On Knots whose Points are Fixed under a Periodic Transformation of the 3-Sphere

By R. H. Fox

Let Λ be a simple closed curve in the 3 -sphere Σ and let g be a positive integer greater than 1. If the knot type of Λ is trivial there are transformations of Σ of period g that leave fixed every point of Λ. An example of such a transformation is one that is equivalent to a rotation of Σ, or if $g=2$, one that is equivalent to a reflection. Furthermore [1] there exist transformations of period g that leave fixed every point of a wild knot Λ. However it is generally conjectured that no such transformation is possible if the knot type of Λ is tame and nontrivial. Although a complete proof may well turn out to be extremely difficult, it is possible, assuming, as we shall from now on, that the transformation is semi-linear, to verify this conjecture for certain integers g and knots Λ of certain tame non-trivial types.

Thus Montgomery and Samelson [2] proved a theorem that, together with the recently proved [3] Dehn lemma, shows that, for $g=2, \Lambda$ cannot be the boundary of any Möbius band. More recently Kinoshita proved [4], again for $g=2$, that, modulo the Poincaré conjecture, Λ cannot be any of the prime knots of fewer than 10 crossings except possibly 89 or 8_{20}.

In this note I shall extend part of the Montgomery-Samelson result to a rather larger class of knots. The method is the same as that of Kinoshita, and is based on a formula to be found in [6]. Along the way I shall show that, by referring to Blanchfield's theorem [9], Kinoshita's argument is seen to be valid without assumption of Poincaré's conjecture.
$\S 1$. Let Λ be a simple closed curve in the 3 -sphere Σ whose knot type is tame and non-trivial, and suppose that T is a semi-linear transformation of Σ of period $g \geq 2$ such that $T(p)=p$ for each point p of Λ. Then it follows from theorems of P.A. Smith [7] that (1) the points of Λ are the only points of Σ that are fixed under T, and (2) T preserves the orientation of Σ. The orbit space S is a simply connected 3-dimensional manifold and Σ is a g-fold cyclic covering of S ramified over the simply closed curve L that lies under Λ. I do not assume that S is necessarily the 3 -sphere.

Denote by $\Delta(\tau)$ and $D(t)$ the Alexander polynomials of the fundamental groups $\pi(\Sigma,-\Lambda)$ and $\pi(S-L)$ respectively. Then [6, p. 418]

$$
\Delta(\tau)=\Pi_{j=0}^{j-1} D\left(\omega^{j} t\right),
$$

where ω is a primitive g-th root of unity and $t^{g}=\tau$. (As Kinoshita remarked [4], the derivation of this formula is entirely valid if the hypothesis " S is a 3 -sphere" is weakened to the hypotheses " S is simply connected".) If the roots of $D(t)=0$ are $\alpha_{1}, \cdots, \alpha_{n}$ then

$$
D(t)=c \Pi_{i=1}^{n}\left(t-\alpha_{1}\right) ;
$$

hence

$$
\begin{aligned}
\Delta(\tau) & =c^{g} \Pi_{i=1}^{n} \Pi_{j=0}^{g-1}\left(\omega^{j} t-\alpha_{i}\right) \\
& =c^{g} \Pi_{i=1}^{n}\left(\tau-\alpha_{i}^{g}\right) .
\end{aligned}
$$

Thus
(1) The leading coefficient of $\Delta(\tau)$ is the g-th power of the leading coefficient of $D(t)$.
(2) The roots of $\Delta(\tau)$ are the g-th powers $\alpha_{1}^{q}, \cdots, \alpha_{n}^{g}$ of the roots $\alpha_{1}, \cdots, \alpha_{n}$ of $D(t)$; in particular $\Delta(\tau)$ and $D(\tau)$ have the same degree.

