On the Ideal Boundaries of Abstract Riemann Surfaces¹⁾

By Zenjiro KURAMOCHI

Let R be a Riemann surface with positive boundary. Let $\{R_n\}$ $(n=0, 1, 2, \dots)$ be its exhaustion with compact relative boundaries ∂R_n . We proved the following

Theorem.²⁾ Let $R \notin O_g$ and $\in O_{HB}(O_{HD})^{3}$. Then $R - R_0 \in O_{AB}(O_{AD})$. We shall extend the above theorem.

Part I

Martin's topology.⁴⁾ Let $G(z, p_i)$ be the Green's function with pole at p_i . Put $K(z, p_i) = \frac{G_1(z, p_i)}{G_1(p_0, p_i)}$, where p_0 is a fixed point. Suppose $\{p_i\}$ is a divergent sequence of points. We call $\{p_i\}$ a fundamental sequence determining an ideal boundary point, if $\{K(z, p_i)\}$ converges uniformly in every compact domain of R. If $\{K(z, p_i)\}$ and $\{K(z, p_i')\}$ determine the same limit function, we say that $\{p_i\}$ and $\{p_i'\}$ define the same ideal boundary point. We denote by B the set of all the ideal boundary points. We define the distance between two points p and q of R+B by

$$\sup_{z \in R_1} \left| \frac{K(z, p)}{1 + K(z, p)} - \frac{K(z, q)}{1 + K(z, q)} \right| = \delta(p, q) .$$

Let $K_{v_i}(z, p)$ be the lower envelope of superharmonic functions larger than K(z, p) in v_i . Then R. S. Martin proved that $\lim_i K_{v_i}(z, p) = K(z, p)$ or =0 according as p is minimal⁵⁾ or not, where $v_i = E[z \in R + B : \delta(z, p)]$ $\leq \frac{1}{i}$] and that the set of all non minimal points is an F_{σ} and every

¹⁾ The results of the present article were reported at the annual meeting held on 28, May, 1957.

²⁾ Z. Kuramochi: On the behaviour of analytic functions. Osaka Math. J. 7, 1955.

³⁾ O_{g} , O_{HP} , O_{HB} , O_{HD} , O_{AB} and O_{AD} are the classes of Riemann surfaces on which the Green's function, non constant positive, bounded, Dirichlet bounded, harmonic, bounded analytic and Dirichlet bounded analytic function does not exist respectively.

⁴⁾ R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.

⁵⁾ If positive harmonic function U(z) has no positive function smaller than U(z) except its own multiples, we say that U(z) is minimal. If K(z, p) is minimal, we say p is a minimal point.

positive harmonic function U(z) is representable by a unique mass distribution on $B_1 = B - B_0$.⁶⁾

Let R^{∞} be the universal covering surface of R and map R^{∞} conformally onto $|\xi| < 1$. Let K(z, p) be a minimal function. Then K(z, p) has angular limits almost everywhere on $|\xi| = 1$. Then we have easily the following.

Lemma. Let K(z, p) be a bounded minimal positive harmonic function. Then K(z, p) has angular limits $= M = \sup K(z,p)$ or = 0 almost everywhere on $|\xi| = 1$.

In fact, let F and F' be sets on $|\xi|=1$ such that K(z, p) has angular limits $\geq M-\varepsilon$ a.e. (almost everywhere) on F and has angular limits between $M-2\varepsilon$ and ε a.e. on F' for a positive number ε ($0 < \varepsilon < \frac{M}{3}$). Then F is a set of positive measure, since K(z, p) is representable by Poisson's integral. Now F' is a set of measure zero, because if it were not so, construct a harmonic function $U(\xi)$ such that $U(\xi)$ has the same angular limits as K(z, p) a.e. on F and 0 a.e. on CF (complementary set of F). Then $U(\xi)$ is a function in R and is not a multiple of K(z, p)and K(z, p) > U(z) > 0, which implies that K(z, p) is not minimal. This is a contradiction. Hence by letting $\varepsilon \to 0$, K(z, p) has angular limits $=M=\sup K(z, p)$ a.e. on F and 0 a.e. on CF.

Theorem 1. The set of bounded minimal functions is enumerable.

Let $K(z, p_i)$ $(i=1, 2, \cdots)$ be a bounded minimal function such that $K(z, p_i)$ has angular limits $= M_i$ a.e. on E_i and zero a.e. on CE_i on $|\xi|=1$. Suppose mes $(E_i \cap E_j) \pm 0$ for $i \pm j$. Let U(z) be a harmonic function such that U(z) has angular limits $= \min(M_i, M_j)$ on $E_i \cap E_j$ and zero on $C(E_i \cap E_j)$. Then $0 < U(z) < K(z, p_i)$, $0 < U(z) < K(z, p_j)$ and U(z) is not a multiple of $K(z, p_i)$ or of $K(z, p_j)$. Hence $K(z, p_i)$ or $K(z, p_j)$ is not minimal, whence mes $(E_i \cap E_j) = 0$. On the other had, mes $E_i > 0$ and $\sum \max E_i \leq 2\pi$. Hence we have the theorem. In the following we call E_i the *image of* point p_i .

Harmonic measure of a set with respect to Martin's topology.

Let F be a closed set. Put $F_n = E[z \in R + B: \delta(z, F) \leq \frac{1}{n}]$. Let $U_{n.m}(z)$ be a harmonic function in $R_m - F_n$ such that $U_{n.m}(z) = 0$ on $\partial R_m - F_n$ and $U_{n.m}(z) = 1$ on $R_m \cap F_n$.

Put $U(z) = \lim_{m} \lim_{n} U_{n,m}(z)$ and call it the harmonic measure of the closed set F. We define the harmonic measure of a Borel set as usual.

⁶⁾ See 4).

Martin proved that the set of non minimal points is an F_{σ} of harmonic measure zero.

Lemma 1. Let R be a Riemann surface which has an enumerably infinite number of bounded minimal functions $K(z, p_i)$ $(i=1, 2, \cdots)$ and a set (clearly G_{δ} set) of Martin's boundary points of harmonic measure zero. Then mes $\sum E_i = 2\pi$.

Suppose $\sum \text{mes } E_i < 2\pi$. Then we can construct a bounded positive harmonic function U(z) in R such that U(z) has angular limits = 0 a.e. on $\sum E_i$ and =1 a.e. on $C(\sum E_i)$. Since U(z) is positive, U(z) is represented by a unique mass distribution μ as follows: $1 > U(z) = \int_{B_1} K(z, p) d\mu(p)$, where B_1 is the set of minimal points. Now the mass distribution μ has no mass at every p_i , since if U(z) has a positive mass μ_0 at p_i , U(z) must have angular limits $\mu_0 c_i M_i$ (c_i is a constant) a.e. on E_i . Since μ is Borel measurable, there exists a closed set F in $B - \bigcup p_i$ such that $U(z) \ge U'(z) = \int_F K(z, p) d\mu'(p) > 0$, where μ' is the restriction of μ on F. Let H_n be the set of bounded minimal points whose images satisfy $\frac{1}{n} > \text{mes } E_i \ge \frac{1}{n+1}$ ($n=1, 2, \cdots$). Then the number of points in H_n is finite and $\bigcup H_n = \bigcup p_i$. Put $J_n = E[z \in R + B : \delta(z, H_n) \ge \frac{1}{2} \delta(F, H_n)]$. Then $(B \cap J_n) > F$.

Denote by $U'_{k,m}(z)$ the lower envelope of positive superharmonic functions in R larger than U'(z) in $(R-R_m) \bigwedge_{n=1}^{k} J_n$. Then since $(\bigwedge_{i}^{k} J_n) > F$ and μ' is contained in F, $U'_{k,m}(z) = U'(z)$ for every m and k. Hence U'(z) = $\lim_{m} U'_{k,m}(z)$. On the other hand, clearly $U'(z) = U_k(z) = \lim_{i} \lim_{m} U_{k,m,m+i}(z)$, where $U_{k,m,m+i}(z)$ is a harmonic function in $R_{m+i} - ((R-R_m) \cap (\bigwedge_{j} J_n)$ such that $U_{k,m,m+i}(z) = U'(z)$ on $\partial(\bigwedge_{j} J_n \cap (R-R_m))$ and $U_{k,m,m+i}(z) = 0$ on $\partial R_{m+i} - (\bigwedge_{j} J \cap (R-R_m))$. Let $\omega_{k,m,m+i}(z) = 1$ on $(R-R_n) \cap (\bigwedge_{j} J_n)$ and $\omega_{k,m,m+i}(z) = \omega_k(z)$ is smaller than the harmonic measure of an open set $B - \bigvee_{j} H_n$, because the closed set $(\bigwedge_{j} J_n \cap B) \subset B - \bigvee_{j} H_n$. Hence the assumption that $B - \bigvee_{j} p_i$ is of harmonic measure zero implies $\lim_{m} \omega_k(z) = 0$. On the other hand, by $\sup U'(z) \leq 1$, $\omega_k(z) \geq U'_k(z) > U'(z) > 0$ for every k. Hence $\lim_{k} \omega_k(z) > 0$. This is a contradiction. Thus $\sum \max_{j} \max_{j} U_j(z) \leq 1$.

