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On Harmonic Functions Representable by Poisson's Integral

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary and let {Rn}
(n — Q, 1, 2, •••) be its exhaustion with compact relative boundaries 3Rn.
If an open set G has relative boundary consisting of at most enumerably
infinite number of analytic curves which cluster nowhere in Ry we call
G a domain. Let wHιn+i(z) be a harmonic function in Rn+i—(Gr\(Rn+i—Rn))
such that wMtn+i(z)=Q. on 3Rn+i-G and wH>n+i(z) = l on 3(Gn (#„+,-— Rn))
and let ωM,H+i(z) be a harmonic function in R—R0—(Gr\(Rn+i—Rn)) such

o

that ωΛi>l+f.(2)=0 on 9#0, ωΛi>l+ί(2) = l on3(GA(J?w+ί.-J?M)) and —ωntΛ+i(z)
on

= 0 on 3/?n+ί— G. We call lim lim wn>n+i(z) and lim lim ωΛin+ί(^)15 the Aflr-
ί « « i

monic measure and the capacitary potential of the ideal boundary (Gr\B)
determined by G respectively. We call a function G(z) a generalized
Green's function, if G(z) is non negatively harmonic in Jf?, the harmonic
measure of (Br\E[zeR: G(z)^>8']) is zero for δ^>0 and the Dirichlet
integral Z)(min(M, G(z)) <kM for M<oo.

We map the universal covering surface ί?°° of R onto |£|<O. Then

Theorem 1. Let W(z) be a positive harmonic in R and superharmonic
in R2\ Then W(z) = U(z)+V(z), where U(z) is a harmonic function in R
representable by Poisson's integral in |f |<O an^ V(z^ is a generalized
Green's function. If furthermore R has no irregular point of the Green's
function, then V(z) = 0, therefore W(z) is representable by Poisson's integral.

Let W(z) be a function in Theorem 1. Then W(z)—S(z) is also

positively harmonic in R—R0 and superharmonic in R—R0 and
W(z)-S(z) =W'(z)=Q on 9#0, where S(z) is harmonic in R-R0 such that
S(z) = W(z) on 3J?0 and S(z) has M.D.I, (minimal Dirichlet integral).

1) Z. Kuramochi: Harmonic measure and capacity of subsets of the ideal boundary, Proc.
Japan Acad. 31, 1955.

2) Let U(z) be a positively harmonic function which satisfies D(min (M, t/(20X°°. If U^z)

> UG (Z") for every compact or noncompact domain G, we say ί/(z) is superharmonic in R, where

t/6<z)=lim C7^(2), C/|r(2)=min(M, £/(») on 8G and U%(z} has minimal Dirichlet integral
J£" = oo

over G.
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Then W'(z) is representable by a positive mass distribution as
follows:3 )

where B^ is the set of minimal points and the total mass μ0 is given

by ds ( jfoW(z) and D(min(M, W(z)) <2πMμ0.

First we shall prove for N(z, p). Then

Theorem 2, Let N(zy p} be a minimal function^. Then N(z, p) =
U(zy p} + V(z, p), where U(zy p} is a positive harmonic function representable
by Poissoris integral and V(z9 p) is a generalized Green's function. U(z, p)
and V(zy p) are functions of at most second class of Baire's function of p
for fixed z£R—RQ with respect to Martin's topology.^

If sup N(z,p)<^°°, our assertion is trivial and in this case by the
boundedness of V(z,p), V(zyp) reduces to constant zero. We shall suppose
sup N(z,p} = c*. Put GM=E[_zeR: N(z, />)>M]. Then GM is a non
compact domain. Consider a harmonic function wn(z) in Rn—GM—R0

such that wn(z) — 0 on dR0 + 3Rn— GM and wn(z) = l on 3GM. Let WM(Z) =
lim wn(z). Since N(z, p) has M. I. D. over R—R0—GM among all functions

