On Algebras of Left Cyclic Representation Type

By Tensho YoshiI

§1. Let A be an associative algebra (of finite dimension) with a unit, N its radical and let $\sum_{i=1}^{n} \sum_{j=1}^{f(i)} A e_{i j}$ be the direct decomposition of A into directly indecomposable components, where $A e_{i j} \cong A e_{i 1}=A e_{i}$. If every indecomposable A-left module is homomorphic to one of $A e_{i}$, then we define such an algebra A to be of left cyclic representation type.

Now it is well-known that, if every indecomposable A-left module is homomorphic to one of $A e_{\lambda}$ and every indecomposable A-right module is homomorphic to one of $e_{\mu} A, A$ is generalized uniserial ${ }^{1}$.

In this paper we shall study the structure of an algebra of left cyclic representation type. The main result is as follows:

An algebra A is of left cyclic representation type if and only if the following conditions are satisfied:
(1) Each $e_{i} A$ has only one composition series.
(2) Each $N e_{j}$ is the direct sum of at most two cyclic left ideals, homomorphic to $A e_{\nu}$, each of which has only one composition series.
§2. In this section we suppose that $N^{2}=0$ and show some lemmas which are necessary for the proof of our main theorem.

Lemma 1. If there exists at least one e such that $e N=v_{1} A \oplus v_{2} A, A$ is not of left cyclic representation type.

The proof of this lemma is obtained from the well-known result.
Next suppose that $e^{\prime} N e=\bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{1} \oplus \bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{2} \oplus \bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{3}=u_{1} \bar{e} \bar{A} \bar{e}$. Then it is easily shown that $e^{\prime} N e=u_{2} \bar{e} \bar{A} \bar{e}=u_{3} \bar{e} \bar{A} \bar{e}$ and there exist $\xi_{1}, \xi_{2} \in \bar{e} \bar{A} \bar{e}$ such that $u_{1} \xi_{1}=u_{2}, u_{1} \xi_{2}=u_{3}$. Moreover we put $S_{i j}=\left[\eta \mid u_{i} \eta=\eta^{\prime} u_{j}, \eta \in \bar{e} \bar{A} \bar{e}\right.$ and $\left.\eta^{\prime} \in \bar{e}^{\prime} \bar{A} \bar{e}^{\prime}\right]$. Then each $S_{i j}$ is a module and we have

Lemma 2. Suppose that $e^{\prime} N e$ has the above structure. Then $\bar{e} \bar{A} \bar{e}=S_{11}+S_{12}+S_{13}, S_{11}=S_{22}^{(1)}+S_{23}^{(2)}, S_{12}=S_{23}^{(1)}+S_{21}^{(2)}, S_{13}=S_{21}^{(1)}+S_{22}^{(2)}, S_{22}^{(1)}=S_{33}^{(1)}$, $S_{21}^{(1)}=S_{32}^{(1)}, S_{23}^{(1)}=S_{31}^{(1)}, S_{21}^{(2)}=S_{33}^{(2)}, S_{23}^{(2)}=S_{32}^{(2)}$ and $S_{22}^{(2)}=S_{31}^{(2)}$ where $S_{i j}^{(\kappa)}(\kappa=1,2)$ are submodules of $S_{i j}$ such that $S_{i j}=S_{i j}^{(1)}+S_{i j}^{(2)}$.