Class HBN."

Theorem 2. A Riemann surface $R \in HBN$, if and only if R has N-1 bounded minimal functions $K(z, p_i)$ $(i=1, 2, \dots, N-1)$ and a set of boundary points of harmonic measure zero.

Suppose that R has N-1 number of bounded minimal functions $K(z, p_i)$ and a set of boundary points of harmonic measure zero. Let U(z) be a bounded harmonic function in R. Then U(z) has angular limits = constant a.e. on the image E_i of bounded minimal point p_i , because if there exist two subset E_i' and E_i'' of E_i such that both E_i' and E_i'' are of positive measure and U(z) has angular limits $\langle L-\varepsilon \rangle$ and $>L+\varepsilon$ on E_i' and E_i'' respectively for a positive number $\varepsilon > 0$, we can prove that $K(z, p_i)$ is not minimal as before. Hence every bounded harmonic function U(z) has a constant a.e. on E_i . Hence by $\sum \text{mes} E_i$ $=2\pi$, every U(z) is a linear form of $K(z, p_i)$ $(i=1, 2, \dots, N-1)$. On the other hand, K(z, p) and a constant are linearly independent. Hence $R \in HBN$. Next suppose $R \in HBN$. Then we construct by linear transformations a system of N-1 independent harmonic functions $U_i(z)$ which have angular limits = 1 a.e. on E_i and = 0 a.e. on CE_i on $|\xi|=1$. As above, we see easily that every $U_i(z)$ is a multiple of a bounded minimal function. Thus we have the theorem.

Let G be a non compact domain in R and let U(z) be a positive harmonic function in G vanishing on ∂G . Put $U_{ex}(z) = \lim_{n \to \infty} U_n(z)$, where $U_n(z)$ is the upper envelope of subharmonic functions in $\overset{n}{R}$ smaller than U(z) in $G \cap (R-R_n)$. Let V(z) be a positive harmonic function in R. Put $T_{inex}(z) = \lim_{n} V_n(z)$, where $V_n(z)$ is the lower envelope of superharmonic functions larger than V(z) in $G \cap (R-R_n)$ and vanish on $\partial G \cap R_n$. Then we proved

Lemma 2.⁸⁾ Let U(z) be a positive harmonic function in G vanishing on ∂G .

If
$$U_{ex}(z) < \infty$$
, then $U(z) = _{inex}(U_{ex}(z))$.

Theorem 3. Let G be a non compact domain and let K(z, p) be a bounded minimal function. If $K'(z, p) = K_{inex}(z, p) > 0$, then there exists no analytic function of bounded type⁹ in G.

Suppose $K'(z, p) \leq M$. Let $\omega_n(z)$ be a harmonic function in $G \cap R_n$ such that $\omega_n(z) = 0$ on $\partial G \cap R_n$ and $\omega_n(z) = 1$ on $\partial R_n \cap G$. Then $\omega_n(z) \geq$

⁷⁾ HBN is the class of Riemann surfaces on which N number of linearly independent bounded harmonic functions exist.

⁸⁾ Z. Kuramochi: Relations between harmonic dimensions, Proc. Japan Acad. 30, 1954.

⁹⁾ Z. Kuramochi: Dirichlet problem on Riemann surfaces, I, Proc. Japan Acad. 30, 1954.

 $\frac{K'(z, p)}{M} > 0$. Map the universal covering surface G^{∞} of G conformally onto $|\xi| < 1$. Then K(z, p) and $\omega(z) = \lim_{n} \omega_n(z)$ have angular limits a.e. on $|\xi|=1$. We call the set on which $\omega(z)$ has angular limits = 1 almost everywhere the image I of the ideal boundary of G. Clearly I is a set of positive measure. Since M > K'(z, p) > 0, there exist two constant M and δ and a set E such that K'(z, p) has angular limits between M and $M-\delta$ a.e. on $E(\subset I)$ of positive measure. If there exist two sets E_1 and E_2 of positive measure such that K'(z, p) has angular limits between M and $M-\delta$ a.e. on E_1 and between $M-2\delta$ and $M-3\delta$ on E_2 , We can define a harmonic function U(z) in G such that U(z) = 0 on ∂G and U(z) has the same angular limits as K'(z, p) on E_1 and zero on CE_1 Then U(z) < K'(z, p) and U(z) is not a multiple of K'(z, p). Hence by Lemma 2, $U'(z) = U_{ex}(z) < K'_{ex}(z, p) = K(z, p)$ and U'(z) is not a multiple of K(z, p), whence K(z, p) is not minimal. This is a contradiction. Hence K'(z, p) has angular limits = 0 or = M a.e. on I. Let A(z) = W be an analytic function of bounded type. Then A(z) has angular limits a.e. on I. Let $\{\mathfrak{S}_n\}$ be a sequence of triangulations of the w-lane such that \mathfrak{S}_{n+1} is a subdivision of \mathfrak{S}_n and becomes as fine as please, when $n \to \infty$. Denote by $\{\Delta_n^i\}$ $(i=1,2,\cdots)$ the triangles of \mathfrak{S}_n . The subset where A(z) has angular limits contained in $\overline{\Delta}_n^i$ will be denoted by E_n^i . Then every E_n^i is lineary measurable. There exist at least two E_n^i , $E_n^{i'}$ such that $E_n^i \cap E_{n'}^{i'} = 0$ in I and both mes $E_n^i > 0$ and mes $E_{n'}^{i'} > 0$. On the contrary, suppose for every *n* there exists i(n) such that mes $E_n^i = \text{mes } I$. A(z) must be a constant contained in $\bigcap \overline{\Delta}_n^i$. Then we can construct a harmonic function U(z) in G such that U(z) = 0 on ∂G and has angular limits = 1 on E_n^i and 0 on $E_{n'}^{i'}$ almost everywhere. This U(z) is not a multiple of K'(z, p). Hence as above K(z, p) is not minimal. This is a contradiction. Thus we have the theorem.

Theorem 4. Let v(p) be a neighbourhood of a bounded minimal point. Then there exists no analytic function of bounded type in v(p).

Let $U_n(z)$ be a harmonic function in $R_n \cap v(p)$ such that $U_n(z) = K(z, p)$ on $\partial v(p) \cap R_n$ and $U_n(z) = 0$ on $\partial R_n \cap v(p)$. Put $V(z) = U(z) = \lim_n U_n(z)$ in v(p) and V(z) = K(z, p) in R - v(p). Then $V(z) = K_{R+B-v(p)}(z, p)$. Suppose $K_{R+B-v(p)}(z, p) = K(z, p)$. Then $K(z, p) = \int_{R+B-v(p)} K(z, p_{\sigma}) d\mu(p_{\sigma})$. Since K(z, p) is harmonic in R, $K(z, p) = \int_{B-v(p)} K(z, p_{\sigma}) d\mu(p_{\sigma})$. If μ is a point mass , $K(z, p) = K_{B-v(p)}(z, p) = K(z, q) : q \notin v(p)$, which implies $p = q \notin v(p)$. This is a contradiction. Hence μ is not a point mass. We can find a

closed set F_n with diameter $\langle \frac{1}{n_0}$ in $Cv(p)^{10}$ such that μ on F_n represents a function U'(z) which is not a multiple of K(z, p). Because every μ_n on F_n represents a function $U_n(z) = c_n K(z, p)$. Let $n \to \infty$, then $\bigcap_n F_n = q$ in cv(p). Then $\lim_n \frac{\mu_n}{\text{total mass of } \mu_n}$ represents a function K(z, q) which equales to K(z, p). This implies also $p = q \notin v(p)$. Put $U'(z) = \int_{F_{n_0}} K(z, p_n) d\mu(p_n)$. Then $U'(z) \langle K(z, p)$ and U'(z) is not a multiple of K(z, p). Hence K(z, p) is not minimal. Thus $K(z, p) - K_{R+B-v(p)}(z, p) = K'(z, p) > 0$. Thus we have the theorem by Theorem 3.

