space consisting of A and $\{x\}_{x\in F-A}$. Then by Lemma 6 Y is a Q-space. Let φ be the mapping such that $\varphi^{-1}(y_0)=A$ and $\varphi^{-1}(y)$ is a set consisting of only one point for any $y\in Y, y \neq y_0$. For any $f\in M$ we put $f'(y)=f(\varphi^{-1}y)$, then f' is continuous on Y. $M^*=\{f'|f\in M\}$ is the set of all continuous functions vanishing at y_0 . Let T be a positive linear functional on M and let $T_1(f')=T(f)$ for any $f'\in M^*$. Then T_1 is positive on M^* . By (ii) T_1 satisfies (MA) and so does T.

Let N be an ideal and let T be a non-negative linear functional on N. T is said to has the *property* (D) if T(f) = T(g) for any $f, g \in N$ where f = g on some open set $U \supset Z(N)$.

In the case where X is compact, we have

Theorem 7. Let X be a compact space and let N be an ideal. Then N satisfies the property (B) (or (A)) if and only if any non-negative linear functional on N which has the property (D) is identically zero.

Proof. By Theoreme 1 and 6, we have only to show that T has the property (D) if and only if T(K)=0. Since X is compact, it is clear.

REMARK. Any non-negative linear functional T on N which has the property (D) is of the following form. For any s-function $f \in N$ we put $M = \{g \mid g \in N, Z(g) \supset Z(f) \text{ and } \lim_{f \to 0} g/f \text{ exists}\}$. Then we have that for any $g \in M$

$$T(g) = c \lim_{f \to 0} g/f$$
, where $c \ge 0$

For, if we put $\lim_{t\to 0} g/f = a$, then for any $\varepsilon > 0$ there is an m such that

¹¹⁾ This fact is pointed out by [11].

 $(a-\varepsilon)f(x) \leqslant g(x) \leqslant (a+\varepsilon)f(x)$ if $f(x) \leqslant m^{-1}$. $(a-\varepsilon)f \land g \leqslant g \leqslant (a+\varepsilon)f \lor g$, so $(a-\varepsilon)T(f) = T((a-\varepsilon)f \land g) \leqslant T(g) \leqslant T((a+\varepsilon)f \lor g) = (a+\varepsilon)T(f)$. Since ε is an arbitrary positive number, $T(g) = aT(f) = c \lim_{f \to 0} g/f$, where c = T(f).

(Received September 17, 1959)

Bibliography

- [1] P. Alexandroff and H. Hopf: Topologie, Berlin, 1935.
- [2] G. Birkhoff: Lattice theory, New York, 1948.
- [3] N. Bourbaki: Intégration, Livre VI, Paris, 1952.
- [4] M. M. Day: Normed linear spaces, Berlin, 1958.
- [5] I. Glucksberg: The representation of functionals by integrals, Duke Math. J. 19, 253-261 (1952).
- [6] L. Gillman and M. Henriksen: Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77, 340-362 (1954).
- [7] L. Gillman, M. Henriksen, and M. Jerison: On a theorem of Gelfand and Kolmogroff concerning maximal ideals in rings of continuous functions, Proc. Amer. Math. Soc. 5, 447-455 (1954).
- [8] P. R. Halmos: Measure theory, New York, 1950.
- [9] E. Hewitt: Rings of real-valued continuous functions I, Trans. Amer. Math. Soc. 64, 45-99 (1948).
- [10] —: Linear functionals on spaces of continuous functions, Fund. Math. 37, 161-189 (1950).
- [11] T. Ishii: On the (MA)-condition of linear functionals on space of continuous functions, I. II. (in Japanese), Sûgaku, 8, (1957).
- [12] S. Kakutani: Concrete representation of abstract (M)-spaces, Ann. of Math. 42, 994-1024 (1941).
- [13] M. Katetov: Measures in fully normal spaces, Fund. Math. 38, 73-84 (1951).
- [14] E. J. McShane: Remark concerning integration, Proc. Nat. Acad. Sci. U.S.A. 35, 46-49 (1949).
- [15] T. Shirota: On ideals in rings of continuous functions, Proc. Japan Acad. 30, 85-89 (1954).
- [16] V. S. Varadarajan: On a theorem of F. Riesz concerning the form of linear functionals, Fund. Math. 46, 209–220 (1958).