[^0]Proof. It is clear that $S_{11} \xi_{1}=S_{12}, S_{11} \xi_{2}=S_{13}$ and $\bar{e} \bar{A} \bar{e}=S_{11}+S_{12}+S_{13}$. Hence if we denote the dimension of $S_{i j}$ by $d\left(S_{i j}\right)$ we have $d\left(S_{11}\right)=d\left(S_{12}\right)$ $=d\left(S_{13}\right)=\frac{d(\bar{e} \bar{A} \bar{e})}{3}$. Moreover $S_{\kappa_{i}} \cap S_{\lambda_{i}}=0$ and $S_{i \kappa} \cap S_{i \lambda}=0$ if $\kappa \neq \lambda$. For if $S_{\kappa_{i}} \cap S_{\lambda_{i}} \ni \zeta \neq 0$ we have $u_{\mathrm{k}} \zeta=\zeta^{\prime} u_{i}, u_{\lambda} \zeta=\zeta^{\prime \prime} u_{i}, \zeta^{\prime-1} u_{\kappa} \zeta=\zeta^{\prime \prime-1} u_{\lambda} \zeta$ and $\zeta^{\prime-1} u_{\kappa}$ $=\zeta^{\prime \prime-1} u_{\lambda}$ and this contradicts to the assumption that $\bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{\kappa} \neq \bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{\lambda}$. Hence $S_{22} \cap S_{11} \neq 0$ or $S_{22} \cap S_{13} \neq 0$. Now if we put $S_{22}^{(1)}=S_{22} \cap S_{11}$ and $S_{22}^{(2)}=S_{22} \cap$ S_{13}. Then $S_{22}=S_{22}^{(1)}+S_{22}^{(2)}$. For $S_{22} \cap S_{12}=0$. Next $S_{21} \cap S_{11}=0$ and if we put $S_{13} \cap S_{21}=S_{21}^{(1)}$ and $S_{12} \cap S_{21}=S_{21}^{(2)}$ we have $S_{13}=S_{22}^{(2)}+S_{21}^{(1)}$ and $d\left(S_{21}^{(1)}\right)=d\left(S_{22}^{(1)}\right)$ and $d\left(S_{22}^{(2)}\right)=d\left(S_{21}^{(2)}\right)$. Similarly $S_{12}=S_{21}^{(2)}+S_{23}^{(1)}$. Moreover $S_{11}>S_{22}^{(1)}+S_{23}^{(2)}$. But $d\left(S_{23}^{(2)}\right)=d\left(S_{21}^{(2)}\right)=d\left(S_{22}^{(2)}\right)$. Hence $d\left(S_{22}^{(1)}\right)+d\left(S_{23}^{(2)}\right)=d\left(S_{22}^{(1)}\right)+d\left(S_{22}^{(2)}\right)=\frac{d(\bar{e} \bar{A} \bar{e})}{3}$. Thus $S_{11}=S_{22}^{(1)}+S_{23}^{(2)}$. Next if $S_{33} \cap S_{11} \neq 0$ and $S_{33}^{(1)}=S_{33} \cap S_{11} \subsetneq S_{22}^{(1)}$, we have $S_{33}^{(2)}=S_{12} \cap S_{33} \supsetneq S_{21}^{(2)}$. For $d\left(S_{33}^{(1)}\right) \nsupseteq d\left(S_{22}^{(1)}\right)$ and $d\left(S_{33}^{(2)}\right) \varsubsetneqq d\left(S_{21}^{(2)}\right)$. Thus $S_{33}^{(2)} \cap S_{23}^{(1)} \neq 0$ but this is a contradiction and $S_{33}^{(2)}=S_{22}^{(1)}$. In the same way as above we can prove this lemma.

Next we shall show that if $N e$ is the direct sum of three simple components isomorphic to $\bar{A} \bar{e}^{\prime}$ and if $e^{\prime} N$ is a simple right ideal, then A is not of left cyclic representation type. For this purpose we shall prove

Lemma 3. Suppose that $e^{\prime} N e=\bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{1} \oplus \bar{e}^{\prime} \bar{A} \bar{e}^{\prime} u_{2} \oplus \bar{e}^{\prime} \bar{A} e^{\prime} u_{3}=u_{1} \bar{e} \bar{A} \bar{e}$. Then $\mathfrak{M}=$ Aem $_{1}+$ Aem $_{2}, \quad$ where $\quad u_{1} m_{1} \neq 0, \quad u_{2} m_{1}=0, \quad u_{3} m_{1}=u_{3} m_{2}, \quad n_{2} m_{2} \neq 0$ and $u_{1} m_{2}=0$, is directly indecomposable.