with values 0 on ^RQ and M on 3GM respectively, N(zy p) =lim Nn(z, p),
n

where Nn(z, p) is harmonic in Rn—R0 — GM such that Nn(z, p)=M on 9GM,

Nn(z, p)=0 on 3Jζ, and —Nn(z, p) =0 on 9J?W—GM. Hence by the maxi-

mum principle N(z, p) ^>MwM(z), whence lim WM(Z) =0. Map the universal

covering surface (R—RQ)°° onto |?|<]1 and consider WM(Z) in | f |<Cl Then
WM(Z) has angular limits =0 a. e. (almost everywhere) on a set EM on
|f |=1 where N(z, p) has angular limits <]M To the contrary, suppose
that there exists a set £ of positive measure such that WM(Z) has angular
limits >0 on E and N(z, p) has angular limits <^M. Then there exists a
closed set E'CE such that mes (E—E')<^S, N(z,p)<^M—£ in angular

domain De = [arg\ξ — ζQ\<^-^-—£,ζ0eE', | f |^>l — 6~] for any given posi-

tive number 8. Let Df be one of components of Dε. Then the image of

3) Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour., 8,
1956.

4) See 3).
5) If U(z) has no functions F(z) such that both F(z)>0 and t/(»-F(z)>0 are

harmonic and superharmonic in R-RQ except its own multiples, we say that ί/(e) is a minimal
function.
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GM does not intersect the above Όf. Let H(z) be a harmonic function
in Π with values 1 on 3Zy-JE[|£ —1] and 0 on Z>Dfr\E[_\ ζ\ =1].
Since azx is rectifiable, S(z) = 0 on a. e. ^Dr r\E\_ ζ = 1]. But «;M(z) <
#U), whence wM(z)=0 a. e. on EM.

Let Nn'(z, p) be a harmonic function in Rn—R0 — GL(=E[_zeR: N(z, p)
>L]) such that Nn'(z, p)=0on 3/?0, #„'(*, />) — L on ^GLr\Rn, Nn'(z, p) =

N(z,p) on 3^-GM(M<L) and #„'(*, />) =0 on dRHr\ (GM-GL). Then

Since N(z9 p) has M. D. I. over R-GL, Nn'(z, p)-*N(z, p) in mean.
Let UMιn(z, p) be a harmonic function in Rn—R0 such that UM>n(z,p)=Q
on a#0, UM,n(z,p)=Nn'(z,p) on 9^-GMand £/„.„(*, #) -Mon 3^wnGM.
In Rn-R0-GM, 0<Nn'(z, p) - UM.n(z, p) <Lwn(z). Hence by letting n -*<χ>,
0<^N(z, p)—UM(z, p)<^LwM(z), where UM(z, p) is a limit function from
a subsequence (w t, «2, •••). Thus UM(zy p) has the same angular limits
as N(z, p) a. e. on a set £M on |?|=1 on which N(z9 p) has angular
limits <M. Next let U'M>n(zy p) be a harmonic function in Rn—RQ such
that U'M,n(z, p) =0 on 3j?0 and UMtH(z,p) = min(M, jV(^ ^)) on 3Jf?M. Then
we have clearly lim UM.n(z, p) =lim C7^ιn(^, ί) and C/M2,WU, p)>UMί.n(z9 p)

n n

for Af2>M lβ

Choose a subsequence (w/, w2

7, •••) from (nί9nz, ) such that UM2ttt'(z,p)
converges to UM2(z,p}. Then UM2(z, p)^UMl(z, p). Let £/(*,£) = Hm

^M('S', ί) Then U(z, p) is a function representable by Poisson's integral
and U(z, p) has the same angular limits as N(z, p) a. e. on | f |=l,
because lim WM(Z) = 0. Hence such U(z, p) does not depend on the

