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On Mappings between Algebraic Systems

By Tsuyoshi FujiwaArRAa

Since the mappings between algebraic systems play one of the most
important roles in the theory of algebraic systems, the construction of
the general theory of mappings seems to be interesting and useful in
the study of algebraic systems. In the present paper, we shall first
introduce a family P of basic mapping-formulas as a generalization of
the defining formulas of homomorphisms: @(xxy)=p(x)x@(y), and
that of the defining formulas of (¢, 4)-derivations®: D(xy)=D(x)p(y)
+4Y(x) D(y), D(x+3)=D(x)+D(y). And we define P-mappings as the
mappings which satisfy the family P of basic mapping-formulas. And
we shall try to construct the general theory of P-mappings.

Our theory can be divided into two parts. The first part (§§1-4)
deals with a general theory of P-mappings which contains the results
with respect to homomorphisms, derivations and others. In this part,
the algebraic Taylor’s expansion theorem® (Theorem 1.1) will play the
fundamental roéles, since, by this theorem, any P-mappings from an
algebraic system 2 into another algebraic system B can be reduced to
a homomorphism from 2 into the P-product system over B. In the
second part (§5), we shall give a characterization of the defining
formulas of homomorphisms by considering the absolutely universal
family of basic mapping-formulas.

§1. Fundamental properties of P-mappings.

First we shall explain terminology and notations with respect to
free algebraic systems®, for the convenience of our discussion.

The finitary compositions will be denoted by v, w, ---, and we denote
by N(v) the number N such that the composition » is N-ary. Let
V={v, ---} be a set of finitary compositions. By a ¢-algebraic system
9, we shall always mean an algebraic system 2 which is defined by V
so that v(a, -+ ,@nw,) is assigned a single element in 2, for any com-

1) Cf. [4; P. 170].
2) Cf. [5; §12].
3) Cf. [1; P. viii], [2], [3], [6], [7; Chapter II, §1] and [8; §4].
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position » in V and any elements a,, -, @y, in . An absolutely free
¢y-algebraic system® is simply called a free ¢,-algebraic system. And
the free ¢,-algebraic system with a free generator system {a,, :--,a,}”
is denoted by F({a,, ‘-, a,}, ¢y). An element of the free ¢-algebraic
system F({a, -,a,}, ¢,) is called a V-word or a V-polynomial, and
denoted by f(a,, ---, a,), ga,, -+, a,), . A V-word in F({a,, -+, @, =+,
ag, -+ ,a,}, ¢y) is not only denoted by f(ay, -+, @iy, =+, g, *+* » Ggy), DUt
also denoted by

f(an, a) or simply f<au a)

asl7 -..’asr a .o asr

s1°

Again, the generator a, is called a V-word of order 0. And the V-word
fa,, -+, a,) which can be written in the form

v(gi(ay, -, a,), -, Enan(@y, 5 a,))

is called a V-word of order k, where gp(a,, -, a,) (N=1, ---, N(v)) are
V-words of order k—1 or less, and some guy(a,, -, a,) is precisely of
order k—1. Then each V-word f(a,, -+, a,) is clearly of some order k.
Let A, be a system of composition-identities with respect to V. By an
Ay-algebraic system, we shall mean a ¢,-algebraic system satisfying A.
And we denote by F({a,, ---,a,}, A,) the free A,-algebraic system with
a free generator system {a,,-,a,}. If two V-words f(a,, ---,a,) and
g(a,, -+, a,) are equivalent in F({a,, :--, a,}, Ay), then we say that f(a,, ---,
a,) and g(a, :--,a,) are A,-congruent, and denote it by f(a,, - ,a,)

gg(al, -+, a,). Moreover let R, be a set of relations, i.e. identities
between elements of F({a,, :-,a,}, ¢,). The free A,-algebraic system
with a generator system {a,--,a,} satisfying R, is denoted by
F({au Ty d,}, AV’ RV)

Let V={v, ---} and W= {w, -} be two sets of finitary compositions.
And let {&,---,§,}® and {x,, -, vy, be sets of formal variables, to
be replaced by mappings and elements of a ¢,-algebraic system respec-
tively. An identity of the form

é:l‘-(v(xl’ R xN(v)))
= PE,Lv(fl(xl) y Tty El(xN(v)) y " Em(xl) y "7 Em(xN(v)))

4) Cf. [6; §3], [7; Chapter II, §17] and [8; §4].

5) For convenience, we use the same notation as in the case of a finite set, but the
generator system {a;, -, @,} does not necessarily mean a finite set.

6) The set {&, -+, £,} may be any non-empty finite or infinite set. But, for convenience,
we use the same notation as in the case of a finite set.
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is called a basic mapping-formula of &, concerning v, where P, (%), -,
Exnan) s Enl(®), -, Ep(Xney) is @ W-polynomial in F({f(x), -,
E(Xne) s Elz), o, E(Xn)}, dw). A set of basic mapping-formulas
which is of the form

{E,,,(l)(xl, Tty xN(v))) = Pg'hv(gl(xl) y "y gl(xN(v))

R ETRTTRTTRTTNN B TR 1, ,mveV

E (%), -, £, X neo)
is simply denoted by P, »{&, ,&,}, and called a family of basic
mapping-formulas. Now let P be a family P, {&, -,§,} of basic
mapping-formulas, and let @,, -, @,, be single-valued mappings from a
¢ -algebraic system 2 into a ¢-algebraic system B. If, for any elements
a, >, lne 10 A, all the identities obtained by the substitution of
@, 9, and a,, -, an, for &,--,§&, and x, -, xn,, of all basic
mapping-formulas of P are true in 3B, then we say that {p,, -, ®,.} is
a system of P-mappings, or simply that ¢,, ---, ¢, are P-mappings.