Theorem 5. Let R be a Riemann surface such that R has an enumerably infinite number of bounded minimal functions $K(z, p_i)$ $(i=1, 2, \cdots)$ and a set of boundary points of harmonic measure zero. Let G be a non compact domain such that $0 < \omega(z) = \lim_{n \to \infty} \omega_n(z)$, where $\omega_n(z)$ is a harmonic function in $G \cap R_n$ such that $\omega_n(z) = 0$ on $\partial G \cap R_n$ and $\omega_n(z) = 1$ on $\partial R_n \cap G$. Then there exists no analytic function of bounded type in G.

Put $U_i(z) = \frac{K(z, p_i)}{\sup K(z, p_i)}$. Then $U_i(z)$ has angular limits = 1 on E_i and 0 on CE_i almost everywhere and by Lemma 1, $\sum U_i(z) \equiv 1$. Let $V_n^i(z)$ be a harmonic function in $G \cap R_n$ such that $V_n^i(z) = U_i(z)$ on $G \cap \partial R_n$ and $V_n^i(z) = 0$ on $\partial G \cap R_n$. Put $V^i(z) = \lim_n V_n^i(z)$. Then $\sum V^i(z) = \omega(z) > 0$. Hence there exists at least one $K(z, p_i)$ such that $K'(z, p_i) > 0$. Hence we have the theorem by Theorem 3.

Remark. The condition $\omega(z) > 0$ in Theorem 5 cannot be replaced by $\lim_{n} \lim_{i} w_{n,n+i}(z) = w(z) > 0$, where $w_{n,n+i}(z)$ is harmonic in $R_{n+i} - (G \cap (R_{n+i} - R_n))$ such that $w_{n,n+i}(z) = 1$ on $\partial(G \cap (R_{n+i} - R_n))$ and $w_{n,n+i}(z) = 0$ on $\partial R_{n+i} - G$. In fact, we constructed a Riemann surface R^{11} with positive boundary $\in O_{HP} \subset O_{HB} \subset HNB$ such that R is a covering surface over the W-plane and R is symmetric with respect to the real axis. Let G_U and G_L be the parts of R lying over the upper and lower half plane respectively. Then $G_U + G_L = R$. If we consider the above function with respect to G_U . Then clearly w(z) > 0. But the function $\frac{1}{W+i}$: W=W(z) is a bounded analytic function on G_U . Hence w(z) > 0 is not sufficient condition.

¹⁰⁾ Cv(p) means the complementary set of v(p).

¹¹⁾ See 2).

Part II

Martin's topology.¹²⁾ Let N(z, p) be a harmonic function in $R-R_0$ with one logarithmic singularlity at p such that N(z, p) = 0 on ∂R_0 and N(z, p) has the minimal Dirichlet¹³ integral over $R-R_0$. Then we define as in case of K(z, p) the ideal boundary points. All the ideal boundary points is denoted by B. Put $\overline{R} = R - R_0 + B$. Distance between two points p and q is defined as

$$\sup_{z \in R_1 - R_0} \left| \frac{N(z, p)}{1 + N(z, p)} - \frac{N(z, q)}{1 + N(z, p)} \right| = \delta(p, q) .$$

Capacity of a closed set F in \overline{R} . Put $F_n = E[z \in \overline{R} : \delta(z, F) \leq \frac{1}{n}]$. Let $\omega_n(z)$ be a harmonic function in $\overline{R} - F_n$ such that $\omega_n(z) = 0$ on ∂R_0 , $\omega(z) = 1$ on F_n and $\omega_n(z)$ has the minimal Dirichlet integral (we abbreviate by M.D.I.) over $\overline{R} - F_n$. Then $\omega_n(z) \to \omega(z)$ in mean as $n \to \infty$. We call $\omega(z)$ C.P. (the capacitary potential) of F and $\int_{\partial R_0} \frac{\partial \omega(z)}{\partial n} ds$ the capacity of F. We proved that $\omega(z) > 0$ implies $\sup_{z \in R} \omega(z) = 1$.¹⁴ The capacity of a Borel set in \overline{R} is defined as usual.

Capacity of the set of the ideal boundary determined by a non compact domain G.

Let $\omega_n(z)$ be a harmonic function in $R - (G \cap (R - R_n))$ such that $\omega_n(z) = 0$ on ∂R_0 , $\omega_n(z) = 1$ on $G \cap (R - R_n)$ and $\omega_n(z)$ has M.D.I. over $\overline{R} - (G \cap (R - R_n))$. Then $\omega_n(z) \to \omega(z)$ in mean. Then we call $\omega(z)$ C.P. of the boundary $(B \cap G)$ determined by G. Then we proved the following¹⁵ 1) $\omega(z)$ superharmonic in¹⁵ \overline{R} and $\omega(z) > 0$ implies $\sup_{z \to z} \omega(z) = 1$.

2) The C.P. of the ideal boundary $(B \cap G \cap G_{\delta})$ is zero, where $G_{\delta} =$ $E[z \in R: \omega(z) < 1-\delta]: \delta > 0.$

There exist regular curves C_{ε} such that $\int_{\sigma_{\varepsilon}} \frac{\partial \omega(z)}{\partial n} ds = D(\omega(z))$ for 3) almost all $C_s: (1 > \varepsilon > 0)$.

4) $\omega(z)$ has M.D.I. among all functions with value $\omega(z)$ in $R - R_0 - G'$ for every $G' \supset G$.

13) The Dirichlet integral is taken with respect to $N(z, p) - \log \frac{1}{|z-p|}$ in a neighbourhood of p.

14) Z. Kuramochi: Mass distributions on the ideal boundaries, III in this volume.

15) See 11).

16) Let U(z) be a positively harmonic function satisfying $D(\min(M, U(z)) \leq \infty)$, if U(z) $\geq U_G(z)$ for every compact or non compact domain G, we say U(z) is superharmonic in \overline{R} , where $U_G(z) = \lim_{M \to \infty} U_G^M(z)$, $U_G^M(z) = \min(M, U(z))$ on ∂G and $U_G^M(z)$ has M.D.I. over G.

¹²⁾ Z. Kuramochi: Mass distributions on the ideal boundaries, II, Osaka Math. Journ, 8, 1956.

Capacitary potential of the ideal boundary determined by G_2 with respect to G_1 .

Let $G_1 \supset G_2$ be two non compact domains. Let $\omega_{n,n+i}(z)$ be a harmonic function in $((G_1 - G_2) \cap R_{n+i}) - (G_2 \cap (R_{n+i} - R_n))$ such that $\omega_{n,n+i}(z) = 0$ on $(\partial G_1 \cap R_{n+i})$, $\omega_{n,n+i}(z) = 1$ on $\partial G_2 \cap (R_{n+i} - R_n) + (G_2 \cap \partial R_n)$ and $\frac{\partial}{\partial n} \omega_{n,n+i}(z) = 0$ on $\partial R_{n+i} \cap (G_1 - G_2)$. If $D(\omega_{n,n+i}(z)) < M$ for constant M and for every i. Then $\omega_{n,n+i}(z) \to \omega_n(z)$ in mean and $\omega_n(z) \to \omega(z)$ in mean also. We call C.P. of the ideal boundary $(B \cap G_2)$ determined by G_2 with respect to G_1 . Then we have the same properties 1), 2), 3) and 4) as above.

We proved the following facts in $(II)^{11}$: the value of N(z, q) (minimal or not) at a minimal point (N(z, p) is minimal) is given by

$$N(p, q) = \frac{1}{2\pi} \lim_{m \to M} \int_{C_m} N(z, q) \frac{\partial}{\partial n} N(z, p) ds,$$

where $M = \sup N(z, p)$ and C_m is a regular curve such that $C_m = E[z \in R: N(z, p) = m]$ and $\int_{C_m} \frac{\partial}{\partial n} N(z, p) ds = 2\pi$. For non minimal point $p(N(z, p) = \int_{B_1} N(z, p_{\alpha}) d\mu(p_{\alpha}): p_{\alpha} \in B_1$, N(p, q) is given by $\int_{B_1} N(p_{\alpha}, q) d\mu(p_{\alpha})$, where B_1 is the set of minimal points.

