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On Null-Equivalent Knots

To Professor Zyoiti SUETUNA on his 60th birthday

By Hidetaka TERASAKA

Let Cj, C2, •••, Cn be a finite number of, not only one another but
also as a whole, non linking trivial knots ( = circles). Connect a pair of
small arcs ry1 and γ2 of Q and C2, γ/ and γ3 of C2 and C3, etc. respectively
by narrow stripes of disjoint bands Bί9 B2, •••, Bn_ly so that the join of
the circles Cly C2, ••• , Cn and the boundaries of the bands B19 B2, •••, #„_!
minus the arcs 7^ 72, 7/, 73, •••, 7^-1, 7W forms a knot /c. Then # is the
so-called null equivalent knot according to R. H. Fox and J. W. Milnor.
Our symmetric (and skew symmetric) union of a knot [4] happens to
be a special kind of null-equivalent knots [3]. It is the main result of
Fox-Milnor [2] that the Alexander polynomial Δκ(#) of K is of the form
Δκ(x) = ±xrnf(χ) f(x~1), where f(ί)= ±1. The purpose of the present paper
is to show conversely that given a polynomial f(x) with /(1)=±1 there
can be found a null equivalent knot connecting two circles C1 and C2

whose Alexander polynomial is of the form ±xmf(x)f(x~l).
After some preliminary remarks (§ 1) the Alexander polynomial of

a null equivalent knot is established (§2) and an alternative proof of
the Fox-Milnor theorem is given (§3). The converse of the Fox-Milnor
theorem (§4) is then almost immediate. §1 and the first half of §2
contain nothing new, and especially what concerns the band it is in
another form fully developed in G. Torres [6].

§ 1. Preliminary remarks.

Since we are concerned principally with the study of Alexander
polynomials of knots, every knot is considered as represented by its
regular projection on a fixed plane—the ground plane—, and the knot
group K is represented in the Wirtinger fashion [5].

Let K be a knot obtained by connecting two given knots A and C
by a band B. Moving along the band B in the direction from A to C,
which we call the positive direction of the band, let its boundary on the
right be named the positive side of the band, and the boundary on the
left, the negative side.

Now consider a location of the knot where a part of the band B
crosses over another, thus making a quadruplet of crossing points.
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1) Let c and c be the generating elements of the knot group K
of K corresponding to the boundary of the band B which crosses over,
c being that corresponding to the positive side, c to the negative side,

of the band. Likewise let a, a, d, d, b and b be respectively the generating
elements of K corresponding to the boundary of the band which crosses
below. Then we have either the relations

c d c'1 a'1 = 1,

ι.i) ~c~ίb ~c d~l = 1>
c d'1 c-1 a = 1 ,

c~^ b~^ c d ~ — 1
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Fig. 1. Fig. 2.

according as the index of crossing is +1 or — 1, i.e., according as the
band below crosses the band above from the positive side of the latter
or from the negative side. Note that the product of group elements is
written from left to right. We shall henceforth call a relation of the
form (1.1) a Wirtinger relation.

d and d can therefore be eliminated from the generating elements
of K, and we have from the first two relations a new relation

(1.2)

which, if we set

(1.3)

becomes

cc 1 = C,

(1.4) CbC^a'1 = 1.

From (1.1)' we have similarly

(1.4)' C-lbCa~l = 1.
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It will be convenient to write the relations (1. 4) and (1.4)' in one
form

(1.5) σbC-'a-1 = 1,

where 8=1 or =—1 according as the index of crossing is positive or
negative.

2) From the last two equations of (1.1) we have likewise

Cb-lC~lά = 1.

Combining this with (1.4) we have, if we set

aa~l = A, ftft'1 = B,

the relation

(1.6) CBC^A'1 = 1.

Since the elements A = aa~l, B=bb~1 and C=cc~1 correspond each
to a closed path whose linking number with K is equal to zero, they are
made commutative when computing the Alexander polynomial, and we
have then from (1.6) the relation

(1.7) A = B.