Let P be a family Py, »1{&,, ---,&,} of basic mapping-formulas. And

let B be a ¢y-algebraic system, and B” the set of all ordered m-tuples
[b,, -, b, ] each of which consists of elements of B. Now we define
the compositions v € V in 8™ as follows:

U([bi, ey by, e, [oy, ... ’b’,zx(v)])

= [Pﬁlv(bi y 7T biV('v))’ Tt Pva< { LAY b{(v))]
b}n » " b'r]n\r:(w b}n y " bZ(v) .

Then it is clear that B” forms a ¢-algebraic system. Such a ¢,-algebraic
system is called a P, {4, -+, &,}-product system over B or simply a

P-product system over B, and denoted by P& ;#(B) or simply by P(B).

Examples: (1) Let P be a family P, ,{§, ---,&,} of basic mapping-
formulas each of which is of the form &.(v(x,, -+, Xno))=0(Eu(x), -+,
Exnw)). Then the P-product system P(B) over a ¢,-algebraic system
B is the direct product Bx ---xB. (2) Let V={+, —, -}, and let P be

m

a family P, ,{,, &, -} of basic mapping-formulas of the form &.(x+y)
=E ()£ E,), Exy) =Y o Eu_j(x)E,(»)”. Then the P-product system
P(B) over a ring B can be considered as the ring of formal power series
over B. (3) Let V={+, —, -} and P=P, &, -, &y Eps = Evum)

7) In this example, $¥_;X; denotes the V-polynomial ((-+ ((X;+X;)+X5) --) +X,).
But, 3¥_,X; may be considered as the sum in the usual sense, because B satisfies the
associative law (x+3)+z=x+(y+2).
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If the mapping-formulas of P are of the form &, (x=xy)=&..(x)£&.,(),
Eu(x) =30 En(x)€,,(»)", then the P-product system P(B) over a ring B
forms the total matric algebra of degree m over B. (4) Let V={P, O, *}
and W={+, —, -}. If P is the family which consists of basic mapping-
formulas &(x Dy)=E(x)+&(), E(x O y)=Ex)—&(y) and &E(xxy)=E(x)E(y)
—&(y)E(x), then the P-product system P(B) over a ring B forms a Lie
ring.

Let P be a family Py, {&,, ---,£,} of basic mapping-formulas. And
let A be a ¢,-algebraic system, and B a ¢,-algebraic system. A homo-
morphism from 2 into P(B) may be called a representation of U into
P(B8). Now we shall show the fundamental theorem as follows :

Theorem 1.1. (The algebraic Taylor’s expansion theorem)® Let P
be a family P, i€, ---, €.} of basic mapping-formulas. And let N be a
by-algebraic system, and B a by-algebraic system. Then {p,, -, ®,} is
a system of P-mappings from U into B, if and only if the mapping 0 :
Asa—ba) = [p,(a), -, pala)] € P(B)
is a representation of W into P(B).

Proof. Let » be any composition of V, and let a,, -+, an,, be any
elements of . Then, by the definitions of ¢ and P(B), we have

(1.1) Ow(a,, -, anw))
= [p,(v(a,, -, anw)) » =+ Pu(@y, -, anan)) ],
and '
(1.2)  o(a,), -, Oan)
= olp,(a), -, p.a)], -, [Plane) s = s Pwl@nc)])
= {P51v<¢1(a1) » T ?71(611\/(1)))) y s Pg,,,u(@l(“,) s s Pl@nen) )]

......................................................

¢m(al) y " ¢m(aN(v)) q)m(dl) y T (pm(aN(v))

Now suppose that 6 is a representation of 2 into P(B). Then we have
1.3) Ov(a,, -, anw)) = v(0(a,), -, Hay)) -
Hence, by (1.1) and (1. 2), we have
(1.4 [oa, -, anw), -, Pulv(@,, =, ayw))]
= [Peo(Pa) , s Pil@nw) \ s s Peo/Pil@) 5 0, Pl@n)
[ (mali q},;'(;;;(;;i) ('q;;{&ii',' "é,;k;;;;;iﬂ.

8) Cf. [5; P. 100].
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Hence we have

(L.5) pu(v(a,, -+, any) = Pew<¢1(al) y s Pil@nc)

........................... > (Iu':]_,...’m)’
Pl @) 5 5 Prul@ner)

ie, {®, -, ®,} isa system of P-mappings. Conversely we assume that
{®1, -+, 9} is a system of P-mappings from U into B. Then we have
the identities (1.5). Hence we have the identity (1.4). Therefore it is
clear from (1.1) and (1.2) that the identity (1.3) is true, ie, 0 is a
representation of N into P(B). This completes the proof.

The homomorphism € in the above theorem is called a homomor-
phism deduced from the P-mappings ¢,, -, ®,,. Now we shall show the
following two theorems as the simple applications of the above theorem.

Theorem 1.2. Let P be a family Py, 5{&,, -+ ,&,} of basic mapping-

formulas. And let N be a P,-algebraic system generated by a,, -, a,,
and B a dy-algebraic system. If {p,, -, 9} and {pi, -, oL} are two
systems of P-mappings from N into B such that pu(a,)=p(a,) (p=1, -,
mip=1,-,7), then p.=@), (p=1, -, m).

Proof. Let ¢ and ¢’ be the homomorphisms deduced from ¢, -, @,,
and @i, ---, @}, respectively. Then we have

0a,)=Lp:(a,), -, Pula,)] = [P1(a,), -, Prla,)]=0'(a,)

for all ¢, in the generator system {a,,---,a,} of A. Hence we have
0=¢". Therefore it is easily verified by Theorem 1.1 that @.(a)=.(a)
(w=1, ---,m) for all elements ¢ in A. This completes the proof.

