On Knots and Periodic Transformations ${ }^{1)}$

By Shin'ichi Kinoshita

Introduction

Let T be a homeomorphism of the 2 -sphere S^{2} onto itself. If T is regulat ${ }^{2)}$ except at a finite number of points, then it is proved by B.v. Kerékjártó [11] that T is topologically equivalent to a linear transformation of complex numbers. Now let T be a homeomorphism of the 3 -sphere S^{3} onto itself. If T is regular except at a finite number of points, then it is known ${ }^{3}$ that the number of points at which T is not regular is at most two. Furthermore it is also known ${ }^{4)}$ that if T is regular except at just two points, then T is topologically equivalent to the dilatation of S^{3}. Let T be sense preserving and regular except at just one point. Then whether or not T is equivalent to the translation of S^{3} is not proved yet ${ }^{5}$. Now let T be regular at every point of S^{3}. In general, in this case, T can be more complicated ${ }^{6)}$ and there remain difficult problems ${ }^{77}$.

In this paper we shall be concerned with sense preserving periodic transformations of S^{3} onto itself, which is a special case of regular transformations of S^{3}. Furthermore suppose that T is different from the identity and has at least one fixed point. Then it has been shown by P. A. Smith [19] that the set F of all fixed points of T is a simple closed curve. It is proved by D. Montgomery and L. Zippin [13] that generally T is not equivalent to the rotation of S^{3} about F. It will naturally be conjectured ${ }^{8)}$ that if T is semilinear, then T is equivalent to the rotation of S^{3}. In this case F is, of course, a polygonal simple

[^0]closed curve in S^{3} and D. Montgomery and H. Samelson [14] has proved ${ }^{9}$ that if F is a parallel knot of the type $(p, 2)$ then F is trivial in S^{3} provided the period of T is two.

Now let M be a closed 3 -manifold without boundary and with trivial 1-dimensional homology group ${ }^{10,11)}$. If k is a polygonal simple closed curve in M, then we can define the g-fold cyclic covering space $M_{g}(k)$ of M, branched along k. Then in $\S 1$ it will be proved that the fundamental group of M is isomorphic to a factor group of that of $M_{g}(k)$. Furthermore a fundamental formula of the Alexander polynomial of k in M (see (6)), which is proved by R. H. Fox [6] for $M=S^{3}$, will be given.

Now let k_{0} be a polygonal simple closed curve in S^{3}, whose 2 -fold cyclic covering space $M_{2}\left(k_{0}\right)$ of S^{3}, branched along k_{0}, is homeomorphic to S^{3}. Then it will be proved in $\S 2$ that (i) the determinant of the knot k_{0} must be equal to the square of an odd number, (ii) the degree of the Alexander polynomial of k_{0} is not equal to two and that (iii) almost all knots of the Alexander-Briggs' table ${ }^{12)}$ are not equivalent to k_{0}, where k_{0} is considered as a knot in $M_{2}\left(k_{0}\right)$. Similarly if k_{1} is a polygonal simple closed curve in S^{3}, whose 3 -fold cyclic covering space $M_{3}\left(k_{1}\right)$ of S^{3}, branched along k_{1}, is homeomorphic to S^{3}, then it will be proved that (i) the degree of the Alexander polynomial of k_{1} is not equal to two and that (ii) almost all knots of the Alexander-Briggs' table ${ }^{12)}$ are not equivalent to k_{1}, where k_{1} is considered as a knot in $M_{3}\left(k_{1}\right)$.

If T is a periodic transformation of S^{3} described above, then the orbit space M is a simply connected 3 -manifold. Furthermore S^{3} is the p-fold cyclic covering space of M, branched along F, where p is the period of T. Therefore, under the assumption that the well known Poincare conjecture of 3 -manifolds is true ${ }^{133}$, the results of $\S 2$ can be naturally applied to the position of F in S^{3}. (See Theorem 5 and Theorem 6).

§ 1.