Proof. Suppose that \mathfrak{M} is directly decomposable and $\mathfrak{M}=A e n_{1} \oplus$ Aen n_{2} where $n_{1}=\alpha_{1} m_{1}+\alpha_{2} m_{2}, \quad n_{2}=\beta_{1} m_{1}+\beta_{2} m_{2}, \quad \alpha_{i}, \beta_{j} \in \bar{e} \bar{A} \bar{e}$ and $\bar{\alpha}_{i} \neq 0$, $\bar{\beta}_{j} \neq 0$. If $u_{1} n_{1}=0, u_{1} \alpha_{1} m_{1}+u_{1} \alpha_{2} m_{2}=0$. Hence we can suppose that $\alpha_{1}=\xi_{12}+\eta_{13}+\gamma, \quad \alpha_{2}=\xi_{11}-\eta_{13}+\gamma^{\prime} \quad$ where $\xi_{12} \in S_{12}, \quad \eta_{13} \in S_{13}, \quad \xi_{11} \in S_{11}$ and $\gamma, \gamma^{\prime} \in e N e$. Then we can write $\xi_{12}=\xi_{21}^{(2)}+\xi_{33}^{(1)}, \eta_{13}=\eta_{22}^{(2)}+\eta_{21}^{(1)}, \xi_{11}=\xi_{22}^{(1)}+\xi_{23}^{(2)}$ where $\xi_{i j}^{(k)} \in S_{i j}^{(k)}$. Thus $u_{2} n_{1}=u_{2} \alpha_{1} m_{1}+u_{2} \alpha_{2} m_{2}=\left(u_{2} \xi_{21}^{(2)}+u_{2} \xi_{23}^{(1)}+u_{2} \eta_{22}^{(2)}+\right.$ $\left.u_{2} \eta_{21}^{(1)}\right) m_{1}+\left(u_{2} \eta_{22}^{(2)}+u_{2} \eta_{21}^{(1)}+u_{2} \xi_{22}^{(1)}+u_{2} \xi_{23}^{(2)}\right) m_{2}$ and if $u_{2} n_{1}=0$, we have $\xi_{23}^{(2)}=$ $-\xi_{23}^{(1)}, \xi_{21}^{(2)}=-\eta_{21}^{(1)}$ and $\eta_{22}^{(2)}=-\xi_{22}^{(1)}$. But $S_{23}^{(2)} \cap S_{23}^{(1)}=0$. Hence $u_{2} n_{1} \neq 0$.

Similarly $u_{3} n_{1} \neq 0$. Moreover we can prove that $u_{2} n_{1} \neq u_{3} n_{1}$. Now suppose that $u_{2} n_{1}=u_{3} n_{1}$. First we may suppose that $u_{2} \rho=u_{3}$ where $\rho \in S_{23}^{(1)}$. For if $u_{2} \rho=\bar{\rho} u_{3}$, we can take $u_{3}{ }^{\prime}=\bar{\rho} u_{3}$ in place of u_{3} and it is easily shown that $S_{\kappa \lambda}^{(i)}$ are invariant for $u_{1}, u_{2}, u_{3}{ }^{\prime}$. Then $\left(u_{2} \xi_{21}^{(2)}+u_{2} \xi_{23}^{(1)}+u_{2} \eta_{22}^{(2)}\right.$ $\left.+u_{2} \eta_{21}^{(1)}\right) m_{1}+\left(u_{2} \eta_{22}^{(2)}+u_{2} \eta_{21}^{(1)}+u_{2} \xi_{22}^{(1)}+u_{2} \xi_{23}^{(2)}\right) m_{2}=\left(u_{3} \xi_{33}^{(2)}+u_{3} \xi_{31}^{(1)}+u_{3} \eta_{31}^{(2)}+u_{3} \eta_{32}^{(1)}\right) m_{1}$ $+\left(u_{3} \eta_{31}^{(2)}+u_{3} \eta_{32}^{(1)}+u_{3} \xi_{33}^{(1)}+u_{3} \xi_{32}^{(2)}\right) m_{2}$ where we can put $\xi_{21}^{(2)}=\xi_{33}^{(2)}, \xi_{23}^{(1)}=\xi_{31}^{(1)}$, $\eta_{22}^{(2)}=\eta_{31}^{(2)}, \eta_{21}^{(1)}=\eta_{32}^{(1)}, \eta_{22}^{(2)}=\eta_{31}^{(2)}, \eta_{21}^{(1)}=\eta_{32}^{(1)}, \xi_{22}^{(1)}=\xi_{33}^{(1)}$ and $\xi_{23}^{(2)}=\xi_{32}^{(2)}$. Hence $u_{2} \xi_{21}^{(2)} m_{1}+u_{2} \xi_{23}^{(1)} m_{1}+u_{2} \eta_{21}^{(1)} m_{1}+u_{2} \eta_{22}^{(2)} m_{2}+u_{2} \xi_{22}^{(1)} m_{2}+u_{2} \xi_{23}^{(2)} m_{2}=u_{2} \rho \xi_{33}^{(2)} m_{1}+u_{2} \rho \xi_{31}^{(1)} m_{1}$ $+u_{2} \rho \rho_{31}^{(2)} m_{1}+u_{2} \rho \eta_{32}^{(1)} m_{2}+u_{2} \rho \xi_{33}^{(1)} m_{2}+u_{2} \rho \xi_{32}^{(2)} m_{2}$ and from the independency of $u_{1} m_{1}, u_{2} m_{2}$ and $u_{3} m_{1}=u_{3} m_{2}$ we have $\xi_{21}^{(2)}+\eta_{21}^{(1)}=\rho \xi_{31}^{(1)}+\rho \eta_{31}^{(2)}, \xi_{23}^{(1)}+\xi_{23}^{(2)}=\rho \xi_{33}^{(2)}$ $+\rho \xi_{33}^{(1)}$ and $\eta_{22}^{(2)}+\xi_{22}^{(1)}=\rho \eta_{32}^{(1)}+\rho \xi_{32}^{(2)}$.