Theorem 1.3. Let P be any family P, ,{, -, of basic
mapping-formulas. And let W be any free ¢-algebraic system F({a,, -,
a,}, dy), and B any Py-algebraic system. Then, for any elements by,
(p=1, - ,m;p=1, - ,7) of B, there exists a system {p,, -, P, of
P-mappings from W into B such that ¢, (a,)=0bu, (p=1, -, m;p=1, -, 7).

Proof. Since U is a free ¢,-algebraic system freely generated by
a,, - ,a,, it is clear that the mapping a,—[b,, :--, b,,] can be extended
to a homomorphism from U into P(B). Hence it is obvious by Theorem
1.1 that there exists a system {p,, -, ®,,} of P-mappings from % into
B such that @u(a,)=b, (p=1,--,m;p=1, - 7).

§ 2. The notation FE,;,f(xl-nxr)(El(xl) y "t El(xr) PR Em(x1) y T Em(xr))'

Let P be a family P, w1, -+, £,} of basic mapping-formulas. And
let 2 be any free ¢-algebraic system F({x,, ---, x,}, ¢y), and B the free
¢W'algebraic System F( {El(xl) y "y El(xr) y 7Ty Em(xl) y T Em(xr)}’ ¢)W)' Then
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it is clear from Theorems 1.2 and 1.3 that there exists one and only
one system {®,, -, ®,,} of P-mappings from 2 into B such that

(2-1) ?}L(xp) =§M(xp) (H=1,“',m;P:1,"',7).
For a V-polynomial f(x,, ---, x,) in U, we denote by
(2 2) F&,Lf(xl xr)(é: (xl * E (xr) gm(xl) » T Em(xr))g)

the W-polynomial @.(f(x,, -, x,)) in B. Then, since

@H(v(fl(xl) Ty xr) y T ’fN(v)(x17 Ty xr)))
= P’s‘,,,v(¢1(f1(x1 » T xr)) » T ¢1(fN(v)(xl y T xr)))

q)m(fl(xly R xr)) y T q)m(fN(v)(xly ) xr)) ’
we have

(2- 3) Fip.u(fl(xln-xr). -~',fN(y)(xlonxr))(El(xl) > Tt El(xr) y Ty Em(xl) y T Em(xr))
= Pfy.v{Fslfl(xl'“xf) El(xl) gl(xr) > y T FglfN(u)(xl'"xr) (El(xl) fl(x,) )

....................................

E(x,)-E(x,) &%) E,(x,)

.................................................................................

FSmfl(xl"'xr)(E ( ) E (x’) ) ) FSmfN(v)(xl"'xr)(El(xl) gl(xr) )J
| El) £, (x,)

;
\ Em(xl)gm(xr)
Now it is easy to see from (2.1) and (2.3) that the W-polynomial

(2.2) coincides with the decomposition of &.(f(x,, -, %,)) which is
obtained by making formal use of the family P. Therefore we can

easily obtain the following :
Theorem 2.1. Let P be any family P, i€, - ,E,} of basic
mapping-formulas. Then
Fﬁp.f(gl(xl Xp) e, glxyee x,))(é (xl) y U7 f (xr) Y gm(xl) y "ty Sm(x ))
= FE,;,f(xl xg)(Filgl(xl xp) E (xl g (x ) ) Fﬁlgs(xl xp) (E (x ) é: (x ) )

gm(xl) Em(xr) gm(x) E (x )/

..............................................................................

Ffmgl(xl"'xr) Sl(xl) gl(xr)> Fﬁmgs(xl xr)(g (xl) E (x ) )

)+ £0x,) Enl)Enlz,)

for any V-polynomial f(g\(x,, -, %,), -, &%y, -+, %,)).
Theorem 2.2. Let N be a $y-algebraic system, and B a dy-algebraic
system. And let a,, (p=1, ---,7) be elements of W, and by, (p=1, -, m;

9) This may be considered as a generalization of the symbol )i 18f <x1 x')Df (x;) in

the theory of derivations.
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p=1,,7) elements of B. If {p,, -, P} is a system of Py, {E,, -, E,}-
mappings from W into B such that pu(a,)=bu, (w=1,-,m;p=1, - 7), then

(2.4) Pl fla,, -, a,)) = Fg“f(xl...,,)(bll , oo, by,

bmlr s Uy

for every V-polymonial f(x,, -, x,).

Proof. We shall prove this theorem by induction on order of V-
polynomials f(x,, ---, x,). For every V-polynomial of order 0, the
identities (2.4) are clearly true. Now assume that the identities (2. 4)
are valid for every V-polynomial of order £k—1 or less. Let f(x,, -, x,)
be any V-polynomial of order k. Then we have

f(xl7 Tt xr) = v(gl(xu B xr)7 T gN(v)(xl’ Ty x,)),

and hence

f(aly T ar) = v(gl(au T ar) y "ty gN(v)(al’ R ar)) .

Since gp(xy, ==+, x,) (N=1, -+, N(v)) are of order k—1 or less, it follows
from the assumption of induction that

(Py-(gN(an T ar)) = Fﬁp.gN(xp--x,)(bu, ) blr) R bmu Tty bmr) .

Hence we have

¢P-(f(a1, tty ar)) = q)l&(v(gl(al, Tty ar) y "t gN(v)(an R ar)))
= PE,w/(pl(gl(al y T ar)) y "ty ¢1(gN(v)(al y "ty ar)))

......................................................