Jί = oo

subsequences. This U(z, p) is the function stated in the theorem.
Next we shall show that N(z, p) — U(z, p) is a generalized Green's

function. We proved that I N(z, p}ds = lim \ Nn(z, p}ds^ for almost all
J «=00 J

^GL ®G'L

L (i. e. the set of L whose ^GL does not satisfy the above condition is
of measure zero), where Nn(zyp) is a harmonic function in Rn—R0—GL

o

such that Nn(z, p)=Qon 3J?0, Nn(z, p)=Lvn ^GLr\Rn and g^U, P) = Q

on 3Rn-GL.
We call such GL a regular domain. Hence we can suppose without

loss of generality that GL is regular. We see the following assertion
a

from dNn(z, p)^>0 on 3GL, it is necessary and sufficient condition for

6) sec 3). p. 151.
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the regularity of GL that there exist nQ and m0 such that lg- Nn(z, p)ds

for n^>n0 and m^>mQ for any given positive number
Let Jn(z) be a harmonic function in Rn—R0—(Rnr\(GM—GL)) such

that Jn(z) =0 on 3GM, /„(*) = ! on 3GL and ̂ Λ(*) =0 on VRn A (GM-GJ.

Then (M+(L-M)Jn(z))-*N(z,p) in mean, because #(*,/>) has M.D.I.

S
o /» o

τrJn(z)ds= \ lim ^-Jn(z)ds and there exist
Oft J « Gift

and w0 such that for n^>n0 and m^>mQ for any

given positive number ^>0. But N^(z, p)^>(L—M}Jn(z) in GM—GL and
Nn'(z,p) = (M+(L-M)Jn(z)) on 3GL implies

on

/-^V

Hence J lim ^NH'(z, p)ds = lim J
W H

Thus 30^ w also regular for N^(z, p).
Let VM,n(z, p) be a harmonic function =Nn'(z, p)— UM,n(z, p). Then

VM.H(z,p) is harmonic in Rn-R0, VM>n(z,p)=Q on 3RQ + (c>Rn-GM) and

VM,n(z, p)^>L—M in GL. By the regularity of dGL, \ Q-NΛ'(z,

-*2τr, as w->oo. Hence there exists a number nϋ for any given £ such

Γ a

that \ ^~N^(z, p)ds<L2τr + s for n^>n0.

Put # = £[>€#: δ<FM>w(2,£)<
3#w AΓ<Λί]. ΓM/^E[^e7?: VM.n(z, p)

Fig. 1

and Γ7 —aτ?M,
VM.»(*,/>)^An. Then Z) intersects
only 'dRnr\(GM—GL), because Nn'(z, p)
~UMtn(z,p)=-0 on 3Rn-GM and
Nn'(*,P)-UM.n(z,p)>M' on 3G,, for
L>2Mr. Hence Γ c 3Z?W A (GM - GJ.

Now g- Nn'(z9 p) = 0 on dRn—DL.

Since UMtn(z, p) — max UM>n(z, p) = M

on Γ, ^t/MιW(z,£)>0 on Γ and
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a r a

»'(*, P)ds=

O O ^Λ

0 < J 3?z ^"-Λ*' ̂ )ί/5 = S 3w ^-Λ*' Λrfs ̂  J dn UM «(Z>
ΓM, Γ'

3 Nn'(z, p)ds = -

c a

= J d^Γ+Γ7

r
^ - J

Hence Z)(min FM,M(0, ̂ ), M') - ^(T .̂̂ , ί)) - J (#„'(*, ί) -
a rδ+r+rM/

nU, P})^(Nn(z, P) - ί/M.Λ*, ί ))^ ̂  M/(4τr + 28) + δ(2τr + 6) and
ίn (VM,H(Z, ^),M/)^M/(4τr-f2<S)+δ(2τr+θ), for every m (for every

Let n->oo, then JVΛ

7^, p)-*N(z, p) in R-R«-GLy UM,n(z, p)-> UM(z, p),
VM,n(zy P) -* V'^ί) and derivatives of VM>n(z, p) -> derivatives of VM(z, p).
By letting w->oo and then δ-»0 and £->0, D^^dninίyA,^, p), M')

Let L-> oo and then Af-^ oo. Then C7M(2:, />) t Z7(*, ί) and
V(z, p) and then by letting w->oo, we have

On the other hand, clearly V(z, p) = N(z, p) — U(z, p) has angular limits
= 0 a. e. on | f |=l . Hence V(z, p) is a generalized Green's function.