1. In this section M will denote a closed 3 -manifold without boundary and with trivial 1-dimensional homology group. Let k be an

[^1]oriented polygonal simple closed curve in M and let V be a sufficiently small tubular neighbourhood of k in M. Then the boundary \dot{V} of V is a torus. A meridian of V is by definiton a simple closed curve on \dot{V} which bounds a 2 -cell in V but not on \dot{V}. Let x be an oriented meridian of V. For each simple closed curve y which does not intersect k we can define the linking number Link (k, y) of k and $y^{14)}$. Then
$$
\operatorname{Link}(k, x)= \pm 1
$$

We may always suppose that x is so oriented that

$$
\operatorname{Link}(k, x)=1
$$

It is easy to see that for each integer $p(\neq 0) x^{p}$ is not homotopic to 1.
We shall denote the fundamental group of $M-k$ by $F(M-k)$ or sometimes by $F(k, M)$. Now let $\left\{x, x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a complete set of generators of $F(M-k)$, where x stands for the element of the fundamental group corresponding to the path x. Put

$$
\operatorname{Link}\left(k, X_{i}\right)=L(i) \quad(i=1,2, \cdots, n)
$$

and

$$
x_{i}=x^{-L(i)} X_{i} .
$$

Then $\left\{x, x_{1}, x_{2}, \cdots, x_{n}\right\}$ forms again a complete set of generators of $F(M-k)$. For each i

$$
\begin{equation*}
\operatorname{Link}\left(k, x_{i}\right)=0 \tag{1}
\end{equation*}
$$

Let $R_{s}=1(s=1,2, \cdots, m)$ be a complete system of defining relations of $F(M-k)$ with respect to $\left\{x, x_{1}, \cdots, x_{n}\right\}$. Then the symbol

$$
\begin{equation*}
\left\{x, x_{1}, \cdots, x_{n}: R_{1}, R_{2}, \cdots, R_{m}\right\} \tag{2}
\end{equation*}
$$

will be called a presentation ${ }^{15)}$ of $F(M-k)$. It is easy to see that

$$
\left\{x, x_{1}, \cdots, x_{n}: x, R_{1}, \cdots, R_{m}\right\}
$$

is a presentation of $F(M) . x$ being equal to unity, this presentation can be transformed to the following one:

$$
\begin{equation*}
\left\{x_{1}, x_{2}, \cdots, x_{n}: \hat{R}_{1}, \hat{R}_{2}, \cdots, \hat{R}_{m}\right\} \tag{3}
\end{equation*}
$$

where \hat{R}_{s} is obtained by deleting x from R_{s}.

```
14) See \([17]\) § 77.
15) See R. H. Fox [6].
```

2. Let $w \in F(k, M)$. Then w is written as a word which consists of at most x, x_{1}, \cdots, x_{n}. Let $f(w)$ be an integer which is equal to the exponent sum of w, summed over the element x. By (1) it is easy to see that f is a homomorphism of $F(k, M)$ onto the set of all integers. Now put

$$
F_{g}(k, M)=\{w \in F(k, M) \mid f(w)=0(\bmod g)\}
$$

where g is a positive integer. Then $F_{g}(k, M)$ is a normal subgroup of $F(k, M)$. Therefore there exists uniquely the g-fold cyclic covering space $\tilde{M}_{g}(k)^{16)}$ of $M-k$, whose fundamental group is isomorphic to $F_{g}(k, M)$. Since x is a meridian of V, we can also define the g-fold cyclic covering space $M_{g}(k)$ of M, branched along $k^{17)}$. For each $g M_{g}(k)$ is a closed 3-manifold without boundary.
$F\left(\tilde{M}_{g}(k)\right)$ and $F\left(M_{g}(k)\right)$ are calculated from $F(k, M)$ as follows: Let (2) be a presentation of $F(k, M)$. Put

$$
x_{i j}=x^{j} x_{j} x^{-j} \cdot \quad\binom{i=1,2, \cdots, n}{j=0,1, \cdots, g-1}
$$