¢m(g1(a1; Tty d,)) y Ty ¢m(gN(u)(a1, Tty a,))
= PE,;,v Fflgl(xln-xr) <b11 '”blr ) y T F§1gN(,,)(x1~~xr) (bu "'blr )\i
|

..................

bmx"'bmr bml"'bmr

..................................................................

b b,

m

FEmg1(x1~-'xr)(bll "'b1r ) y "y FimgN(w(xl---xr)(bn "'blr )
bml"'bmr

On the other hand, using the identity (2.3), we have

FEy,f(xlmxr)(bu, T blr, Tt bmn ey bmr)
= Péy.v F§1g1(x1---xr) (bn "'blr > y Ty FﬁlgN(v)(xl-uxr) (bu "’blr )}
mr

..................

..................
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Hence we have

?ﬂ:(f(al’ R ar)) = F&,,,f(xl-nxr)(bn) R blr’ STty bml) B bmr) .
Therefore it is clear by induction that the identities (2.4) are valid for
every V-polynomial.

Theorem 2.3. Let P(B) be any Py 41{&,, -+, €} -product system over
any dy-algebraic system B. Then

f([bi, R b}n] y "t [b’i, Y b:n])

= ngf(xln-x,«)(b} > "ty b;) y °t° ’Fgmf(xl-nxr)(b% y "t b;)
bvlny"')b;L b'rln)'"7b:n

for every V-polynomial f(x,,--,x,), and for every set of elements
[b‘]’.) Sty b;)n] (P=1 y " 7’) in P(%)-

Proof. Let @, (u=1, ---,m) be mappings from P(B) onto B each
of which is defined by

@by, -+, b, ] — b, for all [b,--,b,]€P(B).

Then it is easy to see that {¢,, ---, ¢,} is a system of P-mappings from
P(B) onto B. Since @u([b1, -+, b 1) =0, it is easily verified by Theorem
2.2 that

@M(f([b}7 T bvln] y " [b;’ Tty b:,,,]))

= FEy,f(xl---xr)(b{y Tty 71') T bgwn Tty brm) .
Hence we have
f([b{y Tt b%»] y Ty [bI7 Tty b:n])
= [o(ALBL, -5 00, =, [BT, ==, B0 ])) 5 -+
o ¢m(f([b%y B b}n] s "t [b; y "y brm]))]

= Fglf(x]...xr) % y "ty b;) s "ty Fsmf(xl---xr)(b% , ,b;)
b}n,...’b;n .b,l,.,--',bl',, .

This completes the proof.

§3. (A,, By)-universality and existence of P-mappings.

Let P be a family P, ,{€, ---,#,} of basic mapping-formulas. And
let Ay, By be systems of composition-identities with respect to V, W
respectively. If, for any free Ay-algebraic system A=F({a,, ---, a,}, Ay)
and for any elements b,, (z=1, -, m;p=1,---,7) of any By-algebraic
system B, there exists a system {¢,,-,®,} of P-mappings from A
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into B such that @u(a,)=0by, (u=1, -, m;p=1,-,7), then we say that
P is (A,, By)-universal. And also, if, for any By-algebraic system B,
the P-product system P(B) over B forms an A,-algebraic system, then
we say that P is a constructor of an A,-algebraic system from a By-
algebaic system, or simply that P is an (A,, By)-constructor.

ReEMARK : The P-product system P(®B), defined by an (A,, By)-
constructor P, over a By-algebraic system B can be considered as a
generalization of the concept of an algebra over a field.

Theorem 3.1. Let P be a family P, &, ---, &} of basic mapping-
Sformulas. And let Ay, By be systems of composition-identities with
respect to V, W respectively. Then, P is (A,, By)-universal if and only
if P is an (Ay, By)-constructor.

Proof of “only if” part. Let f(x,, -+, x)=g(x,, -+, x,) be any com-
position-identity in A,. And let B be any By-algebraic system, and
[b3, -, b%] (=1, -+, s) any elements of P(B). Now suppose that P is
(Ay, By)-universal. Then there exists a system {o,-,®,} of P-
mappings from A=F({a,, -+, a}, Ay) into B such that o¢ua,)=0b]
(p=1, - ,m;o=1,--+,s). Hence it is clear by Theorem 1.1 that there
exists a homomorphism 6 from U into P(B) which satisfies

g(ao-) = [gpx(au') y Tt ¢m(a«r)] = [bi-’ R b:z] (0- =1 y Tt S) .
Hence we have

(K SREE N P L SR 2N )
= fl0(a,), -, 0a,) = 0(f(a,, -, a,)
= 0(g(a,, -+, a)) = gl0(a)), -, O(a,))
= g([b1, -+, bnd, -, L3, -, BL])

Therefore P(B) is an Ay-algebraic system. Hence P is an (Ay, By)-’
constructor.

Proof of “if” part. Let % be any free A,-algebraic system freely
generated by a,, --,a,. And let B be any By-algebraic system, and
by (p=1,--,m;p=1, - ,7) any elements of B. Now, suppose that P
is an (A,, By)-constructor. Then P(B) forms an A,-algebraic system.
Hence there exists a homomorphism 6 from U into P(B) such that
0(a,)=1by, =", b,5p] (p=1,---,7). Hence it is obvious from Theorem 1.1
that there exists a system {@,, -+, ®,} of P-mappings from % into B
such that @u(a,) =bu (u=1, -+ ,m;p=1, -, 7). Therefore P is (Ay, By)-
universal.



162 T. FUJIWARA

Theorem 3.2. Under the same assumptions as in Theorem 3.1, the
necessary and sufficient condition that P is an (Ay, By)-constructor, i.e., an
(Ay, By)-universal family, is that

Fsl;.f(xln-xs)(i:l(xl) ’ E (x )) Fg,,,g(xl xs)(g (x ) )t E](x ) )

( :1; '”7m)

..........................................

Em(xl)) Ty Sm(xs) Sm(xl), . g (x )

for every composition-identity f(x,, -+, x;)=g(x,, -+, X;) in Ay.