3) Let

(1. 8) cac-lb~l = 1

be a Wirtinger relation of a knot. To obtain the Alexander equation1^
corresponding to (1. 8), we proceed as follows:

Take any one of the Wirtinger generators of K fixed and let it be
denoted by x. Then

(1. 9) ax"1 = a* , bx~l = ft*, ex'1 = c*

are elements of K which should be considered as commutative one
another. Putting these in (1. 8) we have

Λt Λ tf-V*-1-*-^*-1 = 1

or

(1.10) c*.χa*χ-l.χc*-lχ-l b*~l = 1,

where c*, xa*x~1, xc*~*x~l and ft*'1 commute one another. Making use
of the abridged notation ([1], p. 291), (1.10) can be written in additional
form

1) The equation of the diagram according to Alexander ([1], p. 278).
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-*<:*-&* = 0.

Dropping * in this equation we have finally the Alexander equation

(1.11) (l-x)c + xa-b = 0.

If (1. 8) is of the form

c~lacb~l = 1

we obtain likewise

(x— l)c + a— xb = 0.

Letting 8=1 or =—1 we have thus

(1. 12) To the Wir linger relation

c ac- b-1 - 1
corresponds the Alexander equation

(l-x*)c + x*a-b = 0.

Finally, since

A = aά'1 = a*x (ά*xΓl = a*^*"1 ,

we have

(1. 13) When an element of K such as A appears in a Wirtinger re-
lation, it should be transferred as it is to the corresponding
Alexander equation.

It should be remarked however that for example

(1. 14) To the Wirtinger relation

cAd^B'1 = 1

corresponds the Alexander equation

c-d+xA-B - 0,

and not

c-xd+xA-B = 0,

as would be expected from (1. 11), for cAd~1B~1 = 0 becomes by the above
changing of generators

c*xΆ x'ld*'^B'1 = 0,

whence

c* + xA-d*-B = 0.



Null-Equivalent Knots 99

§ 2. Alexander polynomials of null equivalent knots.

After the foregoing preliminary remarks, we are now going to give
a detailed exposition of computing the Alexander polynomials of null
equivalent knots. Let us begin our discussion as Fox and Milnor did
Π2], with a knot K of the following type.

Let A be a knot represented on the ground plane by the usual

regular projection, and let C be a trivial knot represented similarly by
a circle on the ground plane, and which is disjoint from A. Connect a
small arc a of A to a small arc 7 of C by a band B represented on the
ground plane by a pair of parellel curves, thus forming together with
A and C minus a and 7 a knot K of a regular projection on the ground
plane.

Let alt0, aίtl9 •-•, α1>M(1), #2)0, ••• , aNιttCN^ be the elements of the knot
group corresponding to the arcs of A with the same letter in this order,
beginning at the end point of the arc a, and where ai>nCD and ai+ίtQ are
the consecutive arcs crossed over by the band B, and let cl9c2,-~,cM

be those of C beginning at the end point of 7. Starting from the arc
A move along the band B in the positive direction as far as one is first
crossed over either by A or by C, crossing under several parts of B on

the way. Let this part of the band B be denoted by Bl and let &1 § 0,

Fig. 3.
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^ι,o> ^ι,ι> ^ι,ι> ••• > £ι,κι:» ^ι,/cι) be the generating elements of K corresponding
to the boundary of J3lβ Move further along the band as far as one

crosses next under A or C, denote this part of B by J52, and let

#2,o> #2,o> ••• > δ2,/(2), δ2)/(2) be the corresponding elements of K9 etc. Let

£„,/<:*;» #n,/cn:> be the generating elements of K corresponding to the last

part Bn of the band B that reaches C.

1) According to the formula (1. 7) we can set first of all

(2. 1) bM = δ .A-Λ - - = δf./αfel) = 5, .

Fig. 4.