Since $f\left(R_{s}\right)=0$ for every $s(s=1,2, \cdots, m), x^{t} R_{s} x^{-t}(t=0,1, \cdots, g-1)$ is expressible by a word which consists of at most $x_{i j}$ and x^{g}. We denote it by notations

$$
x^{t} R_{s} x^{-t}=\tilde{R}_{s t}
$$

Then

$$
\begin{equation*}
\left\{x^{g}, x_{i j}: \tilde{R}_{s t}\right\} \tag{4}
\end{equation*}
$$

is a presentation of $F\left(\tilde{M}_{g}(k)\right)$ and

$$
\begin{equation*}
\left\{x^{g}, x_{i j}: x^{g}, \tilde{R}_{s t}\right\} \tag{5}
\end{equation*}
$$

is one of $F\left(M_{g}(k)\right)$.
Theorem 1. $F(M)$ is isomorphic to a factor group of $F\left(M_{g}(k)\right)$.
Proof. Let (3) and (5) be presentations of $F(M)$ and $F\left(M_{g}(k)\right)$, respectively. Let G be a group whose presentation is given by

$$
\left\{y^{g}, y_{i}, y_{i j}: y^{g}, \tilde{R}_{s t}\left(y^{g}, y_{i j}\right), y_{i j} y_{i}^{-1}\right\}
$$

This presentation can be transformed to the following one:

$$
\left\{y_{i}: \hat{R}_{s}\left(y_{i}\right)\right\} .
$$

[^2]Therefore $F(M)$ is isomorphic to G. On the other hand it is easy to see that G is isomorphic to a factor gronp of $F\left(M_{g}(k)\right)$. Thus $F(M)$ is isomorphic to a factor group of $F\left(M_{g}(k)\right)$, and our proof is complete.
3. Now let (2) be a presentation of $F(M-k)$. Replace the multiplication by the addition and put

$$
j x \pm x_{i}-j x= \pm x^{j} x_{i} . \quad\binom{i=1,2, \cdots, n}{j=0, \pm 1, \pm 2, \cdots}
$$

Furthermore suppose that the addition is commutative. Then for each relation $R_{s}=1(s=1,2, \cdots, m)$ we have a relation $\bar{R}_{s}=0$, which is a linear equation of x_{i}. From these linear equations we can make the Alexander matrix, whose (s, i)-th term is the coefficient of x_{i} in $\bar{R}_{s}=0$. If we put $x=1$ in the Alexander matrix, then we have a matrix which gives the 1 -dimensional homology group $H_{1}(M)$ of M. Since $H_{1}(M)$ is trivial by our assumption $m \geqq n$.

If two oriented knots k_{1} and k_{2} in M are equivalent to each other, then $F\left(k_{1}, M\right)$ and $F\left(k_{2}, M\right)$ are directly isomorphic ${ }^{187}$. It was proved by J. W. Alexander [2] that if two indexed groups ${ }^{187}$ are directly isomorphic to each other, then the elementary factors different from unity of the Alexander matrices and also their products $\Delta\left(x, k_{i}, M\right)(i=1,2)$ are the same each other. Of course they are determined up to factors $\pm x^{p}$, where p is an integer. $\Delta(x, k, M)$ will be called the Alexander polynomial of k in M. Clearly $\Delta(1, k, M)= \pm 1$. It should be remarked that $\Delta\left(x, k, M_{g}(k)\right)^{199}$ is also defined from (4) replacing x^{g} by x.