3.1)

Proof of necessity. Let f(x,, ---, x,)=g(x,, .-+, x,) be any composition-
identity of A,. And let B be the free By-algebraic system freely
generated by &(x,), -, &(x), -+, (%), -+, E,(x,). Now suppose that
P is an (A,, By)-constructor. Then the P-product system P(B) over
B is an Ay-algebraic system. Hence we have

(3.2) FLE), - E (2], -, [E(x), -+, E(x)])
= g([§1(x1) E (x :I [{: (x ) y Ty Em(xs)]) ’
where [&(x,), -+, &,(x,)] (6=1, ---,s) are elements of P(B). On the
other hand, by Theorem 2.3, we have
f([é (xl E (xl)] [E (x ) tty fm(xs):l)
[Fglf(xl xg (E (xl) y *° E (x ) ) “ Ffmf(xl'--xs)<gl(x1) » T El(xs) >}
3 (xl), - E (x) E(x), -, (2] ],

and

g([gl(xl) y T Em(xl)] y T [El(xs) y Tty Em(xs)])

= {Fglg(xl-uxs)(gl(xl) y T El(xs) > y T FEmg(xl‘--xs)<fl(xl) y 7T El(xs) )]
£ (), -, E(x,) £ (%), -, E(x)) ]

Hence it is clear from (3.2) that
FE:Lf(xr--xs)(él(xl) y "ty El(xs) )ZFEI.Lg(xy--xs) El(xl) y Tt gl(xs) )

..........................................

Em(xl) y "y Em(xs) \gm(xl) y "0 Em(xs)

are true in B. This completes the proof of necessity.

Proof of sufficiency. Let f(x,, ---, x,)=g(x,, -+, ;) be any composi-
tion-identity of A,. And let B be any By-algebraic system, and
[83,---,8%] (=1, ---,s) any elements of P(B). Then it follows from
the condition (3.1) that

FE[Lf(xl"'xs)(b% ETTIN b; ) = Fsp.g(xr--xs)/b% , b;
\b'}rb y Ty bfn/ (
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Hence, by Theorem 2.3, we have

f([b%y Sty brln]’ R [bi, R b’fn])

= Fglf(xl...xs)<b{ T bg) y e Fémf<x1~~~xs><b% e, b‘i)
b}nn"')bfn b'}n;’bfn

= Fﬁlg(xl---xs)<b} y T bi)» R Fﬁmg(xl---xs)<b% y 7T i>
bwln"">bfn b%n»ybfn
= g([b% y Ty b}n] y Ty [bi y "y bfn]) .

Therefore P(B) is an Aj-algebraic system. Hence P is an (Ay, By)-
constructor.

Theorem 3.3. Let P be an (Ay, By)-universal family P,
¢, -, of basic mapping-formulas. And let N be an Ay-algebraic
system F({a,, - ,a,}, Ay, Ry), and B a By-algebraic system. Moreover let
bup (p=1, -, m;p=1,---,7) be elements of B. Then, in order that
there exists a system {p,, - ,®,} of P-mappings from N into B such
that pu(a,)=by, (p=1,-,m;p=1, - ,7), it is necessary and sufficient
that

Fﬁ,;,f(xln-x,») bll » Tt blr = Fﬁ,,,g(xl'--xr) bu » T blr
............... cemeenienen | (=1, o, m)
(3 3) bm1> "'»bmr ’\bml) s Uy
for every relation f(a,, -+ ,a,)=g(a,, -+, a,) in Ry.

Proof. Suppose that there exists a system {¢,,-,®,} of P-
mappings from A into B such that ¢u(a,)=b,, (p=1, -, m;p=1, -, 7).
Then it is obvious by Theorem 1.1 that the mapping

0:a—[p(a), -, Pala)] (a€)

is a homomorphism from U into the P-product system P(B). Now let
fla,, -+ ,a,)=g(a,, -, a,) be any relation of R,. Then it is, of course,
clear that e(f(au Tt (Z,)):e(g(dl, Tty ar))» i'e',

pulflay, -+, a,) = puglas, -+, a,) (p=1,,m).

Hence it is easy to see from Theorem 2.2 that

F&p,f(xl-nxr) bn y Tty b1r \ = FE”,g(xl«--x,—) bu y T blr
) ............... (,u,:l"..,m).

bml, 0 Uy

...............

bml » T bmr

Conversely, suppose the condition (3.3). Then it follows from
Theorem 2.3 that, for any relation f(a,, -, a,)=g(a,, -+, a,) in Ry,
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f([bu: Ty bml] PIRRR [blr, R bmr])

= [Fflf(xr--x,)(bu y "ty blr ) y "ty Fé‘,,,f(xlu-xr)(bu y " blr )]
bml y "t bmr \bml y T bmr

= [FE13(11-'-xr)(b11 > "ty blr ) y "t Fﬁmg(xr--xr)(bn y Tt blr )]
- bmli"'ybmr \bmly"')bmr

= g([bll, Ty bml] y "7y [b1r7 Sty bmr]) .

Hence it is easy to see by the fundamental theorem for free algebraic
systems'” or directly that there exists a homomorphism from U into
P(B) which is an extension of the mapping

aP—)[bllM'")bmp] (pzly'"rr)'

Hence it is clear by Theorem 1.1 that there exists a system {¢,, ---, @}
of P-mappings from U into B which satisfy @u(@,)=b,, (w=1, -, m;
p=1 , e, r)_

REMARK : The above theorem can be considered as a generalization
of the criterion for the existence of a derivation, and also that of the

11)

criterion for the existence of the extension of a derivation'.

§4. The product of families of basic mapping-formulas.

Let P and Q be families PV.W{EI y ’gm} and QW.U{7717 Tty "]n} of
basic mapping-formulas respectively. The set of the form

ﬂvfﬂ-(v(xl y "ty xN(v)))
= Fn'uPE,,,v(x“ a2V 4] ><"h§x(x1) PR "71‘-{::1(xN<v)) PR ngm(xl) P2 "hgm(xN(v)))

.......................................................................