Now from the assumption we have $\rho \in S_{23}^{(1)}=S_{12}^{(1)}=S_{31}^{(1)}$. Hence $\rho S_{11}^{(1)}=S_{12}^{(1)}, \rho S_{12}^{(1)}=S_{13}^{(1)}, \rho S_{13}^{(1)}=S_{11}^{(1)}, \rho S_{12}^{(2)}=S_{13}^{(2)}, \rho S_{11}^{(2)}=S_{12}^{(2)}$ and $\rho S_{31}^{(2)}=S_{23}^{(2)}$. Thus we have $\eta_{21}^{(1)}=\rho \xi_{31}^{(1)}, \xi_{21}^{(2)}=\rho \eta_{31}^{(2)}, \xi_{23}^{(1)}=\rho \xi_{33}^{(1)}, \xi_{23}^{(2)}=\rho \xi_{33}^{(2)}, \eta_{22}^{(2)}=\rho \xi_{32}^{(2)}$ and $\xi_{22}^{(1)}=\rho \eta_{32}^{(1)}$. But $\xi_{22}^{(1)}=\xi_{33}^{(1)}, \eta_{32}^{(1)}=\eta_{21}^{(1)}$ and $\xi_{31}^{(1)}=\xi_{23}^{(1)}$. Hence we have $\rho^{3}=e$ ($\rho \neq e$). But if this is true, $e=\frac{e+\rho+\rho^{2}}{3}+\frac{2 e-\rho-\rho^{2}}{3}$ is the decomposition of e into two idempotents orthogonal to each other, where we assume that the characteristic is not 2 and not 3 , and this contradicts to the fact that e is a primitive idempotent. Thus we have $A u_{2} n_{1} \neq A u_{3} n_{1}$. If the characteristic is $3,(e-\rho)^{3}=0$ and $e-\rho \in \bar{e} \bar{A} \bar{e}$. But this is a contradiction. If the characteristic is $2, e+\rho+\rho^{2}$ and $\rho+\rho^{2}$ are idempotents orthogonal to each other and $e=\left(e+\rho+\rho^{2}\right)+\left(\rho+\rho^{2}\right)$.

In the same way as above, if $u_{1} n_{1}=0$, we have $u_{2} n_{2} \neq 0, u_{3} n_{2} \neq 0$ and $A u_{2} n_{2} \neq A u_{3} n_{2}$ and the largest completely reducible A-left submodule of \mathfrak{M} is the direct sum of at least four simple components. But this contradicts to the assumption, since the largest completely reducible A-left submodule of \mathfrak{M} is the direct sum of three simple components. Thus the proof of this lemma is complete.

If $N e$ is the direct sum of at least three simple components (not all isomorphic to each other), it is proved by the same way as above or [III] that A is not of left cyclic representation type.

Lastly we can easily prove
Lemma 4. If $e_{1} \neq e_{2}$ and $N e_{1}$ and $N e_{2}$ contain simple components isomorphic to each other, A is not of left cyclic representation type.

Hence if A is of left cyclic representation type and $N e_{1}$ and $N e_{2}$ contain simple components isomorphic to each other, we have $A e_{1} \cong A e_{2}$.

From the above lemmas we have
Theorem 1. Suppose that $N^{2}=0$. If A is of left cyclic representation type, it satisfies the following conditions:
(1) Every $e_{\lambda} N$ is simple
(2) Every $N e_{\kappa}$ is the direct sum of at most two simple components.
§3. In this section we suppose that $N^{2} \neq 0$. First of all we shall prove the following

Lemma 5. If $N e / N^{2} e=A \bar{u}_{1} \oplus A \bar{u}_{2}$, then there exist v_{1}, v_{2} such that $N e=A v_{1}+A v_{2}$ where $v_{1} \equiv \bar{u}_{1}\left(N^{2}\right)$ and $v_{2} \equiv \bar{u}_{2}\left(N^{2}\right)$.

Proof. From the assumption $N e=A v_{1}+A v_{2}+N^{2} e$ where $v_{1} \equiv \bar{u}_{1}\left(N^{2}\right)$ and $\quad v_{2} \equiv \bar{u}_{2}\left(N^{2}\right)$. Now $N^{2} e=N v_{1}+N v_{2}+N^{3} e$. Hence $N e=A v_{1}+A v_{2}+N^{3} e$. Thus if we continue this process, we have $N e=A v_{1}+A v_{2}$.

