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By Sigekatu KURODA

The consistency of the natural-number theory Ί\(N) is proved in
Section B, Part (VIII), and the natural-number theory 7\(N) in a general-
ized sense is defined in § 2, Part (VIII), where 7\(N) denotes the natural-
number-theoretic extension of any arbitrary elementary natural-number
theory, so that the consistency of 7\(N) can be proved by the same
method as that of Ί\(N). Thus, if we have a series of elementary
natural-number theories T0(N)CT£(N)CTo'(N)C — > then we have the
series of consistent natural-number theories TΛNJCTίίNJCTί'ίNJO
By Tj(N) we denote any one of these natural-number theories TX(N),
Tί(N), TΊ'(N), •••. But 7\(N) does not denote representatively a sub-
system of UL which belongs to a formally defined class of subsystems
of UL the notation 7\(N) is a word belonging to the intuitive language.
After fixing some natural-number theory Tin(N) within 7\(N), the
possibility of extending further this T^}(N) within 7\(N) remains always
open. A fixed Ti°(N) has generally various directions of extension within
7\(N), while some extension of Ti?;)(N) may not remain within 7\(N)
(Beendigung) or, more strongly, may become inconsistent^ (Hemmung).

This Part is divided into two Sections A and B. In Section A we
treat addition and in Section B multiplication. In Section A addition is
discussed in detail, while in Section B multiplication is discussed briefly
to such an extent that we can know that the multiplication can be
treated quite in a similar method as in Section A.

The formulas in Section A are numbered as N+& and those in
Section B as N*&, where k is the number of a formula in each Section.

* Continuation of Part (VIII), Nagoya Math. J. 14 (1959), 129-158. Other Parts referred
to in this Part are as follows: Part (II), Hamburger Abh. forthcoming Parts (III) and (IV),
Nagoya Math. J. 13 (1958) Part (VII), ibid. 14 (1959).

1) Analogy is found in the definition of Brouwer's spread (Menge}. See, for instance, A.
Hey ting: Intuitionism, Studies in Logic and Foundations of Mathematics, Amsterdam (1956),
pp. 32-37, or L. E. J. Brouwer: Zur Begrundung der intuitionistischen Mathematik I. Math.
Ann. 93 (1925), pp. 244-5.
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The deductions in this Part are not performed on the basis of Peano's
axiom system but directly on the basis of the defining formula of N.

We shall give a sketch of Section A. This Section is divided into
the following seven articles :

§ 1 Definition of Addition,
§ 2 Properties of L(c, σ ),
§ 3 Preliminaries for Addition,
§4 Commutativity and Associativity of Addition,
§5 Regularity of Addition,
§ 6 Domain and Range of Addition,
§ 7 Characterization of Addition.

The definition of UL-constant Add (Addition) in § 1 is as follows.
First, we introduce the symbols ](xuσ) and L(zσ) for abbreviation by the
formulas (x' = {x} )

J(χyσ) = m

](xyσ).

The symbols ](xuσ) and L(zσ) are not symbols of UL. We define then
the UL-constant L by the defining formula

Un
Vw.weL= 3/.L(w/)

The constant L is used only as set for induction in the proof of

N+4 NCL, (or

This formula means that for any natural number c there is a mapping
/ such that the image 0 by / is c and that if the image of x by / is y
then the image of xf by / is /. Therefore, it is reasonable to define
the UL-constant Add by

Mui u

Bfxyz. u =

Namely, Add is the class of all the ordered triple <abc) such that there
exists a mapping / (i.e. a variable / with /eUn) with the properties
<0δ>€/, <#;y>e/-K#y>e/ for all x and y, and <#<:>£/. It is shown
in § 5 and § 6 that in a certain natural-number theory 7\(N) <#&£> £ Add
means a + b = c in the "usual sense", provided that a and #, consequently
c, are natural numbers.

Throughout this Part (IX), the constant Add is used only as concepts
not as sets, namely in such a way that Add can be eliminated from
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any proof in this Part. From § 4 on, we use for simplicity the notation
a + b = c instead of <<zfc>£Add. But a + b = c stands exclusively for the
abbreviation of <#fc>GAdd, so that aj

rb = c does not mean Add'(aby = c.
After extending the natural-number theory so as to include Add^N x N'<0δ>
and other recursive functions a x b, ab, etc. as sets we can simplify the
proofs of some assertions in this Part (IX). The object of this Part is,
however, to show that the deductions of the fundamental part of the
natural-number theory can be performed within the natural-number
theory 7\(N).