Fm1” Xm0 ﬂngl(xl) y "% anl(xN(u)) P ﬂngm(xl) P ﬂn{:m(xN(v))

p=1,m, v=1,-,n, veV j

can be considered as a family of basic mapping-formulas of 7.,
(u=1, - ,m;v=1,-+ n). Such a family of basic mapping-formulas is
called a product of P by @, and denoted by QP. If {p, - ,p,} is a
system of P-mappings from a ¢,-algebraic system 2 into a ¢y-algebraic
system B, and if {y,---,4,} is a system of @-mappings from B into
a ¢y-algebraic system €, then {Yno,, -, V@, =, V.21, -, Vup,,} 1is
clearly a system of QP-mappings from U into € Moreover the QP-

10) Cf. [2], [6; §3], [7; Chapter II, §17 and [8; §4].
11) Cf. [9; P. 12].
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product system over a ¢ -algebraic system € is, of course, denoted by

QP(©).

Theorem 4.1. Let P and Q be families P, ,{€,, --- €.} and Qu u
{m, ==+, .} of basic mapping-formulas respectively. If € is a ¢y-algebraic
system, then the QP-product system QP(C) is isomorphic to P(Q(E)).

Proof. The mapping

0 : [Cll)  y Crms 5 Cyy c‘nm] [[Cll, Tty cnl] y " [clm; R cﬂm]]

is clearly a one to one mapping from QP(€) onto P(Q(®)). Hereafter
we shall prove that the mapping 6 is an isomorphism. Let » be any
composition of V, and let

(40 1) [c]Zer""ciVm) "”c'ranl"“)c:me] (N: 17 '“,N(v))
be any elements of QP(€). If we put
[Cny 5 Cumy 5 Oy 0 'nm]
= U([Ch, e ;c%m’ 0y nl’ e, C wm]
"t [Civl(v)’ : Civw(b”)) : Cal';/l(”)> o N(v)]) )

then, by the definition of the QP-product system QP((S), we have

_ 1 e N ., 1 .. N ()
(4- 2) Cyp = F"’y"ﬁ,;,v('xll "'x1.N(v)> C11, »C11 ) » Cimy » Cim )
Koyt X, 1 N N
m a7 \.Cnl y *** s Cn o s "y Coumy * cmr(nv)

On the other hand, by the mapping 6, the elements (4.1) correspond to
[[C]].Vl) Tty sz'nvl] y 0y [c]z.VMy Tty cvym]] (N:]- y "y N(l))). If we put

[[ 1y *°° nl]a [ 1my " ybmn]]
= v([[cll, o Cnl] "ty [Clm; Tty caltm]] )
[[CN(U)’ . Cﬁ,l(”)] L, [civ"(‘m’ , C (v)]]
then, by the definition of the P-product system P(Q(€)), we have

[blll-, Tty bmb] = PE,;v([c%I y "t cvlnl:l [CN(v), Tty C'rl':’l(v)])

[C{m, Tt c”l"m] » T [ci\f"(‘v)’ Tt crsz:v)] .

Moreover, by Theorem 2.3, we have

(4.3) b = F”VP.L:,WC‘H ...xlmv)>(ch, LT N, cf,,‘,’”)

...............................................

1

Xm1*** Xm N (v) Cm1
n

v ., N (9)
»Cn1 5 "y Comy » Com

Now it follows from (4.2) and (4.3) that c¢,,=b,,. Hence [c,, -
Cims *** » Cn1y *°* ’Cnm] COI'I'eSpOl’ldS to [[bln R bm] y °°° ,[ my " nm]] bY
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the mapping 6. Therefore ¢ is an isomorphism, completing the proof.
The following theorem can be easily obtained from Theorems 3.1

and 4.1.

Theorem 4.2. If P is an (Ay,, By)-universal family of basic mapping-
Sformulas, and if Q is a (By, Cy)-universal family of basic mapping-
Sformulas, then the product QP is an (A, Cy)-universal family of basic
mapping-formulas. ’

§ 5. Families of homomorphism type.

Let P be a family P, ,{&, - ,&,} of basic mapping-formulas. If
P is (A,, A,)-universal, then we simply say that P is A,-universal. If
P is Ay-universal for every system A, of composition-identities with
respect to V, then we say that P is absolutely universal. If each basic
mapping-formula of P is of the form

E}L(v(xu Tty xN(v))) = v(éﬂ-(xl) y "t g}lo(xN(v))) )

then P is called a family of homomorphism type. Now if P is a family
of homomorphism type, then it is obvious from Theorem 3.2 that P is
absolutely universal. In this section, we shall prove the following :

Theorem 5.1. Let V be a set of finitary compositions which contains
at least one non-unary composition. And let P be a family P, &, --- &}
of basic mapping-formulas. If P is absolutely universal, then P is a family
of homomorphism type.

To prove this theorem, we shall first show the following facts (I),
(II) and (III) with respect to free algebraic systems.

(I). Let V be a set of finitary compositions. And let L, be the
system of all the composition-identities f(x,, -+, x)=g(x,, ---, x;) with
respect to V such that every x, which appears in the expression of
f(x,, -, %;) also appears in that of g(x,, ---, x,), and conversely. More-
over, let {a,, --,a,} be any non-empty set, and £ the set of all finite
non-empty subsets of {a,, ---,a,}. We now define the compositions v€ V
in & as follows:

v({am, ...} RRTTIN {aPN(v)’ .}) — {a"1’ } \J oo U{a"N(u)’ } ,

where v denotes the set-sum. Then it is clear that ¥ forms an L-
algebraic system generated by {a,}, -, {¢,}. Now let us denote by
hla,,, - ,a,] the V-word h(a,, ---,a,) such that every a, (p=p,, -, p,)
appears in the expression of %(a,, ---,a,), and that any a, (p==p,, -*-, p;)
does not appear in that of X(a,, ---,a,). Then it is easy to see that the

mapping
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H:h[am’ ) aPt] g {aw T aPt}

is an isomorphism from F({a,, ---,a,}, L) onto & Hence we have that
a V-word f(a,, -+, a,) is Ly-congruent to @, if and only if any @, (p==1)
does not appear in the expression of f(a,, -+, a,).