It can be proved that

$$
\begin{equation*}
\Delta\left(x, k, M_{g}(k)\right)=\prod_{j=0}^{g-1} \Delta\left({ }^{g} \sqrt{x} \omega_{j}, k, M\right), \tag{6}
\end{equation*}
$$

where $\omega_{j}=\cos \frac{2 \pi j}{g}+i \sin \frac{2 \pi j}{g}$. This is known for the case $M=S^{320}$. But as the proof of the latter depends essentially only on the following equation of determinants:

$$
\left.\left|\begin{array}{cccc}
a_{1} & a_{2} & \cdots & a_{g} \\
x a_{2} & a_{1} & \cdots & a_{g-1} \\
\cdots & \cdots \cdots & \cdots & \cdots \\
x a_{g} & x a_{3} & \cdots & a_{1}
\end{array}\right|=\prod_{j=0}^{q-1} f^{g} \sqrt{x} \quad \omega_{j}\right)
$$

[^3]where $f(y)=a_{1}+a_{2} y+\cdots+a_{g} y^{g-1}$, the proof for the general case is the same as for the case $M=S^{3}$ and is omitted.

As a special case of (6) we have

$$
\begin{equation*}
\Delta\left(1, k, M_{g}(k)\right)=\prod_{j=0}^{g-1} \Delta\left(\omega_{j}, k, M\right) \tag{7}
\end{equation*}
$$

$\Delta\left(1, k, M_{g}(k)\right) \neq 0$ if and only if the 1 -dimensional Betti number $p_{1}\left(M_{g}(k)\right)=0$. If $p_{1}\left(M_{g}(k)\right)=0$, then $\left|\Delta\left(1, k, M_{g}(k)\right)\right|$ is equal to the product of 1 -dimensional torsion numbers. In this case if $\left|\Delta\left(1, k, M_{g}(k)\right)\right|=1$, then $M_{g}(k)$ has no torsion number.

§ 2.

1. Let k_{0} be a simple closed curve in the 3 -sphere S^{3} and M_{2} the 2 -fold cyclic covering space of S^{3}, branched along k_{0}. In No. 1 and 2 we assume that M_{2} is homeomorphic to the 3 -sphere and the position of k_{0} in M_{2} will be studied. These results will be used later in $\S 3$. In No. 1 we prove only the following

Theorem 2. The determinant of k_{0} in M_{2} must be equal to the square of an odd number.

Proof. Let $\Delta(x)=\sum_{r=1}^{2 n} a_{r} x^{r}$ be the Alexander polynomial of k_{0} in S^{3}. Since the determinant d_{0} of k_{0} in M_{2} is the product of torsion numbers of the 1 -dimensional homology group of the 2 -fold cyclic covering space of M_{2}, branched along k_{0}, it follows from (7) that

$$
d_{0}=|\Delta(1) \Delta(-1) \Delta(i) \Delta(-i)|
$$

By our assumptions $|\Delta(1)|=1$ and $|\Delta(-1)|=1$. Put

$$
\begin{aligned}
& a=a_{0}-a_{2}+a_{4}-\cdots+(-1)^{n} a_{2 n} \\
& b=a_{1}-a_{3}+a_{5}-\cdots+(-1)^{n-1} a_{2 n-1}
\end{aligned}
$$

Suppose first that n is even. Then

$$
\Delta(i)=a_{0}+a_{1} i-a_{2}-a_{3} i+\cdots-a_{2 n-2}-a_{2 n-2} i+a_{2 n}
$$

Since $a_{r}=a_{2 n-r}, \Delta(i)=a$. Therefore $\Delta(-i)=a$. Then we have $d_{0}=a^{2}$. Now suppose that n is odd. Then

$$
\Delta(i)=a_{0}+a_{1} i-a_{2}-a_{3} i+\cdots+a_{2 n-2}+a_{2 n-1} i-a_{2 n}
$$

Since $a_{r}=a_{2 n-r}$, we have

$$
\Delta(i)=b i+a_{n}(i)^{n}
$$

Therefore

$$
\Delta(-i)=b(-i)+a_{n}(-i)^{n}=-\left(b i+a_{n}(i)^{n}\right)
$$

Thus we have

$$
d_{0}=-\left(b i+a_{n}(i)^{n}\right)^{2}=\left(b \pm a_{n}\right)^{2}
$$

Since the determinant of a knot is always an odd number, our proof is complete.
2. Now let $\Delta(x)$ be the Alexander polynomial of k_{0} in S^{3} and $\Delta_{2}(x)$ that of k_{0} in M_{2}. Then by (6)

$$
\begin{equation*}
\Delta_{2}(x)=\Delta(\sqrt{x}) \Delta(-\sqrt{x}) \tag{8}
\end{equation*}
$$