Next we suppose that $N e=A u_{1}+A u_{2}$ where $e^{\prime} u_{1}=u_{1}, e^{\prime} u_{2}=u_{2}$. Then we can put $w_{1}=u_{1}$ or $w_{1}=u_{2}$.

Thus we have
Corollary 1. Suppose that $N e / N^{2} e=\bar{A} \bar{u}_{1}+\bar{A} \bar{u}_{2}$ where $\bar{A} \bar{u}_{1} \cong \bar{A} \bar{u}_{2} \cong \bar{A} \bar{e}^{\prime}$, and $e^{\prime} N / e^{\prime} N^{2}$ is simple. Then $N e=A u_{1}+A u_{2}, e^{\prime} N=u_{1} A$ and, if $\eta, \gamma \in \bar{e}^{\prime} \bar{A} \bar{e}^{\prime}$, there exist $\eta^{\prime}, \gamma^{\prime}, \eta^{\prime \prime}, \gamma^{\prime \prime} \in \bar{e} \bar{A} \bar{e}$ such that $\eta u_{1}=u_{1} \eta^{\prime}, \gamma u_{2}=u_{1} \gamma^{\prime}$ or $\eta u_{1}=u_{2} \eta^{\prime \prime}$, $\gamma u_{2}=u_{2} \gamma^{\prime \prime}$.

From the above lemma we have also
Corollary 2. If $N e_{i}=A u_{1}^{(i)}+A u_{2}^{(i)}$, an arbitrary element of N is the sum of $u_{\kappa_{1}}^{\left(j_{1}\right)} \cdots u_{\kappa_{n}}^{\left(j_{n}\right)} \alpha$ where $\alpha \in \bar{e}_{j_{n}} \bar{A} \bar{e}_{j_{n}}$.

Next suppose that $N e=A u_{1}+A u_{2}, e^{\prime} N=u_{1} A=u_{2} A, N e^{\prime}=A v_{1}+A v_{2}$ and $e^{\prime \prime} N=v_{1} A=v_{2} A$. Then $N u_{1}=N e^{\prime} u_{1}=A v_{1} u_{1}+A v_{2} u_{1}=A v_{1} u_{1}+A v_{1} \alpha u_{1}$ $=A v_{1} u_{1}+A v_{1} u_{1} \alpha^{\prime}$. Hence if $v_{1} u_{1}=0$, we have $N u_{1}=0$.

Then we have
Lemma 6. Suppose that $N e_{1}=A u_{1}+A u_{2}$ and $e N=u_{1} A=u_{2} A$. If $e N^{2} e_{2} \not \subset N^{3}$, then A is not left cyclic representation type.

Proof. In order to prove this lemma we have only to construct a directly indecomposable A-left module $\mathfrak{M}=A e_{1} m_{1}+A e_{2} m_{2}$. For this purpose we suppose that $N e_{2}=A v_{1}, N^{2} e_{1}=0$ and $N^{3} e_{2}=0$. Since $e N^{2} e_{2}$ $\not \subset N^{3}$, we have $e_{1} N e_{2} \not \subset N^{2}$. For if $e_{\xi} N e_{2} \not \subset N^{2}(\xi \neq 1), e N^{2} e_{2}=e N e_{1} \cdot e_{\xi} N e_{2}$ $\not \subset N^{3}$. But since $e_{1} e_{\xi}=0$, this is a contradiction.

Now we put $v_{1} m_{2} \neq 0, u_{1} v_{1} m_{2} \neq 0, u_{2} v_{1} m_{2} \neq 0, u_{1} v_{1} m_{2}=u_{1} m_{1}$ and $u_{2} m_{1}=0$. Then we can prove that \mathfrak{M} is directly indecomposable. Namely if \mathfrak{M} is directly decomposable, $\mathfrak{M}=A e n_{1} \oplus A e_{2} n_{2}$ where $n_{2}=m_{2}$. If $u_{1} n_{1}=0$ we have $n_{1}=m_{1}-v_{1} m_{2}$ and then $u_{2} n_{1}=u_{2} v_{1} m_{2} \neq 0$ and $A e_{2} n_{2} \cap A e_{1} n_{1} \neq 0$. This is a contradiction.

From this lemma we obtain
Corollary 3. If $N e_{1}=A u_{1}+A u_{2}$ and $e N=u_{1} A=u_{2} A$ we have $e N^{i} e^{\prime}$ $\subset N^{i^{+1}}$ for each i and for every e^{\prime}.