The formula N+4 mentioned above is a fundamental formula in
deducing the properties of Add. In order to prove N+4, we need as sets,
besides the set L for induction defined above, the identical mapping ι
and the dependent variable κσ which are defined respectively by

\Ju.u G L ΞΞΞ 3x.u =

The other dependent variables used as sets in the proofs of N+l — N+4
in § 1 are only some elementary sets generated by 0.

In order to extend TX(N)2) consistently to a natural-number theory
in which the formulas N+l — N+4 become theorems, let, first, Tό(N)/T0(N)
be the extension of T0(N) obtained by adjoining ι and the elementary
sets generated by V, 0, N and ι to T0(N) as sets. As in T0(N), the
negative constituent [NN] associated with the defining formula of N is
not allowed to use in To(N). In order to prove the consistency of T£(N),
we use the intuitive knowledge Γ defined, as follows, by extending the
intuitive knowledge I3) concerning the constants of T0(N). Namely the
knowledge Γ consists of the facts :

( i ) V, 0, N and ι are all different
( ii ) V, 0, N and ι are different from any elementary constant

(iii) the criteria of the intuitive truth and falsehood of m € / for an
elementary constant / and any constant m of T£(N), and of m = l for
elementary constants m and / of Tό(N) are determined in the usual
manner on the basis of ( i ) and (ii) above

(iv) N consists only of 0, {0}, {{0}}, •••
( v ) m G L is true, exactly if m is intuitively of the from <//j> where

/ and /! are intuitively equal constants.

2) For the definitions T0(AO and T^ΛO, see Part (VIII), §3 and §8 respectively.
3) For the definition of I, see Part (VIII), pp. 130-131.
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Using this knowledge I', the consistency proof of Tό(N) proceeds

similarly to that of T0(N) given in detail in §§5-7, Part (VIII).
Namely, the proof constituents we have to consider for the newly

adjoined constant t are:

[Ά*]

ON*]

where 5 is the eigen variable of [/N*]. We, first, add the following

procedures 6*4 and 6*5 to 6*1 — 6*3 given in § 5, Part (VIII), of assigning

constants to eigen variables. Namely,
6*4 If E is [/N*], and if m is not of the form </O where / and ̂

are intuitively equal constants, we assign any constant to the eigen

variable 5 of ON*].
6*5 If E is ON*], and if m is of the form <7O where / and /x are

intuitively equal constants, we assign / (or /x) to the eigen variable 5

of ON*].
Next, we supplement suitably (i)-(iv) in 6*3, §5, Part (VIII), by

taking into consideration the possibility that m and n in the same place

may be ι.

After supplementing the procedures of assigning constants to eigen

variables in this way, the consistency of Tό(N) is proved just in the

same way as in §§ 6, 7, Part (VIII), again by supplementing c* and d*

in §6 suitably. Since, thus, T£(N) is an elementary natural-number

theory, the natural-number-theoretic extension Ti(N)/To(N) is consistent

by Theorem 2, § 2, Part (VIII).
By Theorem 3, § 2, Part (VIII), a formula contradicting the intuitive

knowledge used in the consistency proof of T£(N) is T((N)-unprovable.
For instance, ι e ι is T£(N)-unprovable, while the problem, whether ι £ ι
is Tί(N)-provable or not, remains open, unless we find a Tί(N)-proof of

ι<£ i or a Tί(N)-unprovability proof for ι £ ι.

Let, second, TJ'(N)/TJ(N) be the extension of TJ(N) obtained by

adjoining as sets the dependent variable κσ with an independent variable

σ and other dependent variables, necessary to make the species of sets
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of Tό'(N) closed with respect to substitutions4^ For the latter purpose,
we have to adjoin, for instance, κl9 κV9 #KI, κκσ, etc., and the elementary
sets generated by the dependent variables of TS(N) and those thus
adjoined. Because of the above definitions of the sets of Tό'(N), it is
easily seen that the species of all constant sets of To'(N) consists of the
sets recursively defined as follows :

( i ) V, 0, N and ι are constant sets of Tό'(N).

(ii) If mlί'"ymk are constant sets of To'(N), then {mly ~>mk} is
a constant set of TJ'(N).