Therefore the degree of $\Delta(x)$ is equal to that of $\Delta_{2}(x)$.
Suppose first that the degree of $\Delta(x)$ is 2 . Put

$$
\Delta(x)=a x^{2}+b x+a
$$

where $a \neq 0$ and we may assume that $2 a+b=1$. Then by (8)

$$
\Delta_{2}(x)=a^{2} x^{2}+\left(2 a^{2}-b^{2}\right) x+a^{2}
$$

Furthermore $4 a^{2}-b^{2}= \pm 1$, which means that $2 a-b= \pm 1$. From this it follows that $2 a=1$ or $2 a=0$. Since $a \neq 0$ and a is an integer, this is a contradiction. Thus we have proved that the degree of $\Delta_{2}(x)$ is not equal to 2.

Now suppose that the degree of $\Delta_{2}(x)$ is 4. Put

$$
\Delta(x)=a x^{4}+b x^{3}+c x^{2}+b x+a
$$

where $a \neq 0$ and we may assume that $2 a+2 b+c=1$. Then by (8)

$$
\begin{aligned}
\Delta_{2}(x)=a^{2} x^{4} & +\left(2 a c-b^{2}\right) x^{3}+\left(2 a^{2}-2 b^{2}+c^{2}\right) x^{2} \\
& +\left(2 a c-b^{2}\right) x+a^{2}
\end{aligned}
$$

Furthermore $4 a^{2}+4 a c+c^{2}-4 b^{2}= \pm 1$, which means that $2 a-2 b+c= \pm 1$. From this it follows that $4 b=2$ or $4 b=0$. Since b is an integer, $4 b=2$ is a contradiction. Therefore $b=0$ and $c=1-2 a$. Thus we have proved that if the degree of $\Delta_{2}(x)$ is 4 , then $\Delta_{2}(x)$ must be limited to the following form:

$$
a^{2} x^{4}-2 a(2 a-1) x^{3}+\left(6 a^{2}-4 a+1\right) x^{2}-\cdots
$$

By the same way it can be seen easily that if the degrees of $\Delta_{2}(x)$
are 6 and 8 , then $\Delta_{2}(x)$ must be limited to the following forms, respectively :

$$
\begin{aligned}
a^{2} x^{6} & -\left(b^{2}+2 a^{2}\right) x^{5}+\left(4 b^{2}-a^{2}-2 b\right) x^{4} \\
& -\left(6 b^{2}-4 a^{2}-4 b+1\right) x^{3}+\cdots, \\
a^{2} x^{8} & -\left(b^{2}-2 a c\right) x^{7}+\left(c^{2}+2 b^{2}-4 a^{2}-4 a c+2 a\right) x^{6} \\
& -\left(4 c^{2}-b^{2}+2 a c-2 c\right) x^{5} \\
& +\left(6 c^{2}-4 b^{2}+6 a^{2}+8 a c-4 c-4 a+1\right) x^{4}-\cdots .
\end{aligned}
$$

From these we have the following
Theorem 3. All knots of the Alexander-Briggs' table, except for the cases 8_{9} and 8_{20}, are not equivalent to k_{0} in M_{2}.
3. Now let k_{1} be a simple closed curve in S^{3} and M_{3} the 3 -fold cyclic covering space of S^{3}, branched along k_{1}. In No. 3 we assume that M_{3} is homeomorphic to the 3-sphere and the position of k_{1} in M_{3} will be studied.