(II). For any V-polynomial f(x,,---,x,), we denote by Mg(x,) the
number M such that x, appears in the expression of f(x,, -, x,) for M
times, but not for M+1 times. Now, let M, be the system of all the
composition-identities f(x,, ---, x,)=g(x,, ---, ¥;) with respect to V such
that M(x,)=My(x,) for all o=1, ---,s. Moreover, let {a,, ---,a,} be any
finite non-empty set, and let MM be the set of all such symbols
(@i, .-+, a’r) that p, are non-negative integers which satisfy

DA+ b, = L+E(N@,)—1)+ - +k,(N(v,) —1)

for some non-negative integers k, and some compositions v, € V. We
now define the compositions v € V in M as follows:

z)((6111’117 T aflr) y "t (all,N(")ly Tty afNCv)r)) = (a{l, T afr) ’

where p,=p,,+ - +Pnwp. Then it is clear that M forms an M,-algebraic

system with a generator system {(a}, -, ad,, @i, @p.1, ", @7);
p=1,.--,7}. Moreover it is easily verified that the mapping

0 :f(al, Tty ar) - (aqdf(al); Tty alrl{fca,))
is an isomorphism from F({a,,--,a,}, My) onto M. A V-word in
F\{a,, -+, a,}, ¢,) which corresponds to (a?, -+, a®r) by this isomorphism
0 is simply called a V-word corresponding to (af, -+, a?7).

(III). Let V, be a non-empty set of unary compositions, and V, a
non-empty set of non-unary compositions, and we define a set V of
compositions as the set-sum of V, and V,. Moreover, let N, be the
system consisting of all the composition-identities of the form
w(@(x,, -, Xnw)) =%, (W€ V,;v€V,) and all the composition-identities of
the form w(x)=wv(x) (4, v€ V,). Now we shall show that, for any v€V,,
and for any s=>1, wx) is not Ny-congruent to x. Let 3N be a free

s
¢y,-algebraic system F({a,, @, a, '}, ¢y,). Moreover, we define the
compositions # €V, in N as follows: If fis a V,-word of order 0 (we
assume that f=a;), then we define u(f)=u(a,)=a,;,,. If fisa V,-word of
order k=1, then we define u(f)=f,, where f=v(f,, =, fnw) WEV,).
Then it is clear that N forms an N,-algebaic system generated by the
single element @,. Hence there exists a homomorphism 6 from a free
Ny-algebraic system F({x}, N,) generated by only one element x onto
N which is an extension of the mapping ¥ —a, Therefore we have that
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0v - v(x)) = a,74=a, = 0(x)
‘—Yu—/
s
for any v€ V, and for any s=1. Hence we have that »---»(x) is not
Ny-congruent to x for any s=1. s
Proof of Theorem 5.1. Let
(5° 1) Eﬂ:(v(xl, Tty xN(v)))
= PE,,,v(§1(x1) y Tt El(xN(v))» o ’Em(xl) y "7y fm(wa)))

be any basic mapping-formula of the family P. First we shall prove
that any &,(xy) (AM==p; N=1, -+, N(v)) does not appear in the expression
of the V-polynomial

(5' 2) P&,Lv(§1(x1) y "t E1(xN(1J)) y "t Em(xl) y T ém(xN(v)))

in the formula (5.1). Since P is, of course, L,-universal (L, was defined
in (I)), and since the composition-identity o»(x, ---, x)=2x is contained in
L, it is easily obtained by Theorem 3.2 that

PE",fl(El(x) y "ty El(x) y "y Em(x) y Ty Em(x)) L:VE}L(x) .

Moreover, it is clear from (I) that any &,(x) (AM==u) does not appear in
the expression of the V-polynomial Pe,,(£,(x), -+, §(x), -+, E,(x), -+, ,.(%))
in the above identity. Hence any &,(xy) (A==u; N=1, ---, N(v)) does not
appear in the expression of the V-polynomial (5.2). Hence we simply
denote the formula (5.1) by

(5~ 3) Elb(v(xlv RRY xN(v))) = Pguv(gpo(xl) y "0y Ey-(xN(v))) .
Next we shall show that
(5' 4) P&'p.v(fﬂ-(xl) y " gﬂ:(xN(v)))

in (5.3) is a V-polynomial corresponding to (£.(x,), -+, u(Xne)!) in the
sense of (II). Assume that the V-polynomial (5.4) corresponds to
(Eu(x,)?1, -+ Eu(XNey)?w). We shall first discuss in the case where v is

non-unary. Since the composition-identity
v(xn Koy Xy ooty xN(v)) = v(xw X1y Xgy o ’xN(v))

is contained in M, of (II), and since P is, of course, My-universal, it is
clear from Theorem 3.2 that

P&,,,v({:ﬂ-(xl) ) Ep:(xz) ) Sﬂ(xa) y " ag}l-(xN(v)))
W PrlBulx), Ealx), Eix), o Euline) -
Hence it is obtained from (II) that
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Eulx)?r, Eu(x,)72, Eu(x)?3, -, Eu(X )P B )
= (El"(xl)pzy E}h(xz)ply Eﬂ-(xe,)ps) oy E}L(xN(v))ﬁ‘Nc")) .