(iii) If / is a constant set of T"(N), then κt is a constant set of
To'(N). (Recursive definition finished.)

The intuitive knowledge I" concerning the constant sets of T"(N)
consists of Γ and of the intuitive knowledge concerning the constants
κlt The latter is recursively defined as follows.

( i ) /GO and ACN are 0.

(ii) Denoting κσ by κ(σ-), put *0(V) = *(V), ^+ι(V)-^w(V)) (w = 0,1, •••)
and tfo(0 = /cW» *Vt-i(0 = /ctoi(0) (n = Q, 1, •••)• Then, m £>ew(V) is true, exactly
if m is of the form <g# n+l:>>, and m£ιcn(ι) is true, exactly if m is of
the form <&&(W+1))>, where g and k are any constant sets of TJ'(N) and
#"+1>= {{...{£}...}} (n + 1 pairs of brackets).

(iii) 0, V, N, i, «0(V), #ι(V), ••• , κQ(ι), K^ί), "- are different each other.

(iv) If / is an elementary constant of Tό'(N), then κt is 0 or an
elementary constant which, by using the defining formula of κσ9 can be
determined by a finite number of verifications. (Recrusive definition of
Γ finished)

Thus we see by the knowledge I" that the species of constant sets
of TJ'(N) consists of V, 0, N, *, κn(V), and κn(t) (« = 0,1, —) and of the
elementary constants generated by these constants. By using the intuitive
knowledge I" concerning the constant sets of Tό'(N), we shall prove the
consistency of Tόx(N). The proof constituents we have to consider for
the newly adjoined set κσ is as follows :

4) In the deductions of this Part, κσ is used only with <r as an independent variable (see
the proof of N+4). Therefore, if we wish to prove the consistency of the formulas deduced
in this Part, we have only to adjoin κσ with σ as independent variable and a constant κm with
any arbitray constant m, for instance (m=) 0, to the species of sets of To(JV). The system,
say Tj(N), is a subsystem of Tox(N), so that the consistency proof of Tj(N) is simpler than
that of To(N). We shall prove, however, the consistency of To(N) not for the practical reason
but in order to show the method of proving the consistency of a subsystem of UL which has
the closure property with respect to substitution of variables. See also the last paragraph
(p. 42) of this Part.
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m£κσ Bxy:m = (xyyΛ.3z.y=z' Λ<Λr0>eσ

O,A*] ~m
. 3z.y=z> Λ <ΛΓZ> e σ

[*.N*]
sφt'

where r, s, and t are the eigen variables of |jeσN*].
Assuming the m and σ in |XN*] are constant sets of To'(N), we

adjoin to the previous procedures b*l-b*5 the following procedures b#6
and b#7 of assigning constants to eigen variables ry s, and t of [/cσN*].

b*6 If meκσ does not hold, we assign any constant sets of Tό'(N)
to ry s, and t.

b*7 If m£κσ holds, then m is of the form <£/*'> with constants g
and h (h'={h}). We assign g to r, h' to s, and h to /. (Since <g7z>£σ-
holds by the assumption, the three formulas carried by IXN*] become
all false.)

We must also supplement the procedure in b*3, §5, Part (VIII), so
as to assign constants to eigen variables of [ = A] (see §3, Part (VIII))
when at least one of m and n in [ = A] is Λ, /cn(V), or κn(t). There is
no difficulty to decide this procedure appropriately.

After supplementing thus the procedures of assigning constants to
eigen variables, the consistency of Tor(N) is proved5) just in the same
way as in §§ 6, 7, Part (VIII), by finding an intuitive string in an assumed
To^NJ-proof of a contradiction. Since in this way Tox(N) is proved to be
an elementary natural-number theory, the natural-number-theoretic ex-
tension TftNJ/ΊYίN) is consistent by Theorem 2, §2, Part (VIII).

Now, not only the deductions of the formulas N+l — N+4 in §1 but
also all the deductions in §§2-5 are performed within the consistent
natural-number theory Tίx(N), so that the proved formulas N+l — N+29
are all Tί^NJ-theorems. In fact, the constants Un and Add in these
deductions are only used as ' 'concepts"'0 so that these two constants are
removable from the proofs of the formulas N+l — N+29, and all the

5) Let 2 be the species of sets of To(N) and 2o the species of constant sets, defined
above, of To(N). Then T (=To(N)) is an elementary extension of TSO. The consistency
proof, briefly sketched above, is, strictly speaking, the consistency proof of T20. Since TS is
an elementary extension of T^0 (=To(N)), the consistency proof of To(N) follows from
Theorem 4, § 2, Part (VIII).