Since UM(z, p) = lim UM,n(zy p) = lirii U'MtH(z, p), where U'Mtn(z, p) is a

harmonic function in Rn—RQ such that U'MtH(z, p) = min(M, M ,̂ ^)) on
aj?0 + 37?w. Hence U'M,n+i(z, p) <>U'M,n(z, p} on 3#w, whence C/^>, j>) J
#M(*> ^). Therefore there exists a number w0 such that UM(z, p) <
UM>n(z,p) — 8 for n^>n0 for any given positive number 8. Next since
N(z, p) is a continuous function of p for any point z £ /?— 7?0 , there exists
a number δ0 such that

on VRn for
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Hence UM(z, p) ̂  UM,n(z,p)-8^ U'M,n(z, p.)- 2£ ̂  UM(z, pj-28.
Thus UM(z, p) is an upper semicontinuous function of p, whence VM(z, p)
is a lower semicontinuous function of p by the continuity of N(z9 p).
UM(zyp)\U(z,p) and VM(z, p) J V(z, p) imply that U(z, p) and V(z, p)
are at most second class of Baire's functions.

Properties of generalized Green's functions.

Theorem 3. Let V(z) be a generalized Green's function such that
D(mm(V(z), M)) <zτrM. Let Vf(z) be a non negative harmonic function
such that V'(z) <^V(z). Then V(z) is also a generalized Green's function
such that D(min(V(z),M))<τrM.

Put D=E[zeR: F(z)<<Mand V(z)^>Af]. Let V^,n+i(z) be a harmonic
function in Rn+i — RQ—E\_z£R: V/(z)^>M~]
-(Dr\(Rn+i-Rn)) such that V'n,n+i(z) =
V(z) on a#0+(E[>e#: V'(z) <M~\r\Rn)y

a
o~ Vn,n+i(z)=Q on ^Rn^D and V^>n+i(z)

= V(z) on c>Rn+i - E[_z e R : V(z)>M].
Then by the Dirichlet principle

Z>(minM, V'n,n+i(z}) ^D(min(M, V(z))

for every / and n.

Next clearly lim lim Vn.n+i(z) = V(z) exists

and V(z) has angular limits <1 V(z) a. e.
where V(z) has angular limits <^M. But

V(z) has angular limits =0 a. e. on \ξ —1, whence V(z)=V'(z) and

Z>(min(M, V'(z)) <^D(mm(M, V(z)) .

Hence V'(z) is a generalized Green's function.

Theorem 4. Let V(z) be a generalized Green's function and put
R8 =E\_z G R: V(z) >S] and DM = E\z e R: V(z) >M]. Then DM determi-
nes a set of the ideal boundary of capacity zero.

Let Vn,n+i(z) be a harmonic function in (R8r\Rn+i) — ((Rn+i—Rn)r\DM)
such that VΛ.H+i(z)=0 on 3R8πRn+i, Vn,n+i(z)=lon 3(DMr\(Rn+i-Rn)) and

, Then by the Dirichlet principle

Fig 2

VnH+i(z)=Ό and dRn+ir\(R8 —

3 2τrM
(M-δ)2

for every / and n,
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and clearly Vn>n+i(z) converges to Vn(z) in mean as ι-»oo.
o

J

^ for

Since Vmtn+i(z)-*VH(z) in mean, we have

D(VH(z)-Vm(z), VH(z))=D(VH(z))-D(Vm(z)) and

D(VH(z))-D(Vm(z)).

Hence Vn(z) converges to a function V*(z) in mean as n->°o.
Map the universal couvring surface R^ of jf?δ onto |?I<O Then

has angular limits = 0 a. e. on \ξ \ = 1 by that F(z) has angular limits =δ
a.e. on | f | = l. Hence V*U)=0. Let F be a closed arc on 3Jf?δ. Let
ωn.n+i(z) be a harmonic function in R8r\Rn+i—((Rn+i—Rn)nDM) such that

o

*>„.„+,.(*)=() on F, ωΛ)W+,(^)-l on 3(Z)MA(^+,-

on dRn+ί—DM. Then by the Dirichlet principle

We see as above that ωn,H+i(z)-^ωn(z) in mean and ωH(z)-*ω(z) in mean
and by Vn(z)-+V*(z) in mean. We have D(ω(z)) <D(V*(z}) <0.
Thus DM determines a set of the boundary of capacity zero.