Condition (1) alone is sufficient to show that Λ cannot belong to any of the thirty four types
$5_{2}, 6_{1}, 7_{2}, 7_{3}, 7_{5}, 8_{1}, 8_{4}, 8_{6}, 8_{8}, 8_{11}, 8_{13}, 8_{14}, 8_{15}, 9_{3}, 9_{4}, 9_{5}, 9_{6}, 9_{7}, 9_{8}, 9_{9}, 9_{12}$, $9_{14}, 9_{15}, 9_{16}, 9_{19}, 9_{21}, 9_{25}, 9_{35}, 9_{37}, 9_{38}, 9_{39}, 9_{41}, 9_{46}, 9_{49}$, for any g, or to any of the seven types $7_{4}, 8_{3}, 9_{2}, 9_{10}, 9_{13}, 9_{18}, 9_{23}$, for any $g \geq 3$. It is also sufficient to show, for example, that $\Delta(\tau)$ cannot, for any g, be a reducible quadratic. For $\Delta(1)= \pm 1$ and $\Delta(1 / \tau)=\tau^{2 r} \Delta(\tau)$ [8] show that a reducible quadratic $\Delta(\tau)$ must be of the form

$$
\Delta(\tau)=((h+1) \tau-h)(h \tau-(h+1)) ;
$$

but, of course, for no integer $h \neq 0,-1$ is $h(h+1)$ ever a power.
§2. Since ${ }^{1)} \pi(S-L)$ has a presentation in which the number of

[^0]generators exceeds the number of relations by one, the first elementary ideal is the principal ideal [5] generated by $\pm t^{r} D(t)$. Since $H(S-L)$ is infinite cyclic, $D(1)= \pm 1$. Therefore it follows from a theorem of Blanchfield [9] that $t^{u} D(1 / t)=\varepsilon D(t)$ where u is some integer and $\varepsilon= \pm 1$. Since $\Delta(t)$ is a knot polynomial its degree is even, say $2 r$. But $D(t)$ must have the same degree. If we write $D(t)=c \Pi_{i=1}^{2 r}\left(t-\alpha_{i}\right)$ we see that u must equal $2 r$. Thus
$$
c \Pi_{i=1}^{2 r}\left(1-\alpha_{i} t\right)=\varepsilon c \Pi_{i=1}^{2 r}\left(t-\alpha_{i}\right) .
$$

Denoting by σ_{k} the k-th symmetric function of the roots $\alpha_{1}, \cdots, \alpha_{2 r}$ we get (since $c \neq 0$)

$$
1-\sigma_{1} t+\sigma_{2} t^{2}-\cdots+\sigma_{2 r} t^{2 r}=\varepsilon\left(\sigma_{2 r}-\sigma_{2 r-1} t+\cdots-\sigma_{1} t^{2 r-1}+t^{2 r}\right)
$$

whence

$$
\sigma_{2 r}=\varepsilon, \quad \sigma_{2 r-1}=\varepsilon \sigma_{1}, \cdots, \quad \sigma_{r+1}=\varepsilon \sigma_{r-1}, \quad \sigma_{r}=\varepsilon \sigma_{r}
$$

Hence

$$
\begin{aligned}
D(1) & =c\left(1-\sigma_{1}+\sigma_{2}-\cdots+\sigma_{2 r}\right) \\
& =c(1+\varepsilon)\left(1-\sigma_{1}+\sigma_{2}-\cdots+(-1)^{r-1} \sigma_{r-1}\right)-(-1)^{r} c \sigma_{r}= \pm 1
\end{aligned}
$$

so that

$$
(-1)^{r} c \sigma_{r} \equiv 1(\bmod 2) \quad \text { hence } \sigma_{r} \neq 0
$$

It follows now from $\sigma_{r}=\varepsilon \sigma_{r}$ that $\varepsilon=1$. Therefore $t^{2 r} D(1 / t)=D(t)$. Since $D(1)= \pm 1$, it follows [8] that there must be some knot in ordinary 3-space whose Alexander polynomial is $D(t)$. Thus $D(t)$ is a knot polynomial.

In the proof of Kinoshita's theorem [4] the Poincare conjecture is invoked solely for the purpose of showing that the polynomial $D(t)$ is symmetric, i.e. $t^{2 r} D(1 / t)=D(t)$. Accordingly the above shows that it is not necessary to assume Poincarés conjecture in that argument.
$\S 3$. Let the d-th cyclotomic polynomial be denoted by $\Phi_{d}(t)$. Its degree is $\phi(d)$ and its roots are the primitive d-th roots of unity. $\Delta(\tau)$ has a unique factorization of the form

$$
\Delta(\tau)=\Phi_{a_{1}}^{m\left(a_{1}\right)}(\tau) \cdots \Phi_{a_{r}}^{m\left(a_{r}\right)}(\tau) \cdot \Psi(\tau),
$$

where a_{1}, \cdots, a_{r} are distinct from one another, and no root of $\Psi(\tau)$ is a root of unity.