6) See Part (X), forthcoming elsewhere.
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other dependent variables, other than the sets for induction, belong to
the species of sets of Tί'(N).

The formulas N+30—N+33 proved in §6 are also theorems of T"(N).
Herein, it is to be remarked that the dependent variables Un, N x V ,
NxN, Add | \NxV, DAdd, and WAddr-NxN, occurring in these formulas,
can be looked upon as concepts65.

The only set used in §7, other than the set P for induction in the
proof of N+34, is the set rbισ in the proof of N+35. Adding τb>σ to the
species of sets of To'(N) and taking the closure with respect to the
substitution of variables, we obtain an elementary natural-number theory
To^ίNJ/To^N), of which the consistency is proved in a similar way as
before. Thus, the formulas N+34—N+36 in §7 are theorems of the
consistent natural-number-theoretic extension T/

1

//(N)/Tί)

//(N).

The way of defining of, and deducing formulas concerning, multi-
plication is explained in Section B.

Thus, the method and extent of formulating consistently the natural-
number theory within the weakest natural-number theory 7\(N) are shown
in this Part (IX). It is left for further continuation of our investigation
to formulate the consistent extention T2(N)/T1(N) in which the primitive
recursive functions and the image of a natural number by these functions
are added as sets and in which the sets for induction are defined by
definiens which contain these sets.

REMARKS ON THE DEDUCTIONS IN SECTION A

1. The use of the premise [I] of the extensionality is throughout this
Part (IX) ordinary7\ No indication is given about the place of use of [I].

2. The premises of the assertions and of the proofs are omitted,
since they are easily known by the proofs given.

3. The cut formulas indicated as N#& are proved in Part (VII). The
other cut formulas used are proved in Part (III).

4. The formulas, in the froofs of which there is no Spf8) (super-
fluous formula) and the cut formulas are the formulas with strongly
irreducible95 proofs, are strongly irreducible. All the proofs in this Part
are irreducible.

5. Even when the weakly irreducible formula95 #N#1 is used in a
proof P in the leftmost part of a mathematical induction [NN], the

7) The definition is in Part (IV), § 4.
8) The definition is in Part (II), § 12.
9) The definition is in Part (II), § 20.
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proof P is irreducible, since the superfluous formulas in the proof of
*N*1 are effectively used in P concerning the mathematical induction.

6. In order to keep the degree of irreducibility of proofs as strong
as possible, particular attention is required in determining whether the
range of a variable be left universal or be restricted to the totality N of
natural numbers. E.g. the element variable u of the set P for induction
in the proof of N+ll is restricted to N, while the bound variable x in
the defining formula of the same P is left universal. See also the defining
formula of P in the proof of N+22. Bound variables and free variables
occurring in the formulas to be proved are sometimes left universal and
sometimes restricted to N.

7. If a mathematical induction is applied with a set for induction
in the definiens of which occurs N, then the mathematiclal induction is
called impredicative otherwise predicative. General definition of the
predicative and impredicative inferences will be defined in Part (X).

8. See Part (IV) for further details of the conventions and usages
in deductions.

Section A Addition

§ 1 Definition of Addition

N+l σ e Un-»tfσ € Un

N+l

Mxyz.

S=t

3 Sφtf'

5 t~\^V

(1) —

Cut N*3
(6)

- 7. a =

(7) (2,3,5,
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N+2 L(0, ι)

N+2

<00><ΞίΛV:ry. ](x,y,

<00>6* - Mxy. ](x,y,t
,*~\ tr.g )

Cut N*3

r=s r'Φs'
(1) (2)

N+3

N+3

. <Oα>€σ ΛV:ry. J(^,j, σ)
. ](x,y,κσ)

. J(Λτ,.y,

(2)

7 57 = ί7/ Cut N*3 7
(3)-

7J(r, ί,

s=t' s'φt"
(5) (7)

(7)
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By using L as set for induction, we now prove

Un
N+4 cGN-»3/. L(c, /) [or

N+4

ceL

CIO

M
OGL Vj;. jyeL-»ye

(*) (1)