Next suppose that A is of left cyclic representation type. Then if $N e=A u_{1}+A u_{2}$ and $A e_{i} \sim A u_{i}$, it is proved that $A u_{1} \cap A u_{2}=0$. Namely if $e_{1} \neq e_{2}$, we can prove this fact from Lemma 3 and Corollary 2. Next if $e_{1}=e_{2}$, then there exists α such that $u_{2}=u_{1} \alpha$ where $\alpha \in \bar{e} \bar{A} \bar{e}$. If $A u_{1} \cap A u_{2} \neq 0$ then there exists $w \neq 0$ such that $w=\gamma v_{1} \cdots v_{m} u_{1}=\beta w_{1} \cdots w_{n} u_{2}$ where $\gamma, \beta \in \bar{e}^{\prime} \bar{A} \bar{e}^{\prime}$ and we have $\gamma v_{1} \cdots v_{m} u_{1}=v_{1} \cdots v_{m} u_{1} \gamma^{\prime}$ and $\beta w_{1} \cdots w_{n} u_{2}$ $=v_{1} \cdots v_{m} u_{1} \alpha \beta^{\prime}$. Now since $\alpha \beta^{\prime} \in S_{12}$ and $\gamma^{\prime} \in S_{11}$, we have $\alpha \beta^{\prime} \neq \gamma^{\prime}$. Hence from $v_{1} \cdots u_{m} u_{1} \gamma^{\prime}=v_{1} \cdots v_{m} u_{1} \alpha \beta^{\prime}$, we have $v_{1} \cdots v_{m} u_{1}\left(\gamma^{\prime}-\alpha \beta^{\prime}\right)=0$ and $v_{1} \cdots v_{m} u_{1}=0$. But this is a contradiction.

Thus we have

Lemma 7. If $N e=A u_{1}+A u_{2}$ and $A e_{i} \sim A u_{i}$, we have $A u_{1} \cap A u_{2}=0$.
Lastly we shall prove that if $N e=A u_{1} \oplus A u_{2}$ and A is of left cyclic representation type, each $A u_{i}(i=1,2)$ has only one composition series.

Now suppose that $N e=A u_{1} \oplus A u_{2}$, where $N^{k} u_{1}=0, N^{l} u_{2}=0, N^{k-1} u_{1}$ $=A v_{1} \oplus A v_{2}$ and $N^{l-1} u_{2}=A w$. Then from Lemma $5 A v_{1}, A v_{2}$ and $A w$ are simple and are not isomorphic to each other and we can construct a directly indecomposable A-left module $\mathfrak{M}=A e m_{1}+A e m_{2}$. Namely we put $v_{1} m_{1}=0, v_{1} m_{2} \neq 0, v_{2} m_{1} \neq 0, v_{2} m_{2}=0$ and $u_{2} m_{1}=u_{2} m_{2}$. Then we can prove that \mathfrak{M} is directly indecomposable.

Moreover Lemma 6 can be obtained from the above result, Lemma 3 and Lemma 7.

Thus we have
Theorem 2. If A is of left cyclic representation type, the following conditions are satisfied:
(1) Each $e_{\lambda} N$ has only one composition series.
(2) Each $N e_{\kappa}$ is the direct sum of at most two cyclic left ideals, homomorphic to $A e_{\mu}$, each of which has only one composition series.
§4. In this section we shall prove that, if two conditions of Theorem 2 are satisfied, A is of left cyclic representation type.

Now from the assumption it follows that an arbitrary block of this algebra is as follows:
(1) Every $A e_{i}$ has only one composition series.
(2) $\left\{A e_{1}, \cdots, A e_{r-1}, A e_{r}, A e_{r+1}, \cdots, A e_{n}\right\}$, which has the following properties:
(a) Every $N e_{i}(i=1, \cdots, r-1)$ has only one composition series or $N e_{i}=A u_{i}^{(1)} \oplus A u_{i}^{(2)}(i=1, \cdots, r-1)$, where $A e_{\kappa_{1}} \sim A u_{i}^{(1)}, A e_{\kappa_{2}} \sim A u_{i}^{(2)}$, $e_{\kappa_{1}} \neq e_{\kappa_{2}}$ and $A e_{\kappa_{-1}} \sim N e_{\kappa_{\kappa}}$.
(b) $N e_{r}=A u_{1} \oplus A u_{2}$ where $A e_{r_{-1}} \sim A u_{1} \cong A u_{2}$ and $A u_{i}$ has only one composition series.
(c) $\quad N^{2} e_{i}=0(i=r+1, \cdots, n)$.
(3) $\left\{A e_{1}, \cdots, A e_{n}\right\}$ where $N e_{i}=A u_{1}^{(i)} \oplus A u_{2}^{(i)}, A e_{\kappa} \sim A u_{1}^{(i)}, A e_{\lambda} \sim A u_{2}^{(i)}$ and $e_{\kappa} \neq e_{\lambda}$.