2) Next consider the place where the band crosses under an arc
aitj of A or an arc cf of C, which we indiscriminatively denote by ξ.
Then we have the relations

T

where δt. indicates the index of crossing
of ξ and B. These relations yield at
once

ξ^B^ξ-^BT1 = 1

t
Bi

Λ^

/O Q\ £δ D /(Z. 6) ς '#,•+!*

if we put Fig- 5.

Calculating the corresponding Alexander equation by the procedure
of § 1, 3) (cf. (1.14)), we have immediately

(2.5) x*iBi+l-Bi = 0.

If we consider instead of the band its positive side alone, we have
from the first relation of (2. 2) the corresponding Alexander equation

(2.6)
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3) Next consider the place where the part of the band B crosses
over A or C or the positive side of JB, thus giving rise to pairs of arcs
βf.tfo, flf+ι.0 or ciyci+1 or bjti9bjti+ί9 which
we indiscriminatively denote again by £, ,
ξi+1. Then we have the Wirtinger relation
(cf. (1. 5))

(2. 7) B*£i+lB *iξt * = 1,

whence the corresponding Alexander equa-
tion

(2. 8) £i(l-x)B+ξi+1-ξi = 0 .

\

Fig. 6.

4) Let the part B{ of the band B be crossed over in succession by
the parts B^,B*&, ••• , B*}tf» of B, where each (k) denotes one of the
suffixes 1, 2, 3, ••• , l(i) and ηf denotes the index of crossing. Then we
have first by (2. 7)

= 1

or

Similarly

Multiplying side by side

As the corresponding Alexander equation we obtain by means of the
procedure of § 1, 3)

whence, arranging with respect to J5X, ••• ,

(2. 9) i7ί.ι(Λ

= 0.

Subtracting (2. 6) from this, we have

(2. 10) W*

- 0.
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5) Finally the following relations should be added. Since

CM =

 n>Kn) ,

applying the same procedure already known (§1, 3)), we obtain the
following Alexander equations :

(2.11)

(2.12)

(2.13)

(2.14)

= 0,

= 0.

Since we can take as the generators of the knot group K the
elements B19 B29 •••, Bny b1>0, •••, 01>0, ••• , c19 •••, CM we can write down
immediately the Alexander matrix of K from the Alexander equations
above obtained. But to do this the following synopsis of the Alexander
equation will be of use.

(2. 5)' means for example

which is the same as (2. 5).

(2. 5)'

(2. 9)'

(2.10)'

(2. 8)'

-1

W*- 1) m.n( χ ]\ ]_ -1

B^ ξ, ξi+1

ε{(x~l) l -1
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-1

1

bn.lίn)

-1

CM

1

-1 1

0». KB)

1

c,

-1

(2.11)'

(2.14)'

(2.12)'

(2.13)'

Then the Alexander matrix [1] of K runs as follows.

To make the explanation easy the rows of the matrix are divided
into groups as indicated by the letters A', B = Bf & B", C = C' & C" & C'"
and E = E' & E". The groups of the columns will also be named as
β-column and ^-columns, etc. The meaning of the denomination Minor
[^-columns, J3-rows] will then be self-explanatory.

Λ'-rows correspond to the formula (2. 5)' of the synopsis : band contra
band.

β'-rows correspond to (2.10)' and B"-row corresponds to (2. 9)' with
i = n. The part B = Bf & B" concerns with the positive sides of the band
B as crossed over by A or by C. The term x*ί — 1 appears either in the
^-columns or in the c-columns, according as the ίth part Bf ends at A

or at C. In Minor [c-columns, β'-rows] we inserted x*ct — 1 for later

use, where δί = δf if B ends at C and Sj = 0 , that is, Λ$-i=0 if B ends
at A

C-rows and E-rows represent the relations between the band B and
the arcs of A or C as these are crossed over respectively by B. Especially,
C correspond to the formula (2.8)' with ξf=a/ιi9 £,• = £*,,•, C" to (2. II)7

and (2.12)'. C/7/-rows correspond to the Alexander equations derived
from the ordinary Wirtinger relations between the arcs of A, and hence
closely related to the Alexander matrix of the knot A. E' correspond
again to the formula (2.8/ with ?f.=c, and £ f=£C i ί, and E" to (2.14)7

and (2.13)'.