- 1) N(z, q) is lower semicontinuous in \overline{R} with respect to Martin's topology.
- 2) Let $V_m(p) = E[z \in R : N(z, p) > m]$ and $v_n(p) = E[z \in \overline{R} : \delta(z, p) < \frac{1}{n}]$

and suppose $p \in R+B_1$. Then $N_{V_m(p)}(z, p) = N(z, p)$ for every $m < \sup N(z, p)$ and $N_{v_n(p)}(z, p) = N(z, p)$ for every n.

3) For every $V_m(p)$: $p \in R+B_1$, there exists a number n such that

$$V_m(p) \supset (R \cap v_n(p))$$
.

4) If N(z, p) is bounded, p is minimal and $N(z, p) = k\omega(z)$, where $\omega(z)$ is C.P. of p. In this case, $\omega(p) = 1$ and $\omega(z)$ is continuous at p by (3). 5)¹⁷⁾ Let $\omega(z)$ be the function in (4). Then $\omega(z) < 1$ for $z \in \overline{R} - p$.

Lemma 3. Let N(z, p) and N(z, q) $(p \neq q)$ be bounded minimal functions. Let $\omega(z)$ be C.P. of p and put $G_{1-\delta} = E[z \in R: \omega(z) > 1-\delta]$. Let $\omega^{1-\delta}(z)$ be C.P. of $(G_{1-\delta} \cap q)$. Then there exists a constant δ_0 such that

$$\omega^{1-\delta}(z) = 0$$
 for $\delta < \delta_0$.

Let F be a closed set in \overline{R} and let U(z) be a positive superharmonic function in \overline{R} vanishing on ∂R_0 . Let $U_{F_n}(z)$ be the lower envelope of superharmonic functions in \overline{R} larger than U(z) in $F_n = E[z \in \overline{R} : \delta(z, F)$

¹⁷⁾ As for 5), see Theorem 4 in 14).

 $\leq \frac{1}{n}$]. Then we proved¹⁸⁾ that $U_{F_n}(z) \downarrow U_F(z)$ and $U_F(z)$ is given by $\int_F N(z, p) d\mu(p)$. Since $(v_n(q) \cap G_{1-\delta}) \subset v_n(q)$, $\omega^{1-\delta}(z) = K\omega'(z)$, where $\omega'(z)$ is C.P. of q. But $\sup \omega^{1-\delta}(z) = 1 = \sup \omega'(z)$ implies K = 1. Hence

$$\omega(z) \ge (1-\delta)\omega^{1-\delta}(z) = (1-\delta)\omega'(z) .$$

Assume $\omega^{1-\delta}(z) > 0$ for $\delta > 0$. Then by letting $\delta \to 0$, $\omega(z) \ge \omega'(z)$ and $\omega(q) \ge \omega'(q) = 1$. This contradicts to the property (5). Hence we have lemma.

Lemma 4. Let $R-R_0$ be a Riemann surface with a finite number of bounded minimal functions $N(z, p_i)$ $(i=1, 2, \dots, k)$ and a set of the ideal boundary points (an open set) of capacity zero. We map the universal covering surface $(R-R_0)^{\infty}$ of $(R-R_0)$ onto $|\xi| < 1$. Consider $\omega_i(z)$, C.P. of p_i in $|\xi| < 1$. Then $\omega_i(z)$ has angular limits a.e. on $|\xi| = 1$. Denote by E_i the set on which $\omega_i(z)$ has angular limits = 1 almost everywhere. Then

mes
$$\sum E_i = 2\pi - r_0$$
,

where r_0 is the measure of the image of ∂R_0 .

Suppose mes $\sum E_i < 2\pi - r_0$. Then there exists a set H on $|\xi| = 1$ of positive measure in the complementary set of the sum $\sum E_i$ and the image of ∂R_0 and a constant δ such that every $\omega_i(z)$ has angular limits $<1-\delta$ a.e. on H. Then there exists a closed set H' < H such that mes $(H-H') < \varepsilon$ and $\omega_i(z) < 1-\delta + \varepsilon$ $(i=1,2,\cdots,k)$ in the intersection of $(|\xi|>1-\varepsilon)$ and the angular domain D containing endparts $A(\theta) =$ arg $|\xi - \xi_0| < \frac{\pi}{2} - \varepsilon$, $\xi_0 = e^{i\theta} \in H'$ for any given positive number $\varepsilon > 0$. Let D' be one component of D and let $U(\xi)$ be a harmonic function in D' such that $U(\xi) = 1$ on $H' \cap \partial D'$ and $U(\xi) = 0$ on $\partial D' - H'$. Then $U(\xi) > 0$. On the other hand, there exists a constant α by the property (4) such that $G_{1-\alpha}^i = E[z \in \overline{R} : \omega_i(z) > 1-\alpha]$ is open by the lower semicontinuity of $\omega_i(z)$ and $G_{1-\alpha}^i \Rightarrow p_i$.

Construct a harmonic function $W_{n,n+i}(z)$ in $R_{n+i}-R_0-(\sum_i G_{1-\alpha}^i)$ such that $W_{n,n+i}(z) = 1$ on $(R_{n+i}-R_n) \cap \partial(\sum G_{1-\alpha}^i)$ and $W_{n,n+i}(z) = 0$ on $\partial R_0 + \partial R_{n+i} - \sum G_{1-\alpha}^i$. Then $W_{n,n+i}(z) \uparrow W_n(z)$ and $W_n(z) \downarrow W(z) < \omega(z)$, where $\omega(z)$ is C.P. of a closed set $(B-\sum G_{1-\alpha}^i)$. But the fact the open set $B-\sum p_i$ is capacity zero means that every closed set contained in $B-\sum p_i$ is of capacity zero. Hence $0 = \omega(z) \ge W(z) = 0$. Now since $\omega_i(z) < 1-\delta+\varepsilon$ in $D' \cap E[|\xi|>1-\varepsilon]$, the image of $\sum G_{1-\alpha}^i$ does not

¹⁸⁾ See 11).

intersect $D' \cap E[|\xi| > 1 - \varepsilon]$ for $\alpha < \frac{\delta}{2}$. Hence $0 = W(z) > U(\xi) > 0$. This is a contradiction. Thus $\max \sum E_i = 2\pi - r_0$.

Lemma 5. Let $R-R_0$ be a Riemann surface in Lemma 4. Then every $\omega_i(z)$ has angular limits $= L_j^i$ a.e. on E_j $(j=1, 2, \dots, k)$ and mes $(E_i \cap E_j) = 0$ for $i \neq j$ and mes $E_i > 0$ for every *i*.

 $\omega_i(z)$ has angular limits = 1 a.e. on E_i . Suppose there exist two set $E'(\leq E_i)$ and $E''(\leq E_i)$ of positive measure on which $\omega_i(z)$ has angular limits >L and $< L-\delta$ a.e. on E' and E'' respectively for numbers L and $\delta > 0$. Put $H_{L-\delta'}^i = E[z \in R : \omega_i(z) > L-\delta' \ (0 < \delta' < \frac{\delta}{2})$. Then since mess E' > 0, $H_{L-\delta'}^i / G_{1-\alpha}^j (=E[z \in R : \omega_i(z) > 1-\alpha)$ determines a set of the boundary of positive harmonic measure. On the other hand, by Lemma 3, there exist δ_0 and n_0 such that C.P. of $(B / G_{1-\delta}^j / (\sum_{k \neq j} v_n(p_k)) < \varepsilon$ for $\delta < \delta_0$ and $n > n_0$ for any given $\varepsilon > 0$, whence the harmonic measure of $(B / G_{1-\delta}^j / (\sum_{k \neq j} v_n(p_k)) < \varepsilon$. Hence by Cap $(B) = \text{Cap}(\sum p_i)$, harmonic measure of $(H_{L-\delta'}^i / B / G_{1-\delta}^j)$. Let $\varepsilon \to 0$. Then the harmonic measure of $(H_{L-\delta'}^i / B / G_{1-\delta}^j)$.