In the case (1) we can prove it by the same way as [I].
Now we shall prove it in the case (2).
Let $\mathfrak{M}=\sum_{\kappa} \sum_{i_{\kappa}} A e_{\kappa} m_{\kappa, i_{\kappa}}$ be an arbitrary A-left module. Then it is clear that $\sum_{i_{r+1}} A e_{r+1} m_{r+1, i_{r+1}}, \cdots, \sum_{i_{n}} A e_{n} m_{n, i_{n}}$ are the direct components of \mathfrak{M}. Now if we prove that $\sum_{i_{r}} A e_{r} m_{r, i_{r}}$ is the direct sum of $A e_{r} n_{r, i_{r}}$,
$\sum_{i_{\kappa}} A e_{\kappa} m_{\kappa, i_{\kappa}}(\kappa=r+1, \cdots, n)$ are also the direct sums of $A e_{\kappa} n_{\kappa, i_{\kappa}}$.
First we state the following
Lemma 8. If $e_{\lambda} w_{1}=w_{1}$ and $e_{\lambda} w_{2}=w_{2}$ where $w_{1}, w_{2} \in N e_{r}$, then there exists $\xi \in \bar{e}_{r} \bar{A} \bar{e}_{r}$ such that $w_{1}=w_{2} \xi$.

The proof of this lemma is easy from Corollary 2.
Now suppose that $\mathfrak{M}=\left(A e_{r} m_{1} \oplus \cdots \oplus A e_{r} m_{n-1}\right)+A e_{r} m_{n}$ and $\left(A e_{r} m_{1} \oplus\right.$ $\left.\cdots \oplus A e_{r} m_{n-1}\right) \cap A e_{r} m_{n} \neq 0$. Moreover we assume that $N e_{r} m_{n}=A u_{1} m_{n}$ $+A u_{2} m_{n}$. Then we can prove that \mathfrak{M} is the direct sum of $A e_{r} n_{i r}$ in the following way:
(a) If $N^{i} u_{1} m_{n} \subset\left(A e_{r} m_{1} \oplus \cdots \oplus A e_{r} m_{n-1}\right)$ we can put $v u_{1} m_{n}=\alpha_{1} v u_{1} m_{1}$ $+\beta_{1} v u_{2} m_{1}+\cdots+\alpha_{n-1} v u_{1} m_{n-1}+\beta_{n-1} v u_{2} m_{n-1}$, where $N^{i} e_{r-1}=A v$. Now if we put $\quad m_{1}^{\prime}=\alpha_{1}^{\prime} m_{1}+\beta_{1}^{\prime} \alpha_{1}, \cdots, m_{n-1}^{\prime}=\alpha_{n-1}^{\prime} m_{n-1}+\beta_{n-1}^{\prime} \alpha m_{n-1}$, where $\alpha_{i} v u_{1}$ $=v u_{1} \alpha_{i}{ }^{\prime}$, we have $v u_{1} m_{n}=v u_{1} m_{1}{ }^{\prime}+\cdots+v u_{1} m_{n-1}^{\prime}$. Moreover we can assume that the length of $A u_{1} m_{n}$ is larger than any $A u_{1} m_{i}(i \leq n-1)$ and the length of $A u_{2} m_{n}$ is larger than any $A u_{2} m_{\kappa}$ such that the lengths of all $A u_{1} m_{\kappa}\left(\kappa=\kappa_{1}, \cdots, \kappa_{s}\right)$ are equal. Then if we put $m_{n}{ }^{\prime}=m_{n}-m_{\kappa_{1}}^{\prime}-\cdots-m_{\kappa_{s}}^{\prime}$, we have $v u_{1} m_{n}{ }^{\prime}=v u_{1} m_{\lambda_{1}}^{\prime}+\cdots+v u_{1} m_{\lambda_{n-s}}^{\prime}$ and $\mathfrak{M}=A e_{r} m_{\kappa_{1}} \oplus \cdots \oplus A e_{r} m_{\kappa_{s}}^{\prime} \oplus$ $\left\{\left(A e_{r} m_{\lambda_{1}} \oplus \cdots \oplus A e_{r} m_{\lambda_{n-s}}\right)+A e_{r} m_{n}^{\prime}\right\}$. By the same way as above, we can prove that $\mathfrak{M}=A e_{r} n_{1} \oplus \cdots \oplus A e_{r} n_{n}$.
(b) Suppose that $N^{i} u_{1} m_{n} \subset\left(A e_{r} m_{1} \oplus \cdots \oplus A e_{r} m_{n-1}\right)$ and $N^{j} u_{2} m_{n} \subset$ $\left(A e_{r} m_{1} \oplus \cdots \oplus A e_{r} m_{n-1}\right)$. Then we can put $v u_{1} m_{n}=\alpha_{1} v u_{1} m_{1}+\beta_{1} v u_{2} m_{1}+\cdots$ $+\alpha_{n-1} v u_{1} m_{n-1}+\beta_{n-1} v u_{2} m_{n-1}$ and $w u_{2} m_{n}=\gamma_{1} w u_{1} m_{1}+\xi_{1} w u_{2} m_{1}+\cdots+\gamma_{n-1} w u_{1} m_{n-1}$ $+\xi_{n-1} w u_{2} m_{n-1}$ where $N^{i} e_{r-1}=A v$ and $N^{j} e_{r-1}=A w$. First if we take $m_{n}^{\prime}=m_{n}-\left(\alpha_{1}^{\prime}+\beta_{1}^{\prime} \alpha\right) m_{1}-\cdots-\left(\alpha_{n-1}^{\prime}+\beta_{n-1}^{\prime} \alpha\right) m_{n-1}$ in place of m_{n}, we have $v u_{1} m_{n}{ }^{\prime}=0$ and we can reduce this case to the case (a).