The Alexander polynomial \(x) of our knot « is obtained as follows :
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If the old J l i0 of the band B introduced at the beginning of §2
is taken as x, the new δ1(0, which is by our convention (cf. §1, 3))
nothing other than bfι0 = b1>0x~1

ί is equal to unity. And since one of the
Alexander equations is as well known superfluous, let it be one of the
rows of C'", say the row designated by *. Then the Alexander poly-
nomial of K is the determinant obtained from the above matrix by
deleting the column under δ1>0 and the row * .

To compute this determinant Δκ(#) first add all c-columns to the
column under 6Λ,/c»>

Next add all rows of E to the lowermost row. Then all elements
of the latter becomes 0 except those under B's. Transferring this new
row in between the n — 1th and the nih rows, we have a square matrix
of order n on the top left side of the determinant, while in the adjoining
matrix of n rows on the top of the determinant stands zeros alone.

-1 0
-1

-1

/<*) =
-Λ»*

1

-1

Thus the determinant Δκ(χ) is split into the product of determinants
g(x), f(x) and the rest h(x), where h(x) is nothing other than the Alexander
polynomial ΔA(x) of the knot A up to a factor ±x™ [2]. To see this
latter, add the columns under #1>0, #2ι0, •••, aNι0 respectively to the columns
under aN>n^y a1>n^, •••, aN_ltn^N_^. Since the adding together of ai+lι0

and ai>nan means the identification of these arcs, or which is the same,
the elimination of the band B that crosses over A, Minor [columns under

#1,1 > •" 9 βN.nwy C'"-rows] becomes the Alexander matrix of A. But
since the row * in C"'-rows is already deleted in the determinant Δκ(jt)
and since the column under aN>nw can also be dropped in computing
the determinant, because there stands only one unity on the row *#,
the minor under consideration yields the Alexander polynomial ΔA(x) of
Ay and our assertion follows immediately.



106 H. TERASAKA

§3. Proof that g(x'l) = ±f(x)

We are now going to prove that g(x~l) is equal to f(x) up to a
factor ±1 [2].

Since Δ^x) is as we have seen the product of f(x), g(x) and ΔA(χ)
up to a factor ±xm, the elements of Minor [S-columns, 5'-rows] in no
way contribute to the evaluation of Aκ(#). This shows geometrically
that the interchanging of over crossing and under crossing of the band
B at any quadruplet of crossing in no way affects the value of \(x).
Therefore we can rearrange if necessary the order of the crossings of
the band as they appear over or under C such that they occur successively
in the positive sense, all the while the value of Δκ(χ) remaining unaltered.
If further there take place two successive crossings over C or two
successive crossings under C, these two crossings can be substituted by

Fig. 7.

no crossing whatever, so that in the final stage of rearrangement a
crossing over C is followed by the crossing under C and vice versa,
when one moves along the band B in the positive sense. If the crossings
of the band on C are arranged as above, the crossings and the projection
of the knot itself will be called irreducible. In the following we shall
consider only the irreducible projection.

There are two cases to be considered. f B^\
First case: positive crossing. B{ reaches / ^_^ ̂

C from outside and Bi+1 goes out of it by
crossing over it. In this case we have

(3.1)

= 1,
Fig. 8.

Second case : negative crossing. B£ en-
ters inside C by crossing over it and Bi+1

goes out of it. Then

(3.2) j = δ,= -1,

,.<= -I- Fig. 9.
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It should be noticed that since the crossings are assumed to be
irreducible, the positive and the negative crossing (and vice versa) can
not occur for consecutive B{ and Bi+l. Either the positive crossings alone
or the negative crossings alone occur successively on C, separated by
some crossings on A, when one moves along the band B in the positive
direction. To this corresponds in the matrix f(x) the phenomenon that on
the last column of the matrix there appear in groups successions of x — 1
alone or successions of x~l — 1 alone, separated only by a zero or zeros.