Hence we have that p,=p,, and similarly p,=p,=-=pnw>. Since the
composition-identity

v(v(xn Xzttt xN(v)), Xay Xgy **t xN(v))
= v(xn v(xz» ety XN xz)’ Xgy =" xN(v))

is clearly contained in M, the identity

Eu(x)?E, ) = (Eulx)?, )

is similarly obtained as above. Hence we have that pi=p,, ie., p,=0
or p,=1. Since there is no element of the form (ai, ---, a?) in M, the
V-polynomial (5.4) corresponds to (Eu.(x,)!, -, Eu(¥nw)). In the case
where v is unary, the identity (£.(x,)?1)=(£.(x,)") is similarly obtained as
above, since v(x,)=2x, is contained in M,. Hence Pg“,,(f,b(xl)) corresponds
to (£u(x,)).

In the following, we shall prove that the V-polynomial (5.4) is of
the form v(€u(x,), -+, Eu(Xnew))-

(i). The case where the composition » is non-unary. For any V-
polynomial f(«,, ---, x,), we denote by L[ f(x,,,x,)] the element x,,
which appears in the leftmost position of the arrangement of x, in the
expression of f(x,, ---, x,), when we omit the parentheses and the com-
positions appearing in the expression of f(x,, :--,x,). First we shall
show that

(5' 5) L[PEF,v(fM(xl) y "ty E}h(xN(v)))] = EI“(xl) .

Let A, be the system of all the composition-identities each of which
is of the form w(x,, -+, Xnw)=4, (@€ V). Then it is clear that

(F({ux), -, El(Xne)}, Ay) consists of N(v) elements
IE[J.(xl) y "t EM(xN(v)) .

Since P is, of course, A,-universal, and since the composition-identity
v(x,, -+, X)) =%, is contained in A, the identity

(5.6)

Ay
ng.v(gll:(xl) y "t Elb(xN(z:))) — Eﬂ(xl)
is obtained by Theorem 3.2. Now suppose that

L[Pi’p.v(éﬂ.(xl) y "ty E’h(xN(v)))] = E}L(xN)
for some N (2<N<N(@)). Then the identity

Pe(Eul) s+ Euline) = Eulxn)
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is derived from A,. Hence we have

E () 2 Euny) .

This contradicts the fact (5.6). Hence we have the identity (5.5).

Next we shall show that the composition v appears in the expres-
sion of the V-polynomial (5.4). Let B, be the system consisting of all
the composition-identities of the form wu(x,, -, Xyw)=%, (U €V ;u=0v)
and the composition-identity o(x,, .-+, Xy») =%,. Then it is clear that
F({ux,), -, Elxne)}, By) consists of N(v) elements
E!-'v(xl) y Tt EM(xN(v)) .
Since P is B,-universal, and since the composition-identity v(x,, -**, Zyc)
=x, is contained in By, the identity

B7
PefEulx) 5 -+, EulBne)) = Eul,)

is obtained by Theorem 3.2. Now suppose that the composition v does
not appear in the expression of the V-polynomial (5.4). Then the

identity

(5.7) {

Pep(ul() ) -, Eulne) = Eu(2)

is derived from (5.5). Hence we have

En) e

This contradicts the fact (5.7). Hence the composition » appears in the

expression of the V-polynomial (5. 4).
Thus, we can easily obtain that

(5.8) Py, o(E(x,) 5 EulXne))

= Uy U DUy U5, Eu( X)) 5 o uN(v)l"'uN(z))sNw)EM(xft(N(v))))
for some permutation = of 1, -+, N(»), and for some (empty or non-
empty) set of unary compositions #, and wu,, in V, because the V-
polynomial (5.4) corresponds to (§.(x,)", -+, Eu(Xyw)'), and the composi-
tion v appears in the expression of the V-polynomial (5.4). Now let C,,

be a system consisting of only one composition-identity o(%,, -** ,%nc»)
=xy (LEN<N(@)). Since P is, of course, C,-universal, the identity

Cr
Uy UsUpge 'uNsNEII-(x'It(N)) = EM(xN)

is obtained by (5.8) and Theorem 3.2. Hence it is easily verified that
s=0, sy=0 and #(N)=N. Therefore we have

prv(gu(xl) y "t EM(xN(v))) = v(éﬂ'(xl) y "t f}b(xN(v))) .
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(ii). The case where the composition » is unary. Since Py, (£.(x))
is a V-polynomial corresponding to (£.(x)'), we have that

Py, (6u(x)) = uy---u (%)
for some (empty or non-empty) set of unary compositions #, in V. Now
let D, be the system consisting of ouly one composition-identity v(x)=x.
Since P is Dj-universal, the identity
D
w1 E(%) = Eu(x)

is obtained by Theorem 3.2. Hence it is easily verified that ,=u,=---
=u,=v. Therefore we have that

(5.9 PE,J,v(Ey-(x)) =0 vf',‘(x)
———
S

for some non-negative integer s. Since P is, of course, N,-universal
(N, was defined in (III)), and since the composition-identity
v(u(x,, -+, Xnaw)) =%, (# :non-unary composition) is contained in N, it is
easily obtained by (i), (5.9) and Theorem 3.2 that

V- vu(f,,(xl), Ty Eﬂ-(xN(u))) lg SMa(x1) .
S

If s=0, then we have
WELL), ) EulTneo)) L Eular,) .

It follows from the fact (III) that this identity is not true. Hence s>1,
and hence

O e vg}l-(xo 12’ ‘fy-(xl) .
s—1

Therefore it is clear from (III) that s—1z1, and therefore s=1. Hence
we have

Pﬁp.v(gy.(x)) = v(‘f,,,(x)) .
This completes the proof.

(Received September 17, 1959)
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