Theorem 5. Let V(z) be a generalized Green's function. Then

V(z)ds = k on every niveau curve, where k is a constant such that

D(min(M, V(z))= Mk.
Let ωn(z) and DM be in Theorem 4. Let ωn'(z] be a harmonic function

such that ωn'(z)=Q on Fr\Rno, ωn'(z) = l on

and f̂ (^)-O on (3^δA^Wo) + (3^o-ΰM) + (3£>MA (Rn-Rno))

—F. Then clearly

whence by Theorem 4 ωM(,ε)->0 as #->oo. Hence there exists for any
given large number T, a number n and a harmonic function ωίte) in

π(Rn-Rno)) such that ω*(^)^0 on F,

= on δ A ) - + ί ) M A ( - ) ) + (^-DM), ω ί ) = on
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Put reiθ = exp(ω%(z)+iω*(z))9 where ώl(z) is the conjugate function
Γ I 3

of ωl(z). Put L(r)= \ }-£-V(z) rdθy where the integration is taken over

r\Rno) + (DM-DM2))n(E{z612 <£(z) =logr])(M<M2).
Suppose L(r)^>8Q for every r. Then

T

f 1 f L2(r)
g } ~dr <,} —j^

Let T -* oo . Then D( V(z) ) -̂  oo . This
is a contradiction. Hence there exists
a sequence {rf} such that L(ri)->0.

Since
s-\ -FT

on 3Z)M2. Hence *= J ^V(*)<fe= j

9^M 9£)M2

k(M2—M). Hence we have the theorem.

on

and

and

Lemma 3. Let V(z] be a positive harmonic function (not necessarily
a generalized Green's function] in R—R0. Let G and G be non compact
domains such that £-l?0 = G + G'.7) Let nVc(z)(nVc(z)) be the lower (upper)
envelope of super (sub) harmonic functions larger (smaller) than V(z) in
Gr\(R-Rn). Put V^(z) = \\mnV^(z) and Vβ

G(z) = lim HVg(z). Then
n n

°G(V"G(z)) = V«G(z) and *G(VG,(z)) = 0 .

Let Vn,n+i(z) be a harmonic function in Rn + ((Rn+i—Rn)r\G)—R0 such
that Vn,n+i(z) = 0 on dR0 + (dRn+i-G) and Vn,H+i(z) = V(z) on dGr\(Rn+l-
Rn)+Gπ(R-Rn). Then for every Gr\(R-Rn) by Vn.H+l(z) t VH(z) and
by Gt(ς, z) t G(ξ, z)

lim Vn,n+i(z) = Vn(z) =

where Gf(f, z) and G(ξ, z) are the Green's function of Rn+i—R0—(Gr\
(Rn+i-Rn) and R-R»-(Gr\(R-Rn)) respectively.

7) G means the closure of G.
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Since VΛ(z) \ V£(z), V£(z) = J V£(ζ)^G(ξ, z)ds.

Next let V'H,n+i(z) be a harmonic function in Rn + ((Rn+i—Rn)r\G)—R0

such that V'n.n+i(z)=0 on dR0 + (dRn+.-G) and V'n,n+i(z) = VS(z) on
(9G A (KB+f- Rn)) + (Gr\dRn). Then

i. e. lim

lira V'nn,+i(z) =

= V£(z) for every «, hence

Let Vn,n+i(z) be a harmonic function in Ra+i—((Rn+i—Rn)r\G)—R0

such that FB,B+f(2)=0 on θ/ζ. + ̂ ΛO + ίθGA (£„+,-/?,,)) and Vn,n+i(z)
= V(z) on 3^w+ί<G'. Then

(2)

V(z) = Vn,n+i(z) + Vn,n+i(z), which implies

V(z) = V^(z) + V^(z).

From (1) we have V(z) = ζ(VS(z) + V&(z)) + V*G,(z)

= £(V«c(z)) + £(V£,(z)) + V£,(z),

whence by (1) and (2) we have

c(Vg/(*))=0. (3)

Let V(z) be a generalized Green's function. Let G(z, q) be the
Green's function of R-R0 with pole at q. Put G=E\_z£R: G(z, ^)>Ar]
and G'=£[23Λ: Gfc, <?)<&]. Then V(z) = Vg(«) + VJ/(«). We shall
study the properties of Vgr(z).