Our proof that g(x~l)= ±f(x) will best be illustrated by the follow-
ing example (see Fig. 7):

/(*)=
1

x

x2

Xs

x2

X

\

X

— x x—ί

I -x 0 Λr-1

1 -x x-l

1 -ΛΓ1 0

1 — ΛΓ"1 ΛΓ"1 — 1 \

0 1 -ΛΓ-1 ΛΓ1-! J

1 -ΛΓ 0

1 -1

s4=ι, SI=

1

x

x2

x3

X2

X

1

X

— X

I -x

I -x

1 -ΛΓ1

0

1-ΛΓ-1

1-ΛΓ-1

1-ΛΓ

i -
1 -x

1 -1

= - *[(! - ΛT^XΛ;+x2 + x3) - (1 - ΛΓ'XΛ;2+x) -

p,

«,..=!
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Multiply the rows of f(x) downward by 1, x, x2, x\ x2, x, 1 and x

respectively and add together to the lowermost row. Then all elements

of this row but the right corner become zeros and we have

/O O\ ft A-\ <vl / Λ" 1 \(Λ I <v _ I v^\ I / v~^ 1 \ί V^ I *y\ 'V I
\O \J j J \ Λ>) — ^ L \ -*-/\-*- ι~ *™ " i ^ / I " X ' ' -*-/\ /*' ι ~ *™ / J *

In the determinant g'(x~l), which is the transposed of g ̂ ""1), the

groups of (l — x~l) are lower by one as compared with the corresponding
groups of (x—1) in f(x), and we obtain by just the same procedure as

the precedent

(3.4)

f(x) =

and it is evidently

The general proof will be done quite similarly:

Divide the matrix of f(x) into groups of rows and first let P be a
"maximal" group of rows such that the elements on the last column

are all x—1 except for the lowermost row where 0 stands, and such

that the row of f(x) directly over P contains no x — 1. If Pf is the

corresponding group of rows of the determinant of g'(x~*\ which is the

transposed to g(x~1)y then, since each row of 1 — x'1 is by (3.1) lower
than that of x—1 by one row, the elements on the last column are all

1 — x~l except for the upper corner where 0 stands.

xp

yP+1

1 -x
1 -x

1 -x

1 -xs

x-1 \
*-l

ΛT-1

0 J

1 -x
1 -x

1 -*

1 -Xs

0 \
i-*-1

1 ~-l

1-*- J

P'
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1 -x'1
1 _,

x'1-!
x'1-!

1 -x'

Q

1 -*-'
1 -x'1

^ £-1

-d-
-d-

-d1

*-')
£-l\

JC"1)

If the rows of P and P' are multiplied downward successively by

P+1 r> •"v

p+ί~l

where / is the number of rows of P and Px, and added together to the
lowermost row of P and P' respectively, then we have at the right
corners of P and P'

(x-l)(xp+ ••

and

respectively, which are evidently equal to each other.
Secondly, let Q be a maximal group of rows with 1 — x'1 on the

last column and let Q' be the corresponding group of rows of the
transposed determinant g'(x~l) of g(x~l). Then, since this time each row
of JΓ1 — 1 is on the same level as that of — (1 — x~l)y if we multiply the
rows of Q and Q' downward by

and add together to the lowermost row respectively, then we have at
the right corners of Q and Q'

and

which are clearly equal.
Since the determinant f(x) and the transposed determinant g^x'1) of

g(x~λ) can be divided into the groups of rows of the above types and those
having zero elements on the last column, if each row of them is multi-
plied suitably by xp and added together to the lowermost row respectively
such that all elements but the last of this row become 0, then the
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elements on the right corners of the determinants become identical for
both f(x) and the transposed g'(x~l), and hence

f(x) = g'(χ-λ) = g(x~λ) ,

which was to be proved, and hence the Fox-Milnor's Theorem (see [2]).