Theorem. If p is any prime divisor of $\left(g, a_{i}\right)$ then $m\left(a_{i}\right)$ must be divisible by the highest power of p that divides g.

Proof. Suppose that $\Phi_{d}(t)=\Pi_{j=1}^{\phi(a)}\left(t-\omega_{j}\right)$ divides $D(t)$. Then the corresponding factor of $\Delta(\tau)$ is $\Pi_{j=1}^{\phi(a)}\left(\tau-\omega_{j}^{g}\right)$. Since each ω_{j} is a primitive d-th root of unity, each ω_{j}^{g} is a primitive d^{\prime}-th root of unity, where $d^{\prime}=d /(g, d)$. (For $\omega_{j}^{g x}=1$ iff $d \mid g x$, i.e. iff $d^{\prime} \mid g^{\prime} x$, where $g^{\prime}=g /(g, d)$; since $\left(d^{\prime}, g^{\prime}\right)=1$ this holds iff $d^{\prime} \mid x$.) Therefore

$$
\Pi_{j=1}^{\phi(\alpha)}\left(\tau-\omega_{j}^{g}\right)=\Phi_{a}^{n(\alpha)}(\tau)
$$

Furthermore, since $\Pi_{j=1}^{*(d)}\left(\tau-\omega_{j}^{g}\right)$ is of degree $\phi(d)$ and $\Phi_{d^{\prime}}(\tau)$ is of degree $\phi\left(d^{\prime}\right)$, we have

$$
n(d)=\phi(d) / \phi\left(d^{\prime}\right)
$$

Clearly the exponent $m(a)$ of the factor $\Phi_{a}^{m(a)}(\tau)$ of $\Delta(\tau)$ must therefore be of the form $\sum v_{d} n(d)$, where v_{d} are integers and the sum is extended over those integers d for which $d^{\prime}=a$.

Let p range over the prime divisors of a, and let q range over the remaining primes. Write $a=\Pi p^{\alpha}, d=\Pi p^{\delta} \Pi q^{\beta}$ and $g=\Pi p^{\gamma} \Pi q^{\theta}$. If $d^{\prime}=a$ then we must have $0<\alpha=\gamma<\delta$ and $\beta \leq \theta$. It follows that $d / d^{\prime}=(g, d)=\Pi p^{\min (\delta, \gamma)} \Pi q^{\min (\beta, \theta)}$ must be divisible by p^{γ}, and hence that p^{γ} must divide $n(d)=\phi(d) / \phi\left(d^{\prime}\right)=d \Pi\left(1-\frac{1}{p}\right) \Pi_{B=0}\left(1-\frac{1}{q}\right) /$ $d^{\prime} \Pi\left(1-\frac{1}{p}\right)$. Since p^{γ} devides $n(d)$ for each d for which $d^{\prime}=a$, it follows that p^{γ} divides $m(a)$.
§4. Corollary 1. If g and $A B$ are not relatively prime then Λ cannot be a torus knot of type A, B.

Proof. If Λ is a torus knot of type A, B then

$$
\Delta(\tau)=\frac{\left(\tau^{A B}-1\right)(\tau-1)}{\left(\tau^{A}-1\right)\left(\tau^{B}-1\right)}=\Phi_{A B}(\tau) \cdots
$$

so that $m(A B)=1$. It follows from the theorem that if p is any prime divisor of $(g, A B)$ then $p \nmid g$; consequently $(g, A B)=1$.

Corollary 2. (MONTGOMERY-SAMELSON) If $g=2, ~ \Lambda$ cannot be the boundary of a twisted ${ }^{2)}$ Möbius band.