Let $\omega_{H_{L-\delta'}^i \cap \nu_{n}(p_j)}(z)$ be the lower envelope of superharmonic functions in \overline{R} larger than $\omega_i(z)$ in $H_{L-\delta'}^i \cap \nu_n(p_j) \cap (R-R_m)$. Let $m \to \infty$ and then $n \to \infty$. Then $\omega_{H_{L-\delta'}^i \cap \nu_n(p_j)}(z) \downarrow \omega^*(z) = \int_{p_j} N(z, p) d\mu(p) = k\omega_j(z)$. Now $\omega^*(z) > (L-\delta') W(z)$. Hence by mes E' > 0, W(z) has angular limits = 1 a.e. on E'. But $\omega_j(z)$ has angular limits = 1 a.e. on E', which implies $k \ge L-\delta'$. Hence by $\omega_i(z) \ge \omega^*(z) \ge (L-\delta')\omega_j(z)$, $\omega_i(z)$ has angular limits $\ge L-\delta'$ a.e. on $E_j(\supset E'')$. This contradicts to the assumption. Hence $\omega_i(z)$ has angular limits $=L_j^i$ a.e. on E_j .

Next suppose mes $(E_i \cap E_j) > 0$. Then both $\omega_i(z)$ and $\omega_j(z)$ have angular limits = 1 a.e. on $E_i + E_j$, whence mes $(E_i - E_j) = 0$ and $\omega_i(z) \equiv \omega_j(z)$. This contradicts to $p_i \neq p_j$. Hence mes $(E_i \cap E_j) = 0$.

Every $\omega_i(z)$ has $L_j^i(<1)$ a.e. on E_j . On the other hand, $\omega_i(z)$ is representable by Poisson's integral. Assume mes $(E_i) = 0$. Then $\omega_i(z) \leq \max_{\substack{j \neq i \\ j \neq i}} (L_j^i) < 1$. This contradicts to $\sup \omega_i(z) = 1$. Hence mes $(E_i) > 0$ for every *i*. Thus we have Lemma 5.

Lemma 6. Let $R-R_0$ be a Riemann surface in Lemma 4 and let U(z) be a Dirichlet bounded harmonic function vanishing on ∂R_0 . Then U(z) has angular limits = constant a.e. on E_i for every *i*.

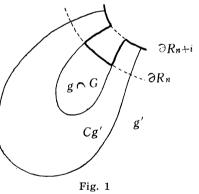
Suppose there exist two sets $E'(\subset E_i)$ and $E''(CE_i)$ of positive measure such that U(z) has angular limits $>L+\delta$ and $<L-\delta$ a.e. on E' and E''

respectively for constants L and $\delta > 0$. Put $g = E[z \in R : U(z) < L - \delta + \varepsilon']$ and $G_{1-\varepsilon'}^i = E[z \in R : \omega_i(z) > 1 - \varepsilon']$ $(0 < \varepsilon' < \frac{\delta}{2})$. Since U(z) has angular limits $> L + \delta$ on E' and $\omega_i(z)$ has angular limits = 1 a.e. on E_i , there exists a closed set $E^* (\subset E')$ of positive measure such that both U(z)and $\omega_i(z)$ converge uniformly in angular domain. Let D be an angular domain containing endparts $A(\theta) = \arg |\xi - \xi_0| < \frac{\pi}{2} - \varepsilon' : \xi_0 \in E^*$. Then there exists a number ε_0 such that $D_{\varepsilon_0} = D \cap E[|\xi| > 1 - \varepsilon_0]$ is contained in the image of $(G_{1-\varepsilon'}^i \cap g)$ and the image of $g' = E[z \in R : U(z) > L + \delta]$ does not intersect D_{ε_0} . Hence the harmonic measure W'(z) of $(B \cap G_{1-\varepsilon'}^i \cap g)$ with respect to $Cg' = E[z \in R : U(z) \le L + \delta]$ is positive, where $W'(z) = \lim_{n} \lim_{i} W'_{n,n+i}(z)$ and $W'_{n,n+i}(z)$ is harmonic in $R_{n+i} \cap (Cg' - (R - R_n) \cap g \cap G_{1-\varepsilon'}^i)$ such that $W'_{n,n+i}(z) = 0$ on $\partial g' + \partial R_{n+i} - (g \cap G_{1-\varepsilon'}^i)$ and $W'_{n,n+i}(z) = 1$ on $\partial ((R_{n+i} - R_n) \cap (g \cap G_{1-\varepsilon'}^i))$. Now let $\omega^*(z)$ be C.P. of $(g \cap B \cap G_{1-\varepsilon'}^i)$ with respect to Cg'. Then $\omega^*(z) > W'(z)$ and by the Dirichlet principle

$$D(\omega^*(z)) \leq \frac{1}{4\delta^2} D(U(z)) < \infty$$
.

Next by Lemma 3, there exists \mathcal{E} such that Cap $(G_{1-\mathfrak{e}}^i \cap \sum_{k \neq i} p_k) = 0$ and Cap $(G_{1-\mathfrak{e}}^i \cap \sum_{k \neq i} p_k) = 0$ with respect to Cg', whence Cap $(g \cap B)$ with respect to Cg' =Cap $(g \cap p_i \cap G_{1-\mathfrak{e}}^i)$ with respect to Cg' =Cap $(g \cap p_i)$ with respect to Cg'. Hence

 $0 < W'(z) < \omega^*(z) = \omega(z) .$



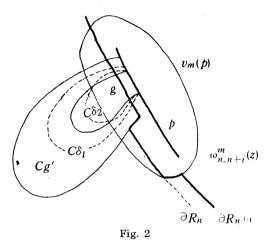
where $\omega(z)$ is C.P. of $(g \cap p_i)$ with respect to Cg'.

Let $\omega_{n,n+i}^{m}(z)$ be a harmonic function in $R_{n+i} - R_0 - (v_m(p_i) \cap Cg' \cap (R_{n+i} - R_n))$ such that $\omega_{n,n+i}^{m}(z) = 0$ on ∂R_0 , $\omega_{n,n+i}^{m}(z) = 1$ on $\partial (v_m(p_i) \cap g' \cap (R_{n+i} - R_n))$ and $\frac{\partial \omega_{n,n+i}^{m}(z)}{\partial n} = 0$ on $\partial R_{n+i} - (g' \cap v_m(p_i))$. Then $\omega_{n,n+i}^{m}(z) \rightarrow \omega_n^{m}(z)$, $\omega_n^{m}(z) \rightarrow \omega^{m}(z)$ and $\omega^{m}(z) \rightarrow \omega^{**}(z)$ in mean, i.e. $\omega^{**}(z)$ is C.P. of $(B \cap p_i \cap g')$. But $\omega^{**}(z)$ has mass only at $\bigcap_{m>0} v_m(p_i) = p_i$. Hence $\omega^{**}(z) = K\omega_i(z)$. But as above we see by mes E'' > 0 and by $\sup \omega^{**}(z) = 1$, we have

$$\omega_i(z) = \omega^{**}(z) > \omega^*(z) > 0.$$
(1)

Let C_{δ_i} (i=1,2) be regular curves of $\omega^*(z)$ and let $\omega^*_{n+i}(z)$ be a harmonic

function in $(R_{n+j}-R_0) \cap E[z \in R: \delta_1 \le \omega^*(z) \le \delta_2]$ with values δ_i on C_{δ_i} and $\frac{\partial \omega_{n,n+j}^*}{\partial n}(z) = 0$ on $\partial R_{n+i} \cap E[z \in R: \delta_1 \le \omega^*(z) \le \delta_2]$. Then by property (4), $\omega_{n+j}^*(z) \to \omega_n^*(z)$ and $\omega_n^*(z) \to \omega^*(z)$ in mean.