Lemma 4. Let V(z) be a generalized
Green's function and put G =E[z 6 jf?: G(z, q)
>A;] and G'=£[>£#: G(z, q)<k] and
DM=ElzeR: VJ/(«)>M]. Let Hg(z) be
the lower envelope of superharmonic function
larger than min(M, Vg/(z)) on G'r\DM. Then

lim H&(z) = V£,(z) .
M=°°

For simplicity denote Vg/(z) by H(z).
Let nHc'(z) be a harmonic function in
Rn-RQ-(DMr\G') such that nH^(z)=0 on

G

Fig. 4
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') and Jl%(z)=M on 9(DMnG'). Let l%(z) be a

harmonic function in Rn—R0—(Dr\G) such that nH^(z)—0 on

-(DMr\G)), Jίg(z)=M on 3DMAG and nHg(z)=H(z)-M on
Then cleary

lim „#£(*) < #(2) < lim J]»(z) + lim l%(z)
n n n

and

lim (lim M(z)} < «G(H(z)) = £< VJ/(z)) = 0 .
JK'->00 «

Hence
yβ/^) = HU) = lim lim J/^U) = lim

Theorem 6. Let V(z) be a generalized Green's function such that
D(mmM,V(z))<Mτr. Then by Lemma 3, V(z) = V%(z) + V&(z)y where

Then

Clearly V(z)^,V£(z) and F(^) ̂  Vg/(^) ̂ 0. If VPJ,(2)=0, our assertion is
trivial. Suppose V£'(z)^>Q. Then by Theorem 3, VJ/ί-ε) is also a gene-
ralized Green's function such that D(min((M, V&(z))
Next by Lemma 3

V&(z) = H(z) = lim lim Jί$(z) and H(z) ̂  H%(z) - lim nH%(z) .
j£

Hence by Theorem 5

where Z)M=E|>e#: ί/
Since g, = E [ _ z £ R : 7f#(*)>δ]c JE[>el?:

^>L] = )DZ,AG/ determines a set of the boundary of capacity zero for
L>δ by Theorem 4. Hence by D{g,H(z))<°o over R-R,-(DMr\G'),
we can prove as in Theorem 5

where Γβ =£[2:e/?: H&(z) =S].
Let Gδ(^, ^) be the Green's function of g8r\ (R—R0). Then D(Gt(z, q))

<^co over a neighbourhood of the ideal boundary. Hence there exists
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a sequence of curves {Γ.} such that I

{ΓJ clusters at the ideal boundary
as ί-»oo and every Γf. separates the
boundary determined by DM from q.
Let C = V(DMr\G') and C, be the
part of Ci contained in the domain
3q separated by Γf and C/=C—C f .
Then

Gδ(2, q) ds-> 0 as i -» oo and

rδ

Fig. 5

M δ J
Γ

But the first term of the left hand side -*> 0 as / — > oo and the remaining
terms don't depend on i. Hence by letting δ->0 and by Gδ(£, q) | G(z, q),
we have

because G(2,

Put FSte) = y**fe) and V&(z) = V'k(z). Then by Theorem 6, V'k(z)
->0 as k-*Q. Then we have

Theorem 7. Every generalized Green's function V(z) is divided into
two parts such that

) ̂  H%(z)ds

in G'. Then by letting M->

H(q) =Ύ&(q) .

V(Z) = V/k(z) and V(z) = lim V*k(z) .

Remark. K(z, pj = Γl' ,\ (p0 is a flexed point) is a positive harm-

onic function. Martin8) defined ideal boundary points by using above
functions and prove that every positive harmonic function is representable

8) R. S. Martin : Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
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by a unique mass distribution v as follows: I K(zy p)dv(p)y where B1 is
_ *l

the set of minimal points. If HmG(pi9 #)>0 as pt tends to a boundary

point p and K(z,p^ ->K(zy p), we call p an irregular boundary point. In
this case, K(z, p) is a constant multiple of G(z, p) = l imGfo pg). We

denote by Ik the set of Martin's boundary point p such that lim G(z9 q) I> &.