Next we shall show that $\sum_{\kappa=1}^{r} \sum_{i_{\kappa}} A e_{\kappa} m_{\kappa, i_{\kappa}}$ is the direct sum of $A e_{\kappa} n_{\kappa, j_{\kappa}}$. From the above result and from [I] each $\sum_{i_{\lambda}} A e_{\lambda} m_{\lambda, i_{\lambda}}(\lambda=1, \cdots, r)$ is the direct sum of $A e_{\kappa} n_{\lambda, i \lambda}$. Hence we assume that $A e_{i} m_{i} \cap\left(A e_{i+1} m_{i+1} \oplus \cdots \oplus\right.$ $\left.A e_{r} m_{r}\right) \neq 0$ and $N^{i} e_{i} m_{i} \subset A e_{i+1} m_{i+1} \oplus \cdots \oplus A e_{r} m_{r}$. Here we remark that if $e^{\prime} w_{1}=w_{1}$ and $e^{\prime} w_{2}=w_{2}$ where $w \in N e_{\lambda}$ and $w_{2} \in N e_{\lambda_{+j}}$, there exists $p \in e_{\lambda} N e_{\lambda+j}$ such that $w_{1} p=w_{1}$.

Now suppose that $w m_{i}=\alpha_{1} w_{1} m_{i+1}+\cdots+\alpha_{r-i} w_{r-i} m_{r}$. Then from the above remark we have $w_{1}=w p_{1}, \cdots, w_{r-i}=w p_{r-i}$ and if we take $m_{i}^{\prime}=$ $m_{i}-\alpha_{1}^{\prime} p_{1} m_{i+1}-\cdots-\alpha_{r-i}^{\prime} p_{r-i} m_{r}$ in place of $m_{i}, A e_{i} m_{i}{ }^{\prime} \cap\left(A e_{i+1} m_{i+1} \oplus \cdots \oplus\right.$ $\left.A e_{r} m_{r}\right)=0$.

In the case (3) we can prove by the same way as above.
Thus we have
Theorem 3. An algebra A is of left cyclic representation type if
and only if the following conditions are satisfied:
(1) Each $e_{\lambda} N$ has only one composition series.
(2) Each $N e_{\kappa}$ is the direct sum of at most two cyclic left ideals, homomorphic to $A e_{\mu}$, each of which has only one composition series.
(Received September 22, 1958)

Bibliography

(I) T. Nakayama: Note on Uniserial and Generalized Uniserial rings, Proc. Imp. Acad. 16, 285-289 (1940).
(II) T. Nakayama: On Frobeniusean algebra II. Ann. of Math. 42, 1-21 (1941).
(III) T. Yoshii: On Algebras on Bounded Representation Type. Osaka Math. 6, 105-107 (1956).

[^0]: 1) cf. T. Nakayama I.