. /6UnAL(0,/) - s£L
- s'eL

L(0,ί)
N+2 ^ _ /-a/. /eUnΛL(5,/)

<<7)2 3/. /6UnΛL(s',/)

". σ eUnΛL(5,

3

4 7L(5, o )

«σ£Un 5 L(5X, *,)) Cut N+3
(3)

, σ)
) (5)

§ 2 Properties of L(c, σ )

N+5 ^GNAL(0, σ)-XΛΛ>Gσ

Define the set P for induction by

N+5

7L(0,
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OeP

<00>Sσ

5 V

6 <SX,

(4)

(5)

N+6 L(c, <7)A#GN-»3#. <ΛΛΓ> Go-

Define the set P for induction by

N+6

(1)

4

OeP

(6)

(8)

N+7

Define the set P for induction by

N+7

C9 σ) 3

(2)
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OeP - s£P
s'eP

3x. <OV>6σ

(7) s Bχm O'V>e<r (D-

CsT
(6) (8) 10 <(^/////)>Gσ ^»-> ^J (5)-

(7)-

N+8 σ GUnAL(c, σ

N+8

2

5 <^>Gσ- Cut N+6

, σ)
(2) (3) (r)

(2)

CD-

r^^σ e yφr' Cut N*3
(7)

' = r' bφr
(8) (5,6, = )

N+9

Define the set P for induction by

N+9

, σ)
4

(3) —

is used here partly)
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(4)

7V#: Q£χΛ\f\
(S) ^

OGP s£P
c*> ^ e p

CMC)

OGN - Vx
(*)

/'Vxyz.

(7) ( 2 , 9 , = )

(***)

X7.

Spf

(**)

9

10
(8)-

Vr ^ςx

" Λ/m \V '

(9)

Cut u
12 ί6N Cut N+7

. σ€UnΛL(c, σ

L(c,σ )
(1) (3) (9) (11) (r)

X7.

Cut N+8
(12,13,=)

Cut

(3) (9) (11,13,=) (14)
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N+10 σ€UnAL(c, σ

Define the set P for induction by

N+10

2 7X(c,σ) 3 7L(c, r)
4 tf^N 5 <#δ>^σ- 6 <<zδ>eτ

(3)

(2)

9 <O£>^GΓ (2 is used here partly)
(4)

OGP

OfENΛVx

06N - Vx <0*>€σ-KO*>€τ

10

(9) (7,11,=)

Spf

&> Gσ <αδ> ̂  T
(5) (6)
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11

12

(10)

r'GN - V*. <r'*Xcr-Kr'*Xτ
(11) (S)

Cut N*2 ~ r s j e r
14 <rx5>Gτ Cut

<r<GUn
(1) (2) (11) (13)

(12)

σ Cut N+8 16
(8)-

σ <r/>eτ <rΌ£r
(1) (2) (11) (13,15,=) (16) (16) (14,15,=)

N+ll

Define the set P for induction by

N+ll

(2,3)

7 <O&Xcr s (Qb'y^r 12 is used \
9 ~/"Vxy. <#jyχτχjι/yχτ \here partly/

(r)[P](4)

OeP r£P a£P
(*} rr e P

c##)
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(HO

OGN - MX.
*N*1 (s'8)

10

<Os'>Gr

G T <0s> G σ
(7) (10) (8,11,=)

(**#)

Spf

(5)

11

12

(10)

r'GN - V*.
(11) U)

<rV>Gτ Cut N+7

L(&,σ) rGN <r75>Gσ -73Λ:. s=xf
(1) (2) (11) (13) ( C )

is 5φf Cut N+8

(1) (2) (11) (13,15,=) (12)-
17

(16) (9)-

(15,17,=) (14)
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§ 3 Preliminaries for Addition

N+12 βGN-KOββ>eAdd
N+12

<0<zα>eAdd

2 3/χyz. <Oae>=<*^>A/SUnAL(;y,/)A<>2>€/ Cut N+4

7. a 6 N-»3/. /eUnΛL(α,/)

(2)-

(1) ^"'_

3

4

?> σ) s
(3) (4) ,Λ V__

Spf
(5)

N+13

N+13

<«Oβ>eAdd Cut N+4

. /€UnΛL(0,/)

06N - 73/ /€UnΛL(0,/)

3
~ r~ ~

4 77L(0, σ)

(2)