Then V*k(z) is represented by a mass distribution v on Ik. Hence by
Theorem 8 a generalized Green's function is represented by a mass distri-
bution v on I=\JIk.

Theorem 8. Let W(z) be a positive harmonic in R—R0 and super-

harmonic function in R—R0 vanishing on 3R0. Then

W(z) = J N(z, p)dμ(p) = J U(z, p)dμ(p) + J V(z, p)dμ(p) = U(z) + V(z) ,

where U(z) = I U(z, p)dμ(p) is a harmonic function represent able by Pois-

sorfs integral and V(z) = I V(zy p)dμ(p) is a generalized Green's function.

Since 0< U(z9 p) <N(z, p), family {U(z, p)} is uniformly bounded
in every compact domain in R—R0 and the partial derivatives of them
are equicontinuous and Δ U(z, p) = 0, hence U(z) and V(z) are harmonic
in R-R*.

For a harmonic function//(#) define HM(z) = lim H™(z)y where H^(z)
n

is a harmonic function in Rn—R0 such that H%r(z) = min(M,H(z)) on
dR0 + c>Rn. Then clealry M(HM(z)) =HM(z). Since 0< U(z, p) <N(z, p)
and UM(z) f U(z, p) as Mf °°, whe have

t/(2) = ( t/(2, j>)rf/*(j» = lim ( UM(z, P)dμ(p) <> lim "T ( N(z, p)dμ(p) 1
J Λ = oo J Λ = oo L J J

= lim lim Wf (z),

where W^ί-ε) is a harmonic function in R—R<> such that W™(z) —
min(Af, TΓ(2)) on dR0-^3Rnt Now lim lim W^U) = Tϊ^(2) is representable

by Poisson's integral. 0<^U(z) <LWp(z) implies the Poisson's integr ability
of U(z) .

By the Remark V(z, p) — ί K(z, q)dv(q), whence V(z) = ( V(z, p)dμ(p)

= \ K(z, q)d\(q}. Hence there exist n0 and kQ such that

J K(Z, q)d\(q) +6
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for z£Rn—R0, n<^n0 and k<^kQ for any given positive number £, where
λ' is the restriction of λ on Ik.

Denote by ( I K(z, q)d\'(q))n

lk the lower envelope of superharmonic

functions larger than j K(zy q)d\'(q) in Gn (R-R0). Put ( ί K(z, q}d\'(q))Ik

Ik Ik

= lim ( 1 K(zy q\d\'(q))n

lk. Then as in Lemma 3 and Theorem 2 it is
Ik

proved that ( j/Cfo q)d\'(q)} = ( J #(*, q}d\'(q)}Ik and ( J/Γ(*f q}d\'(q)} has
'* /* /*

angular limits =0 a. e. on the ideal boundary50. In (5) let 8 -» 0. Then

I Jff(z, q)d\(q) = \ V(zy p)dμ(p) has angular limits =0 a. e. on the ideal

bonndary. Hence U(z) = \ U(zy p)dμ(p) has the same angular limits as

I N(z, p)dμ(p) a. e. on the ideal bounary. Thus by Poisson's integrability

of U(z) and Wp(z), we have U(z) = Wp(z) and W(z)-Wp(z)=\V(z,p)dμ(p).

NowW(z)-Wp(z) = lim lim W'™'(z), where W'*f'(z) is a harmonic function

in Rn-R0 such that WT(z)=0 on 3/?0 and W/Jf/(«) = Wrte)-^/te) on
3Rn. Since N(z,p) is a continuous function of ^ for z£R, there exists

a sequence (Wm(z)} (m = l, 2, — ) of the form TFmU) = Σc f M^ A)fci>0,

Σ^ = A*o= \dμ(p)) such that TΓm(^) -^TFfe) in R-R«. On the other

hand, let V™'m(z) be a harmonic function in Rn—RQ such that V2fm(^) = 0
on a#0 and F^ fc) — minίPΓ'ί^-Λί7, 0) on ^Rn. Then there exists a
sequence {V™'m(z}} which converges to lim W'™'(z) as n-^o

Since V^ί^) is constructed from Wm(z) = CiN(z, p), we can prove
by the method used for V(z,p) and N(z9 p) that D(min(M, 7^
4τr(Σc, )M/ for M'<^M. Hence by letting w->oo, m^oo and
we have

\ lim lim F ;̂
» »l

< lim lim D(min (M', V%m(z)) < 4τr (Σ c, ) M .
M=°° ™,n

Hence \V(zyp)dμ(p) is a generalized Green's function. We have Theorem 8.