Apply the Green's formula

$$\int_{C_{\delta_1}+C_{\delta_2}} \omega_{n,n+j}^m(z) \frac{\partial}{\partial \eta} \omega_{n+j}^*(z) ds = \int_{C_{\delta_1}+C_{\delta_2}} \omega_{n+j}^*(z) \frac{\partial}{\partial \eta} \omega_{n,n+j}^m(z) ds \,. \tag{2}$$

But $\int_{C_{\delta_i} \cap R_{n+j}} \frac{\partial}{\partial n} \omega_{n,n+j}^m(z) ds = 0$, whence $\int_{C_{\delta_1} \cap R_{n+j}} \omega_{n,n+j}^m(z) \frac{\partial}{\partial n} \omega_{n,n+j}^*(z) ds = \int_{C_{\delta_2} \cap R_{n+j}} \omega_{n,n+j}^m(z) \frac{\partial}{\partial n} \omega_{n,n+j}^*(z) ds$. By the regularity of C_{δ_i} and by letting $j \to \infty$, $n \to \infty$ and $m \to \infty$. Then by (2)

$$\int_{C_{\delta_1}} \omega_i(z) \frac{\partial \omega^*}{\partial n}(z) ds = \int_{C_{\delta_2}} \omega_i(z) \frac{\partial}{\partial n} \omega^*(z) ds .$$
 (3)

Since $(C_{\delta_1} \cap R) > 0$ and $\omega_i(z) < 1$ in R, $\int_{C_{\delta_1}} \omega_i(z) \frac{\partial}{\partial n} \omega^*(z) ds < \int_{C_{\delta_1}} \frac{\partial}{\partial n} \omega^*(z) ds < \int_{C_{\delta_1}} \frac{\partial}{\partial n} \omega^*(z) ds < \delta_0 > 0$. On the other hand, $\omega^*(z) < \omega_i(z)$ implies $\omega_i(z) \neq 1$ on C_{δ_2} as $\delta_2 \uparrow 1$. But the right hand of (3) means that there exists at least one point z' on C_{δ_2} such that $\omega_i(z') < 1 - \delta_0$ on every regular curve C_{δ_2} . This contradict to $\omega_i(z) > \omega^*(z) \uparrow 1$ on C_{δ_2} as $\delta_2 \uparrow 1$. Hence we have the lemma.

Theorem 6. Let R be a Riemann surface with positive boundary. Then $R \in HND^{(9)}$ if and only if, the ideal boundary points of $R-R_0$ consists

¹⁹⁾ HDN is the class of Riemann surfaces on which N number of linearly independent Dirichlet bounded harmoni $^{\circ}$ functions exist.

of N number of bounded minimal points p_i (N(z, p_i) is bounded minimal) and a set of capacity zero.

Let U(z) be a Dirichlet bounded harmonic function in R. Let $U_n(z)$ be a harmonic function in $R_n - R_0$ such that $U_n(z) = U(z)$ on ∂R_0 and $U_n(z) = 0$ on ∂R_n . Then clearly $U_n(z)$ converges to a function U'(z) and $D(U(z) - U'(z)) < \infty$. Put $U^*(z) = U(z) - U'(z)$. Then $U^*(z)$ is uniquely determined by U(z). Hence we have only to consider Dirichlet bounded harmonic functions in $R - R_0$ vanishing on ∂R_0 instead of Dirichlet bounded harmonic functions in R.

Suppose that $R-R_0$ is a Riemann surface in Lemma 4. Let U(z) be a Dirichlet bounded harmonic function vanishing on ∂R_0 . Then U(z) is represented by Poisson's integral²⁰⁾ and by lemmata 4, 5, 6 U(z) has angular limits $= a_i$ a.e. on E_i . Hence U(z) is a linear form of $N(z, p_i)$. Cleary $N(z, p_i)$ are linearly independent, hence such a Riemann surface \in HND. Next suppose $R \in$ HND. If the capacity of the set of boundary points of capacity zero is positive, we can easily construct a infinite number of Dirichlet bounded harmonic functions which are linearly independent. Hence the capacity of the above set is zero. We see easily that there are exact N number of bounded minimal functions $N(z, p_i)$ in $R-R_0$. Thus we have the theorem.

In another article contained in this volume²¹, we proved that every minimal function N(z, p) = U(z, p) + V(z, p), where U(z, p) is representable by Poisson's integral and V(z, p) is a generalized Green's function. Let p be a minimal point of capacity zero and suppose $\lim_{x \to p} G(z, q) = 0$ for the Green's function G(z, q) (we say that p is regular for the Green's function) and $\sup N(z, p) = \infty$. Then V(z, p) = 0. In this case, let $U_n(z)$ be a harmonic function in $R_n - R_0$ such that $U_n(z) = \min(M, N(z, p))$ on $\partial R_0 + \partial R_n$. Then clearly, $U_n(z) \to U(z) > 0$ and by the Dirichlet principle $D(U(z)) \leq 2\pi M$. Put $U(z, M) = \frac{U(z)}{\sup U(z)}$ and $D(U(z, M)) = A_M$. Then we see easily $A_M \downarrow 0$ as $M \uparrow \infty$. Let M_i $(i=1, 2, \cdots)$ be a sequence such that $A_{M_i} \downarrow 0$. Since $\sup U(z, M_i) = 1$, each $U(z, M_i)$ are linearly independent. Hence we have the following

Theorem 7. $R \in HND$ has no minimal point p of capacity zero (N(z, p)) is minimal and $\sup N(z, p) = \infty$) such that $\overline{\lim_{z \to p}} G(z, q) = 0$.

Corollary. If R has only regular boundary points for the Green's

 $^{20)\,}$ Z. Kuramochi: On the existence of harmonic functions on Riemann surfaces. Osaka Math. Journ. 7, 1955.

²¹⁾ Z. Kuramochi: On harmonic functions representable by Poisson's integral.

function, $R \in HND$ if and only if, the set of minimal functions consists of exact N number of bounded minimal functions.

Theorem 8. Let G be a non compact domain and let $N(z, p) (=\kappa\omega(z))$, where $\omega(z)$ is C.P. of p) be a bounded minimal function and let U(z) be a harmonic function in G such that U(z)=N(z, p) on ∂G and U(z) has M.D.I. over G. If N(z, p) > U(z), then there exists no Dirichlet bounded analytic function in G.

Lemma 7. Let G and N(z, p) be as above. Then there exists a non compact domain g such that $(B \cap g \cap v_n(p))$ is positive capacity with respect to G.

Since U(z) has M.D.I. among all functions with value N(z, p) on ∂G , U(z) = U(G', z), where U(G', z) = U(z) on $\partial G + \partial G'$ and U(G', z) has M.D.I. over G-G' for every domain $G' \subseteq G$. Since $N(z, p) = Nv_{n(p)}(z, p)$, $N(z, p) = N(v_n(p),$ (z, p), where $N(v_n(p), z, p) = N(z, p)$ on $\partial G - v_n(p)$ $+ (\partial v_n(p) \cap G)$ and has M.D.I. over $G - v_n(p)$. Put V(z) = N(z, p) - U(z) and $g = E[z \in G : V(z)]$ $\geq \frac{M}{2}$, where $M = \sup V(z)$. Hence

$$V(z) = V(v_n(p) \cap G, z) \leq V(v_n(p) \cap g, z)$$

$$\leq V(v_n(p) \cap Cg, z) \leq V(v_n(p) \cap Cg, z)$$

$$+ M\omega'(v_n(p) \cap g, z),$$

where V(S, z) is the function in G-S such that V(S, z) = V(z) on $\partial S + \partial G$ and V(S, z) has M.D.I. over G-S and $\omega'(v_n(p) \cap g, z)$ is the C.P. of $(g \cap v_n(p))$ with respect to G.

Clearly $D(\omega'(v_n(p) \cap g, z)) \leq \frac{4}{M^2} D(U(z)) < \infty$. If $\omega'(v_n(p) \cap g, z) \downarrow 0$, as $n \to \infty$. Then sup $V(z) \leq \frac{M}{2}$. This is a contradiction. Hence $(g \cap p)$ is a set of positive capacity with respect to G.

Let $\omega(g \cap p, z)$ be C.P. of $(g \cap p)$ with respect to $R - R_0$. Then

$$\omega(g \cap p, z) \geq \omega'(g \cap p, z) > 0$$
,

whence $\sup \omega(g \cap p, z) = 1$, but $\omega(g \cap p, z)$ has no mass except at p, whence $\omega(g \cap p, z) = \omega(z)$, where $\omega(z)$ is C.P. of p.

Lemma 8. Let G and g be domains in Lemma 7. If a Dirichlet bounded analytic function W(z) exists in G. Then we can find a non compact domain g' such that C.P. of $(g \cap g' \cap p)$ with respect to G is positive and as small as we please.