σGUn L(0,σ) s <α«>Gcτ Cut N+5
(3) (4)

L(0,σ) <«α>£σ
(1) (4) (3)

REMARK : Although in the proof of N+13 a cut by a weakly
irreducible formula (§20, Part (II)) *N*1 is used, the proof of N+13 is
irreducible, since the superfluous formulas in the proof of *N*1 are
effectively used in the proofs of the other cut formulas N+4 and N+5.
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N+14

N+14

Cut N+9

6 N

L(6,σ)
(2) (5) (1) (6) (3)

N+15

N+15

2

3 <abd^£Ad<± 4
(2,3)-

5 σ ^Un 6 7L(&, σ) 7 (acy^σ
Spf τ^Un s 7L(&,τ) 9 <#ί/>s£τ Cut N+10

, σ)AL(&,

(5) (6) (8) (1) (7) (3,4,9)

N+16 aeNA<a'£c>GAdd-»3*. c=^

N+16

- Bfxyz.
(σ.r. s. t)

3

4

5 7L(5, σ)

6 Oί>£σ Cut N+7

. c=x'

(4) (5,3, = ) (1) (6,3,=) (2)
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N+17

2 <βδO>j£Add
3 α=0 Cut N*10

N

N
αφO

(1) (3) CD)

4

5 «=(=// Cut N+16

Z- p 6 NΛ<y60> 6 Add^ 3Λr. 0=

(2.5,=)

N*4

N+18

(a'bc'yeAdd

, σ)

(2) (3) (S)_

Spf

N+19

N+19
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(3)

(2)

N*2

, σ )

Cut N+4

. /€UnΛL0',/)

τ€Un Ub',τ) 9
(7) (8)

<αc'>eτ Cut N+ll

(1) (5) (8) (1) (6)

N+20

(2)

σ6Un
(1)

N+20

, σ)

L(b, σ) 7
(5,3,=)

Cut N+8

(4) (5,3,=) (1) (6,3,=) (7)
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N+21 <zGNΛ6GNΛ<α'δc>GAdd-K<z&/c>GAdd

N+21

Cut N+16

(3) (J)>

Cut N+20

6
(3,5,=)

Cut N+19

(2) (6) (4,5,=)

4 Commutativity and Associativity of Addition

N+22 a,

Define the set P for induction by

N
ueP=u£NΛVx\fy. Q(u,x,y)

where Q(#, δ, c)=. a + b = c^b + a = c .

N+22

3 a + bφc
4 b+a=c

N
OeN -

6

ι p+0 = q Cut N+15
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OGN
xτ -, (5) (6) (5,7,=)

*N*1 N+12 Cut N+13

Spf
N

. Q(a,x,y)

a+b=c
(2) (3)

V
N

. Q(r',x,y)

N
xVy. Q(r,x,y)

N
MxMy. Q(r', x,y)

N*2

Q(r', s, t)

9 r' + s=j=ί
Cut N+16 10

r€N
(6)

Cut N+20

r -\-s=p 12
(6) (9 ,11 ,=) ( I J .

(8) (12)

Cut N+19

s+r=p
(8) (6) (13) (10,11,=)
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N+23 a, b,

Define the set P for induction by

N
ueP=u£NΛVbc\fklm. Q(u, b, c, k, /, m)

where Q(#, b, c, k, /, m)=.

N+23

2 Of JNJ 3

4 a + bφk 5 #-f-£φ/ 6 # + /Φm
7 k + c=m

OeP r^P
c*) r'GP

(**>

N
OeN - VbcVklm. Q(0, ft, c, *, /, m)

(.p.V.r.s, ί)

10

12 0 + 5φί 13 r+q = t Cut N+12

Cut N+15

OeN 0+p=r 0+p=p is rφ/> Cut N+14
(10) (14)

s i6 5^N Cut N+12
(8) (9) (11)

I? 0 + sφs Cut N+15
(16)

OGN
(12) (17) (11,13,15,=)
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Spf
N

. Q(0, b, c, k, /, m)

(2) (3) (4) (5) (6)

(**)

N
. rZNΛVbcVklm. Q(r, b, c, k, I, m)

N
. Q(r', b, c, k, ί, m)

N
10 yVbcVklm. Q(r, #, c, k, /, m)

(8)

N
r' € N - MbcMklm. Q(r', 6, c, jfe, /, m)