Let $\Delta(x)$ be the Alexander polynomial of k_{1} in S^{3} and $\Delta_{3}(x)$ that of k_{1} in M_{3}. Then by (6)

$$
\begin{equation*}
\Delta_{3}(x)=\Delta\left({ }^{3} \sqrt{x}\right) \Delta\left(\omega_{1}^{3} \sqrt{x}\right) \Delta\left(\omega_{2}^{3} \sqrt{x}\right), \tag{9}
\end{equation*}
$$

where $\omega_{1}=\frac{-1+\sqrt{3} i}{2}$ and $\omega_{2}=\frac{-1-\sqrt{3} i}{2}$.
Suppose first that the degree of $\Delta(x)$ is 2 . Put

$$
\Delta(x)=a x^{2}+b x+a
$$

where $a \neq 0$ and we may assume that $2 a+b=1$. Then by (9)

$$
\Delta_{3}(x)=a^{3} x^{2}+\left(b^{3}-3 a^{2} b\right) x+a^{3} .
$$

Furthermore $2 a^{3}-3 a^{2} b+b^{3}= \pm 1$, which means that $a-b= \pm 1$. From this is follows that $3 a=2$ or $3 a=0$. Since $a \neq 0$ and a is an integer, this is a contradiction. Thus we have proved that the degree of $\Delta_{3}(x)$ is not equal to 2 .

By the same way as that of No. 2 we have the following.
Theorem 4. All knots of the Alexander-Briggs' table, except for the cases $5_{1}, 7_{1}, 8_{10}$ and 9_{47}, are not equivalent to k_{1} in M_{3}.

§ 3.

Now let T be a sense preserving (of course semilinear) periodic transformation of S^{3} onto itself. Furthermore let T be different from the
identity and have at least one fixed point. Then the set F of all fixed points of T is a simple closed curve ${ }^{21)}$. Suppose that p is the minimal number of the set of all positive period of T. It is easy to see that T is primitive ${ }^{22)}$. T acts locally as a rotation about F^{233}. Then, if we identify the points

$$
x, T(x), \cdots, T^{p-1}(x)
$$

in S^{3}, we have an orientable 3 -manifold M. It is easy to see that M is simply connected. Since T acts locally as a rotation about F in S^{3}, we can see that S^{3} is the p-fold cyclic covering space of M, branched along F.

Now we assume that the Poincare conjecture is true ${ }^{13)}$. Then M is a 3-sphere.

First we consider the case $p=2$. Since S^{3} is the 2 -fold cyclic covering space of M, branched along F, we can apply the results of $\S 2$ to the position of F in S^{3}. Therefore we have the following

Theorem 5. Let T be a periodic transformation described above. Furthermore suppose that the period of T is 2. Then, under the assumption that the Poincare conjecture is true ${ }^{(3)}$, we have that
(i) the determinant of F must be equal to the square of an odd number,
(ii) the degree of the Alexander polynomial of F is not equal to 2 and that
(iii) all knots of the Alexander-Briggs' table, except for the cases 89 and 8_{20}, are not equivalent to F.

Now we consider the case $p=3$. Since S^{3} is the 3 -fold cyclic covering space of M, branched along F, we have the following

Theorem 6. Let T be a periodic transformation described above. Furthermore suppose that the period of T is 3. Then, under the assumption that the Poincare conjecture is true ${ }^{133}$, we have that
(i) the degree of the Alexander polynomial of F is not equal to 2 and that
(ii) all knots of the Alexander-Briggs' table, except for the cases 5_{1}, $7_{1}, 8_{10}$ and 9_{47}, are not equivalent to F.
(Received February 19, 1958)