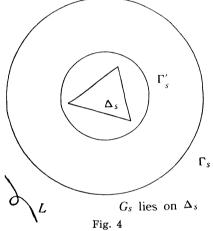
G Fig. 3 Suppose a Dirichlet bounded analytic function W(z) in G. Let $\{\bigotimes_n\}$ be a sequence of triangulation of the w-plane such that whose every triangle $\{\Delta_n^i\}$ has a diameter $<\frac{1}{n}$ and \bigotimes_{n+1} is a subdivision of \bigotimes_n and becomes as fine as we please as $n \to \infty$. The part of G whose image lying on Δ_n^i consists of at most enumerably infinite number of component G_n^{ij} $(j=1,2,\cdots)$ compact or not. Then $G = \sum_{n,i,j} G_n^{ij}$. Let $\omega_n^{ij}(z)$ be C.P. of $(G_n^{ij} \cap p \cap g)$ with respect to G. Then $\sum \omega_n^{ij}(z) \ge \omega'(g \cap p, z) > 0$, whence there exists at least one component G_n^{ij} such that $\omega_n^{ij}(z) > 0$. Suppose $\omega_{n_0}^{ij_0j_0}(z) > 0$. Let L be a compact and bounded arc on ∂G such that the projection of L has a positive distance δ from $\Delta_{n_0}^{i_0j_0}(z^{22})$ $(G_{n_0}^{i_0j_0}$ lies no $\Delta_{n_0}^{i_0j_0}$). As the way above mentioned we can find two sequences

$$G_{n_0}^{i_0j_0} \supset G_1 \supset G_2 \supset G_3, \cdots$$

 $\Delta_{n_0}^{i_0} \supset \Delta_1 \supset \Delta_2 \supset \Delta_3, \cdots$

such that G_s lies on Δ_s , diameter of $\Delta_s < \frac{1}{s}$ and C.P. $\omega_s'(z)$ of $(G_s \cap p \cap g)$ with respect to G is positive.

Let Γ_s and Γ_s' be two concentric circles such that the radius of $\Gamma_s = \frac{\delta}{4}$, radius of $\Gamma_s' < \frac{1}{s}$ and $\partial \Gamma_s'$ encloses Δ_s . Let $V_s(w)$ be a harmonic function in $\Gamma_s - \Gamma_s'$ such that $V_s(w) = 1$ on $\partial \Gamma_s'$ and



 $V_s(w) = 0$ on $\partial \Gamma_s$. Then we see $K_s = \max\left(\left|\frac{\partial V(w)}{\partial u}\right|^2 + \left|\frac{\partial V(w)}{\partial v}\right|^2\right)(w = u + iv)$ $\rightarrow 0$ as $s \rightarrow \infty$. Suppose D(A(z)) < A. Then the area of the image of G by w = A(z) < A. Let $\tilde{V}_s(w)$ be a continuous function in the whole w-plane such that $\tilde{V}_s(w) \equiv 1$ in $\Gamma_{s'}$, $\tilde{V}_s(w)$ is harmonic in $\Gamma_s - \Gamma_{s'}$ and $\tilde{V}_s(w) \equiv 0$ outside of Γ_s . Let $\tilde{V}_s(z)$ be a continuous function in G such that $\tilde{V}_s(z) \equiv \tilde{V}_s(w(z))$. Then since the image of L lies outside of Γ_s , $\tilde{V}_s(z) = 0$ on L and $\tilde{V}_s(z) = 1$ in G_s . Then

$$D_G[\tilde{V}_s(z)] \leq AK_s$$
.

Let $\omega_{s,l,m}(z)$ be a harmonic function in $(G \cap R_m) - (v_l(p) \cap g \cap G_s)$ such

²²⁾ If we take sufficienty small Δ , we can find L as above mentioned.

that $\omega_{s,m,l}(z) = 0$ on L, $\omega_{s,l,m}(z) = 1$ on $\partial(v_l(p) \cap g \cap G_s)$ and $\frac{\partial}{\partial n} \omega_{s,m,l}(z) = 0$ on $\partial R_m - (g \cap v_l(p) \cap G_s)$. Then

 $D[\omega_{s,m,l}(z)] \leq D[\tilde{V}_s(z)] \leq AK_s.$

Clearly $\omega_{s.m.l}(z) \ge \omega_{s'}(z) > 0$. Let $m \to \infty$ and then $l \to \infty$, then $\omega_{s.m.l}(z) \to \omega_{s}^{*}(z) > \omega_{s'}(z) > 0$ and $D(\omega_{s}^{*}(z)) = \int_{L} \frac{\partial \omega_{s}^{*}(z)}{\partial n} ds \le AK_{s}$. Let $s \to \infty$, then $\int_{L} \frac{\partial \omega_{s}^{*}(z)}{\partial n} ds \to 0$ and further $\max_{z \in L} \left| \frac{\partial \omega_{s}^{*}(z)}{\partial n} \right| \to 0$ ($< \min_{z \in L} \frac{\partial \omega'(z)}{\partial n}$). Hence there exists a point z_{0} in a neighbourhood of L and a number s_{0} such that

$$\omega_s^*(z_{\scriptscriptstyle 0}) > \omega'(z_{\scriptscriptstyle 0}) \qquad ext{for} \quad s \ge s_{\scriptscriptstyle 0}$$
 ,

where $\omega'(z)$ is C.P. of $(g \cap p)$ with respect to G.

Let $\omega_s''(z)$ be C.P. of $(p \cap g \cap G_s)$ with respect to G. Then by the Dirichlet principle

$$D(\omega'(z)) \ge D(\omega_s''(z)) \ge D(\omega_s^*(z))$$

On the other hand, clear $\omega_s^*(z) \ge \omega_s''(z)$. Hence $\omega'(z_0) > \omega_s^*(z_0) > \omega_s''(z_0)$, whence

$$0 < \omega_s''(z) < \omega'(z)$$
.

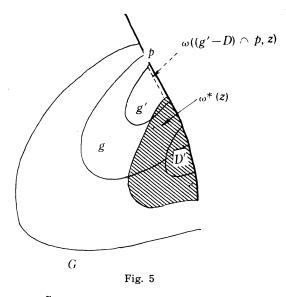
Take G_s as g' in the lemma, then we have the lemma. In the sequel we denote $\omega_s''(z)$ by $\omega''(z)$ for simplicity.

Proof of the theorem.

Put $D = E[z \in R: \omega'(z) - \omega''(z) \ge \frac{M}{3}]$ and $D' = E[z \in R: \omega'(z) - \omega''(z) \ge \frac{2}{3}M)$ $(M = \sup(\omega'(z) - \omega''(z))$. Since $\omega'(z) = 1$ in $(g \land p)$ and $\omega''(z) = 1$ in $(g' \land p)$ except at most capacity zero with respect to G by property (2), Cap $(D \land p) = 0$ with respect to G.

Whence Cap
$$((g' - D) \cap p) > 0$$
 with respect to G. (4)

 $\omega'(z)$ and $\omega''(z)$ are C.P.s of $(p \cap g)$ and $(p \cap g')$ respectively. Then by property (4) $\omega'(z)$ and $\omega''(z)$ have M.D.I. over $D - (g \cap v_n(p))$ among all functions with values $\omega'(z)$ and $\omega''(z)$ on $\partial D + \partial (g \cap v_n(p) \cap D)$ respectively. Hence $\omega'(z) - \omega''(z)$ has also M.D.I. over $D - (g \cap v_n(p))$ among all functions with value $\omega'(z) - \omega''(z)$ on $\partial D + \partial (D \cap g \cap v_n(p))$. Let $V_n(z)$ be a harmonic function in D such that $V_n(z) = \min(\omega'(z) - \omega''(z), \frac{M}{3})$ on $\partial D +$ $\partial (g \cap v_n(p))$ and $V_n(z)$ has M.D.I. over $D - (D' \cap v_n(p))$. Let $\tilde{V}_n(z)$ be a harmonic function in $D - (D' \cap v_n(p))$ such that $\tilde{V}_n(z) = 1$ on $\partial (D' \cap v_n(p))$,



 $\tilde{V}_n(z) = 0$ on ∂D and $\tilde{V}_n(z)$ has M.D.I. Then

$$D(\tilde{V}_n(z)) \leq \frac{4}{9M^2} D(\omega'(z) - \omega''(z))$$

by the maximum principle

$$0 < \omega'(z) - \omega''(z) < V_n(z) + M\tilde{V}_n(z) .$$

Let $n \to \infty$, if $\lim_{n} \tilde{V}_{n}(z) = 0$, $M = \sup(\omega'(z) - \omega''(z)) \leq \frac{2M}{3}$. This is contratiction.