N*2
11 C?^JN 12

13 ^-[-^^^ 14

Cut N+16 is r/Jrlφm iθ k-\-c=m

(9) (13) (15) (*)

( C )

17

Cut N+18 IB

s+c=t Cut N+20
(16,17,18.=)

(9) (13,17,=) (15,18,=)
21

(10)

#GN cGN r+b = s bjrc=l r + l=t
(11) (12) (20) (14) (21) (19)
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N+24 a, i

This is proved by using cuts by N+14, N+22 and N+23.
From N+23 and N+24 follows

N+25 a,

§5 Regularity of Addition

N+26 a, b,

Define the set P for induction by
N

M6PΞΞweNΛV.r);Vz. Q(w, x, y, z)

where Q(α, b, c, m)^a+b=

N+26

OeP r£P
(*> r'6p

N
OeN - VΛ V^. Q(0, x, y, z)

(.r.s, f )

9

10 0 + 5φί Cut N+12

12

13 0 + sφs Cut N+15

OeN Q + r=t Q + r=r Q + s=t
(9) (12) (10) (13) / i . p,

(11.=)

(***)

Spf ^^N
N

^ Q(ay Xy yy z)

cGN ajt-b = m a-\-c=m
(2) (3) (4) (5) (6)
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(**)

N
-7. reNΛVxyVz. Q(r,x,y,z)

N
r'eNΛ VxyVz. Q(r', x, y, z)

N
9 X \ f x y \ f z . Q(r,x,y,z)

(7)

N
r'eN - VxyVz. Q(r',x,y,z)

(8) (s.t.p)

10 5 12 r + 5φ^ 14 5=/

11 ί j£N 13 r' + t^p Cut N+16

(12)

is ^Φ^7 Cut N+20

r +s=q
(12,15,=) (13,15,=)

(9)-

rΛ-s=q r+t=q sφt
(16) (17) (14)

N+27 a,b,ceNΛb + a=mλc + a = m-*b = c (From N+22 and N+26.)

N+28 ^,6eNAα + δ-δ->α-0 (From N+12 and N+27.)

N+29 ^,έGNAδ + ̂ -δ->α-:0 (From N+13 and N+26.)

§6 Domain and Range of Addition

N+30 A d d h N x V G U n

N+30

s=t
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Spf
f ϋ j ί N x V

(ct, δ)

4
5 0£N Cut N+15

(5) (2,4.=) (3,4,=) (1)

REMARK: The Spf-formula w^NxV and the same formula directly
under it are both derivatives of the defining formula of Add|\NxV and
the lower w^NxV is used effectively in the proof, so that the proof of
N+30 is irreducible. The specialized definition of NxV is used under
the formula ii jίNxV. The analytically provable formula «flδχ>
is used at the bottom of the two middle strings of the proof.

N+31 a, b <G N->3x <βbxy e Add

Define the set P for induction by

N+31

OeP - s£P
s'eP

3x.
(3)

(2)

N+12

e <s'W>eAdd Cut N+18

7. <sW>eAdd-Ks'&OsAdd

(5) (6)
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N+32 NxNCDAdd

N+32

3*.

2
3

4 56N Cut N+31

seN - 73 .̂
(3) (4) (ί)

5
(1)

(5,2,=)

N+33 WAdd^ NXNCN

N+33

NχN

3

4

5 ά^N Cut N+14

(4) (5) (2,3,=)
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§7 Characterization of Addition

N+34 <0£δ> 6 σ A Mxy. <xby> € <7-X>'&/ > € σ .

Define the set P for induction by

where

N+34

2

3 β£ JN 4

(4)-

( T , C 6 , & , C )

6

7 7L(&, r)
8

(7)

(? is used here partly)

OeP

. K(0, ΛΓ)

OeN - VΛ:. K(0, x)

K(0, r)

10
11

(6)

<Or>Gr
(10) (9) (1,11,=)

. ύreNΛV*. K(β, Λ)

Spf

, c)

(8) C5)
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(**)

. K(r,x)
r'eNΛV*. K(r', x)

11

12 7V*. K(r, x)
(10)

(11)

N*2

MX. K(r', x)

Kir7,

Cut N+7

7- τeUnAL(6,τ)AreNA<r'sXτ-»3jt. 5=

(6) (Ί) (11) (13)

( 2 )

(12)

(16)

Cut N+8

7".

reUn
(6) (7)

r6N
(11) (13,15,=)

N+35 σ G Un A<0 W> 6 σ-

Define the set T^T^) by u£τb=3xy. u =

N+35

4 (abcy^cr 5 <β

4' I5' ->

(17)
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(#)
(r.s.ί)

S=t

(7) (8) (6)

(##)

(2) (r,ί)

7
(3)

<rW>€o
(6)

N+36

From N+34 and N+35.