Lemma 5. Let V(z) be a generalized Green's function in R—R0 such

9) We map the universal covering surface of (R-Ro) onto |£|Ό If the function £7(2)
has angular limits=0 a.e. on the image of the ideal boundary on |£|=1. We say simply
U(z~) has angular limits=0 a.e. on the ideal boundary.
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that D(min(M, V(z)) <Mπ. Then there exists a uniquely determined gene-
ralized Green's function V*(z) in R such that D(min(M, V*(z)) <Mπ and

sup

Since 9j?0 is compact, there exists a contant L such that 0< — - V(z)
on

on 3RQ. Let ω(z) be a positive bounded harmonic function in R—R0

such that ω(z)=l on 3R0 and ω(z) has angular limits =0. a. e. on the
ideal boundary of R—RQ. Put ώ(z) = l in RQ and ώ(2)=ω(2) in R—R0.
Then 7(2)+/£ω(2)(/<L>L) is a superharmonic function in R. Let Vl(z)
be a harmonic function in Rn such that VίU) = yU) on 3J?W. Then
F^Xy^^^F^+.fίω^). Choose a subsequence l W ! , w 2 , , ) so as
yjte) converges to 7* (2). Then

V(z) < V*(z) <, V(z) + Kω(z) .

Hence V*(z) has angular limits =0 a. e. on the boundary of R and by
sup (V*(2) — V(z))<^ooy we see that such V*(z) does not depend on the
above subsequence and V*(z) is uniquely determined.

Clearly D(min(M, V(z)) <D(min(M+K, V(z)+Kω(z)), hence

Z)(min(M, 7^)) ^2D(min(2M, Vr(^))+2D(ω(^)) < 10τrM, for large M

But both Elz£R-R0, y*(^)>δ] and £[2:3^-^0, ω(^)>δ] determine
sets of the boundary of capacity zero,10) whence as in Theorem, we have

for every niveau curve C of V(z) and D(min(M, V*(z)) <LlQτrM for every
M Thus V*(z) is a generalized Green's function.

Proof of Theorem 1. Let W*(z) be a harmonic and superharmonic
function in R. Let S(z) be a harmonic function in R—R0 such that
S(z) = W*(z) on aτ?0 and S(z) has M.D.I, over R-R0. Then S(̂ ) is
bounded and W*(z)-S(z) = W(z) = U(z) + V(z) in l?~l?0 in Theorem 9.
Let U£(z) be a harmonic function in l?w such that U$(z) = U(z)+S(z) on
9J?W. Let VJ(2) be a harmonic function in Lemma 5. Then ΐ^*(^) —
U$(z) + Vί (2). Choose a subsequence (n19 nzί •••) such that both t/*(2) and
y*(^) converge to t/*(2) and V*(2) respectively. Then U*(z) is repre-
sentable by Poisson's integral and U*(z) has angular limits as U(z)+S(z)
a. e. on the boundary of R—RQ, whence U*(z) does not depend on the
above subseqence. Thus W* (z) = £7* (2) +

10) See 3) or Mass distributions. Ill (in this volume) (Properties of functiontheoretic
equilibrium potential).
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Apply our result to a unit-circle |2|<[1. Then we have the following

Proposition. Let U(z) be a logarithmic potential such that the
total mass is bounded and whose mass does not exist in z\<^l. Then
the potential U(z) is representable by Poisson's integral in |z|<[l,
because in this case | z\ = 1 consists of only regular points of the Green's
function and V(z) =0.

(Received March 20, 1958)