§ 4. The converse of the Fox-Milnor theorem.

We are now in a position to prove the following theorem :

Theorem. If f(x) is a polynomial in x with /(1)=±1, then there is
a null equivalent knot connecting two non-linking circles by a band, with
the Alexander polynomial of the form ±xmf(x) f(x~l).

Proof. We can assume without loss of generality that /(!)=— 1.
Then there is a polynomial F(x) such that

Splitting F(x) into the difference of two polynomials with positive
coefficients, we have

(4. 1) f(x) = (jr-

+ •- +anx
n)

where 0, ̂  0 , bf ̂  0 .

Before entering into the proper proof, let us again illustrate the idea
of the proof by an example. Given

f(x) = (Λr

construct the following determinant.

1

x

1

x

I

x

X2

X3

X2

X

1

— x x—l

1 -ΛΓ1 0

I -x 0 x-l

I -x'1 0

1 -x x-\

I -x 0

1 -x'1 ΛΓ1-!

0 1 -ΛΓ1 0

1 -ΛΓ1 0

1 —1
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If we multiply the rows of this determinant downward in succession
by 1, x, 1, x, 1, x, x\ x\ x\ x and 1 and add together to the last row,
we obtain as the value of the determinant — f(x). Now, compared with
the general form of f(x) in § 2, we have the following table of values of
δ, and δj.

δί δ§ Si Si δ§ δ£ δ? δ«

1 0 1 0 1 1 0 - 1

c

-1 -1

δ§ δJ0

0 0

A

Fig. 10.

Fig. 10 represents then the desired knot with Alexander polynomial
f(x} f ( x ~ l ) : The band starting from A first crosses under C(S1 = δc

l = l)y

then crossing over C comes out of C and enter A crossing over it and
comes out of A again crossing under it (δ2=: — 1, δ£ = 0), etc.

Now to the proof of our theorem. If we sacrify the compactness
of the determinant but allow possibly a fantastic bulk, the following
construction may be theoretically simple.

Let us introduce two kinds of matrices, positive blocks and negative
blocks, which look like Bn and B'n below. All empty spaces are occupied
by zeros. A positive block of nth order Bn consists of 2(n-\-l) rows, on
the nth row of the last column standing x—\. If we multiply the rows
downward by 1, xy x2, •••, xn, xn+\ xn, • ••, x in succession and add together
to the lowermost row, then this row obtains the form

the empty spaces being all occupied by zeros. A negative block of nth
order B'n consists of 2n rows and on the nth row of the last column
stands x'1 — 1. If we multiply the rows downward by 1, x, x\ •••, χn,
xn~\ ~ , x and add together to the lowermost row, then we have likewise

1 -1 xn(χ-l-l)
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1
x

x"

x"

X

1 -x 0
1 -x 0 0

1 — X Λ—1

1 -ΛΓ1 0
0 1 -ΛΓ1 0

1 -x~l 0

1
x

x"

X

1 -x 0
1 -x 0 0

1 -x 0
^ χ-1 χ~l

0 1 -ΛΓ1 0

1 -x'1 0

1

Now if /(#) is given in the form (4.1), construct the determinant
D(x) from positive and negative blocks as follows:

The elements on the principal diagonal should be all 1. The top of
D(x) consists of a0 positive blocks of Oth order. Then come al positive
blocks of 1st order, etc., and finally an positive blocks of nth order.
Next come b0 negative blocks of 1st order, etc. and ends with bm negative
blocks of w-f-lth order. Last of all, to make the determinant complete,
two rows of the form

0 - 0 1 -1

0 .- 0 0 1

should be added. If we delete from this determinant the first column
and the last row, we have, as our repeated computations show, the
desired determinant with the value ±xmf(x) f(x~λ).

The construction of the corresponding knot will also be clear from
what we have explained above.

(Received July 15, 1959)
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