N
N+37

N+37

N
2

tt;6Add|\N2
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(Ho

Cr.c)

5
6
7

(7)

/"3xy. r=<Λr
(of, δ)

9
10

(5) (2)

12
(10) (3)-

Cut N+34

σ- Λ € N <βδc> 6 Add
(12) (13) (9) (5,8,6,=) (5,8,11,=)

(**)

5

6

7
(7)

Spf

9
(4)

10
(5)" ' (2) (7)

(9)

12 7V^. <Λ62f>Gσ-KΛ/^>€σ Cut N+35

(12) (5,8,6,=) (5.8,10,=)
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Section B Multiplication

In order to define the constant Mlt (multiplication), we introduce,
as in the case of addition, the abbreviations :

N
ΛV#yV£. K(xyzuσ),

and the sets v, λσ, and M by the defining formulas:

N
u £ λ,σ====lxy. & — <jry>A30

Un
u€M=ueNΛ'3f. M(u,f),

of which the last set M is used as set for induction in the proof of Nχ5.
We prove first N*l, #N><2, Nχ3, and N><4 as lemmas for N*5.

Nχl

Nχl

(r.t)

i s=t

sφO

(1)

*Nχ2 M(0, v)

N
<00>6κ - VxyVz.

Cr. ί . ί )

0-0 *Spf

( r'S)2 s+Qφt

3

4 t = Q Cut N+15

s+Q=t 5+0-0
(1) (2) (1,3.=) (4)

Cut N+13
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Nχ3 <reUn-»λσ<EUn

Nχ3

Vxyz.

3

Spf

8 #φ£ Cut N+15
(4) (6)

s r+a=t sφt
(3) (5) (7,8,=) (2)

N x 4 « 6 NΛM(α, σ)-»M(α', λσ)

Nχ4

N
V
N

N

(2)

N
32.

VxyVz. K(xyza'\σ)

OeN <00>€o- 0 + 0=0
*N*1 (3) Cut N+12, *N*1
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N
yBz. <r^>GσAr +z=s

N

10
11 r+pφs Cut N+31

;. p + a=x

(1) <«>
-̂ ρ+a=x

12
(8)

(9,1,12) (He) (He*)

Cut N+14

(5) (9) (10) (12) (13)

(**> Cut N+24

r'+p=s'
(5) (9) (1) (11) (12) (7)

N*2 N+18

N+22
Un

Nχ5 βeN->3/. M(β,/) (or a6N-»αeM)

Nχ5

Un
a/. M(β,/)

(r)CM]

OeM
2 r'sM

Un __™u^_ Spf β^
OeN - 3/. M(0,/) s ^rfj^ Un

Un - 7 a/ M(«,/)
M(0, v)

NX! *Nχ2

4
5 7M(r, σ)
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C2>-

Un
r'eN - ay

(3) W J

N*2
(4) (3,5)

Nχ3 Nχ4

Now we define the constant Mlt by

The formula N><5 i.e. NCM is the fundamental formula in deducing the
properties of Mlt, just in the same way as the formula N+4 is so in
Section A concerning Add.

First, we deduce the properties of M(c, σ), corresponding to the
deduction of the properties of L(c, σ) in § 2, Section A. For example,
the formula

is proved by using the set P for induction defined by

Next, the deductions of fundamental properties of Mlt are performed
in a similar way as in §§3-6, Section A. In these deductions some
formulas proved in Section A are used as cut formulas.

For the characterization of Mlt, i.e. for proving the formula

N

N

N x N ,

we need again the same set rb >σ used in the proof of N+35, Section A.
In order to make simpler the consistency proof of these deductions,

we have to abondon the closure property with respect to substitutions
of variables in restricting the substitution of variables to the extent
which is required in these deductions. Such a restriction is categorically
necessary for further consistent formulation of a developed stage of
mathematics in order to avoid contradictions.
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Nagoya University
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