Hence C.P. $\omega^*(z)$ of $(D' \cap p) > 0$ with respect to D. (5)

Let $\omega((g'-D) \cap p, z)$ be C.P. of $((g'-D) \cap p)$ in G. Then by (4) $\omega((g'-D) \cap p, z) > 0$ and since $\sup \omega((g'-D) \cap p, z) = 1$ and $(g' \cap p - D) < p$,

$$\omega((g'-D) \cap p, z) = \omega(z),$$

where $\omega(z)$ is C.P. of p.

On the other hand, $\omega^*(z) > 0$ and clearly $\omega^*(z) < \omega(z)$.

Hence as in Lemma 6, we can prove that there exists at least a point z_i such that $\omega((g'-D) \bigcap p, z_i) < 1 - \delta_0(\delta_0 > 0)$ on every regular curve C_{δ} of $\omega^*(z)$ as $\delta \uparrow 1$. This contradicts to $\omega((g'-D) \bigcap p, z) \equiv \omega(z) > \omega^*(z)$. Hence we have the theorem.

Theorem 9. Let v(p) be a neighbourhood of a bounded minimal point p. Then there exists no Dirichlet bounded analytic function in v(p).

Let U(z) be a harmonic function in v(p) such that U(z) = N(z, p)

on $\partial v(p)$ and U(z) has M.D.I. over v(p). Then $U(z) = N_{B-Cv(p)}(z, p)$. Suppose U(z) = N(z, p). Then $U(z) = \int_{B-v(p)} N(z, p) d\mu(p)$. Then we can as in Theorem 4 prove that there exist two positive mass distributions μ_1 and μ_2 in cv(p) such that μ_1 and μ_2 represent functions which are not multiples of N(z, p). Hence $N(z, p) - \int N(z, p) d\mu_1(p) = \int N(z, p) d\mu_2(p) > 0$. This contradicts the minimality²³⁾ of N(z, p). Hence N(z, p) > U(z). Hence by Theorem 8, we have Theorem 9.

Theorem 10. Let G be a non compact domain in $R \in HND$. If there exists a non constant Dirichlet bounded harmonic function U(z) vanishing on ∂G , then there exists no Dirichlet bounded analytic function in G.

We can suppose that $G \subset R - R_0$. Then by Theorem 6, $R - R_0$ has *N* number of bounded minimal points. Map the universal covering surface G^{∞} onto $|\xi| < 1$. Then U(z) is represented by Poisson's integral. Hence there exists a set *E* of positive measure on $|\xi| = 1$ such that U(z) has angular limits $>\delta$ or $<-\delta$ a.e. on *E*. We can suppose $U(z) > \delta$ on *E*. Put $G' = E[z \in R: U(z) > \frac{\delta}{2}]$ and let $\omega^*(z)$ be C.P. of $(B \cap G')$ with respect to *G*. Then

$$D(\omega^*(z)) < rac{4}{\delta^2} D(U(z))$$
 and by mes $E > 0$, $\omega^*(z) > 0$.

Since by Theorem 6 Cap $(B-\sum p_i)=0$ and Cap $(B-\sum p_i)$ with respect to G=0, Cap $(G' \cap \sum p_i)$ with respect to G=Cap $(B \cap G')$ with respect to G.

Then there exists at least a point p_i such that $\operatorname{Cap}(G' \cap p_i)$ with respect to G > 0, whence C.P. $\omega(G' \cap p_i, z)$ of $(G' \cap p_i) = \omega_i(z)$ by $\sup \omega(G' \cap p_i, z) = 1$. Put $\omega^{**}(z) = \omega(G' \cap p_i, z)$. Next let V(z) be a harmonic function in G such that $V(z) = \omega^{**}(z)$ on ∂G and V(z) has M.D.I. over G. Then as in Theorem 6

$$\int_{\sigma_1+\sigma_2} V(z) \frac{\partial \omega^*}{\partial n}(z) ds = \int_{\sigma_1+\sigma_2} \omega^*(z) \frac{\partial}{\partial n} V(z) ds$$
$$\int_{\sigma_1} V(z) \frac{\partial \omega^*}{\partial n}(z) ds = \int_{\sigma_2} V(z) \frac{\partial \omega^*}{\partial n}(z) ds,$$

where C_1 and C_2 are regular curve of $\omega^*(z)$. Then there at least a point

²³⁾ If U(z) has no functions V(z) such that both V(z) > 0 and U(z) - V(z) > 0 are harmonic and superharmonic in $\overline{R-R_0}$ except its own multiples, we say that U(z) is a minimal function.

 z_i on C_2 such that $V(z_i) < 1-\delta_0$ for a positive number δ_0 , whence $V(z) < \omega_i(z)$. Hence there exists at least a point p_i such that $N(z, p_i) - N_{CG}(z, p_i) > 0$, whence by Theorem 8, we have the theorem.

Part III

Suppose an analytic function w = f(z) in R. Let w_0 be a point of the *w*-plane. Then the part of R on $|w-w_0| < r$ consists of at most enumerably infinite number of components. Such one component is called a connected piece on $|w-w_0| < r$. Then

Theorem 11. Let R be a Riemann surface in Theorem 5, i.e., there exists at most enumerably infinite number of bounded minimal functions $K(z, p_i)$ and a set of boundary of harmonic measure zero. Then every connected piece C on $|w-w_0| < r$ covers $|w-w_0| < r$ except at most a set of capacity zero.

Let G be a non compact domain such that f(G) = C. Suppose C does not cover a set F (clearly closed) of positive capacity. Then there exists a subset F' of F of positive capacity such that $F' \leq E[|w-w_0| \leq r' \leq r]$. Then there exists a positive bounded harmonic function $\omega(w)$ in C vanishing on $|w-w_0|=r$. Put $\omega(z) = \omega(f(z))$. Then $\omega(z)$ is bounded harmonic function in G vanishing on ∂G . Then by Theorem 6, there exists no bounded analytic function in G. But $|f(z)-w_0| \leq r$ on G. This is a contradiction. Hence we have the theorem.

Theorem 12. Let $R \in HND$, and let C be a connected piece on $|w-w_0| < r$. If the area of C is finite, C cover $|w-w_0| < r$ except at most a set of capacity zero.

Suppose C does not cover a set of positive capacity. Then as in Theorem 11, there exists a non constant positive bounded harmonic function $\omega(z)$ in G vanishing on ∂G . We map the universal covering surface G^{∞} onto $|\xi| < 1$. Then there exists a set E of positive measure such that $\omega(z)$ has angular limits $>\delta_0>0$ on E for a constant δ_0 . Now f(z) = w is bounded in G. f(z) has angular limits a.e. on E. Then there exists a number r' and a set $E'(\subset E)$ of positive measure such that f(z) has angular limits in $|w-w_0| < r' < r$ a.e. on E'. Hence there exists a closed set $E'' \subset E'$ of positive measure such that both $\omega(z)$ and f(z) converge uniformly in angular domain. Put $g = E[z \in G : \omega(z) > \frac{\delta}{2}] \cap E[z \in G :$ $|f(z) - w_0| < r']$. Let $V_{n.n+i}(z)$ be a harmonic function in $G \cap (R_{n+i} - ((R_{n+i} - R_n) \cap g)))$ such that $V_{n.n+i}(z) = 0$ on $(\partial G \cap R_{n+i}) + \partial R_{n+i} - g$ and $V_{n.n+i}(z) = 1$ on $\partial (R_{n+i} - R_n) \cap g$. Then $\lim_n \lim_i V_{n.n+i}(z) > 0$. Next let

S(w) be a harmonic function in $r' < |w - w_0| < r$ such that S(w) = 0 on |w| = r' and S(w) = 1 on |w| = r and $S(w) \equiv 1$ in $|w - w_0| < r'$. Then $\max\left(\left|\frac{S(w)}{\partial u}\right|^2 + \left|\frac{S(w)}{\partial v}\right|^2\right) \le K$: w = u + iv. Let T(z) be a continuous function in G such that $T(z) \equiv S(f(z))$. Then $D(T(z)) < KD_G(f(z))$. Hence there exists a harmonic function such that W(z) > 0, W(z) = 0 on ∂G and $D(W(z)) \le D(T(z)) \le KD(f(z))$ by the Dirichlet principle. Hence by Theorem 10, we have the theorem.

(Received March 20, 1958)