[^4]
References

[1] J. W. Alexander and G. B. Briggs: On types of knotted curve, Ann. Math. 28 (1927), 562-586.
[2] J. W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928), 275-306.
[3] R. H. Bing: A homeomorphism between the 3 -sphere and the sum of two horned sphere, Ann. Math. 56 (1952), 354-362.
[4] S. Eilenberg: On the problems of topology, Ann. Math. 50 (1949), 247-260.
[5] R. H. Fox: Free differential calculus II, Ann. Math. 59 (1954), 196-210.
[6] R. H. Fox: Free differential calculus III, Ann. Math. 64 (1956), 407-419.
[7] R. H. Fox: On knots whose points are fixed under a periodic transformation of the 3 -sphere, Osaka Math. J. 10 (1958).
[8] T. Homma and S. Kinoshita: On a topological characterization of the dilatation in E ${ }^{3}$, Osaka Math. J. 6 (1954), 135-144.
[9] T. Homma and S. Kinoshita: On homeomorphisms which are regular except for a finite number of points, Osaka Math. J. 7 (1955), 29-38.
[10] T. Homma: On Dehn's lemma for S^{3}, Yokohama Math. J. 5 (1957), 223-244.
[11] B. v. Kerékjártó : Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac. Sci. Szeged 6 (1934), 235-262.
[12] S. Kinoshita: Notes on knots and periodic transformations, Proc. Japan Acad. 33 (1957), 358-361.
[13] D. Montgomery and L. Zippin: Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954), 460-465.
[14] D. Montgomery and H. Samelson: A theorem on fixed points of involutions in S 3, Can. J. Math. 7 (1955), 208-220.
[15] C. D. Papakyriakopoulos: On Dehn's lemma and the asphericity of knots, Ann. Math. 66 (1957), 1-26.
[16] K. Reidemeister: Knotentheorie, Berlin (1932).
[17] H. Seifert and W. Threlfall: Lehrbuch der Topologie, Leipzig (1935).
[18] H. Seifert: Ueber das Geschlecht von Knoten, Math. Ann. 110 (1935), 571592.
[19] P. A. Smith: Transformations of finite period II, Ann. Math. 40 (1939), 497-514.
[20] P. A. Smith: Fixed points of periodic transformations, Appendix B in Lefschetz, Algebraic topology (1942).
[21] H. Terasaka: On quasi-translations in E^{n}, Proc. Japan Acad. 30 (1954), 80-84.

[^0]: 1) A part of this paper was published in [12]. See also the footnote 11).
 2) A homeomorphism T of a metric space X onto itself is called regular at $p \in X$, if for each $\varepsilon>0$ there exists $\delta>0$ such that if $d(p, x)<\delta$, then $d\left(T^{n}(p), T^{n}(x)\right)<\varepsilon$ for every integer n.
 3) See T. Homma and S. Kinoshita [9].
 4) See T. Homma and S. Kinoshita [8] [9].
 5) See also H. Terasaka [21].
 6) See R. H. Bing [3] D. Montgomery and L. Zippin [13].
 7) See, for instance, [4] Problem 40.
 8) See D. Montgomery and H. Samelson [14].
[^1]: 9) See also C. D. Papakyriakopoulos [15] T. Homma [10].
 10) In this paper we shall use only the integral homology group.
 11) In [12] M was supposed to be only a 3 -manifold without boundary. Professor R. H. Fox kindly pointed out to me that "the linking number Link (k, x_{i})" in [12] is not welldefined for an arbitrary 3-manifold M. Some propositions on knots in M turn out thereby to be erroneous, although it does not affect my main results in $\S 5$ of [12].
 12) See [1] [12].
 13) Meanwhile, this conjecture turned out to be unnecessary. See R. H. Fox [7].
[^2]: 16) See, for instance, [17].
 17) See, for instance, H. Seifert [18].
[^3]: 18) See J. W. Alexander [2].
 19) We use the same symbol to a knot k in M and the knot which is the set of all branch points of $M_{g}(k) . \Delta\left(x, k, M_{g}(k)\right)$ is the Alexander polynomial of k in $M_{g}(k)$, if $\Delta(1, k$, $\left.M_{g}(k)\right)= \pm 1$. See also R. H. Fox [6].
 20) See R. H. Fox [6].
[^4]: 21) See P. A. Smith [17].
 22) See P. A. Smith [18].
 23) See D. Montgomery and H. Samelson [12].