Proof. If κ is the knot type of a Möbius band then [10] $\Delta(\tau)=\Delta_{\kappa}\left(\tau^{2}\right) \cdot \frac{\left(\tau^{2}-1\right)\left(\tau^{B}-1\right)}{\left(\tau^{2 B}-1\right)(\tau-1)}$, where Δ_{κ} is the polynomial of κ. Let q be any prime divisor of B. Since $(2, B)=1, q>2$. Thus
2) The twist ρ of Möbius band in 3 -space was defined in [11] to be $\varepsilon \cdot v(k, l)$, where k is the boundary of the Möbius band, l is its meridian, v denotes linking number, and $\varepsilon= \pm 1$. By a twisted Möbius band I mean one for which $|\rho|>1$.

$$
\frac{\left(\tau^{2 B}-1\right)(\tau-1)}{\left(\tau^{2}-1\right)\left(\tau^{B}-1\right)}=\Phi_{2 q}(\tau) \cdots
$$

Now if $\Phi_{d}(\tau)$ divides $\Delta_{\kappa}(\tau)$ the corresponding factor of $\Delta_{\kappa}\left(\tau^{2}\right)$ must be

$$
\begin{aligned}
\Phi_{d}\left(\tau^{2}\right) & =\Phi_{2 d}(\tau) & & \text { if } d \text { is even } \\
& =\Phi_{2 d}(\tau) \Phi_{d}(\tau) & & \text { if } d \text { is odd. }
\end{aligned}
$$

Hence $\Phi_{2 q}(\tau) \mid \Delta_{\kappa}\left(\tau^{2}\right)$ only if $\Phi_{q}(\tau) \mid \Delta_{\kappa}(\tau)$.
But this last is impossible because $\Delta_{\kappa}(1)= \pm 1$ and $\Phi_{q}(1)=q$. Thus we conclude that

$$
\Delta(\tau)=\Phi_{2 q}(\tau) \cdots,
$$

i.e. that $m(2 q)=1$. Therefore, by the theorem, 1 must be divisable by the highest power of $p=2$ that divides 2 . This is impossible.
(Received February 5, 1958)

References

[1] Bing, R. H. : Decomposition of E^{3} into points and tame arcs. Summary of lectures and seminars at the summer institute on set-theoretic topology Madison (1955), 40-47.
[2] Montgomery, D. and Samelson, H. : A theorem on fixed points of involutions in S^{3}. Canadian J. Math. 7 (1955), 208-220.
[3] Papakyriakopoulos, C. D. : On Dehn's lemma and the asphericity of knots. Annals of Math. 66 (1957), 1-26.
[4] Kinoshita, S. : Notes on knots and periodic transformations. Proc. Japan Acad. 33 (1957), 358-362.
[5] Fox, R. H. : Free differential calculus II. Annals of Math. 59 (1954), 196-210.
[6] Fox, R. H. : Free differential calculus III. Annals of Math. 64 (1956), 407-419.
[7] Smith, P. A.: Transformations of finite period II. Annals of Math. 40 (1939), 690-711.
[8] Seifert, H.: Über das Geschlecht von Knoten. Math. Ann. 110 (1934), 571592.
[9] Blanchfield, R. C.: Intersection theory of manifolds with operators with applications to knot theory. Annals of Math. 65 (1957), 340-356.
[10] Reidemeister, K.: Knotentheorie, Berlin (1932).
[11] Kyle, R. H. : Embeddings of Möbius bands in 3-dimensional space. Proc. Royal Irish Acad. 57 séction A No. 7 (1935), 131-136.

[^0]: 1) If M is any triangulated closed 3-dimensional manifold and K is a 1-dimensional subcomplex which has μ components and whose 1-dimensional betti number is p, then $\pi(M-K)$ has a presentation in which the number of generators exceeds the number of relators by $p-\mu+1$.

 Proof: In K select p (open) edges $\sigma_{1}, \cdots, \sigma_{p}$ such that $K-\left(\sigma_{1}+\cdots+\sigma_{p}\right)$ is a tree T^{*} and let T be a maximal tree that contains T^{*}. In T^{*} select $\mu-1$ edges $\tau_{1}, \cdots, \tau_{\mu-1}$ such that each of the μ components of $T^{\prime}=T-\left(\tau_{1}+\cdots+\tau_{\mu-1}\right)$ contains a component of K. Note that $\pi(M-K) \approx \pi\left(M-\left(K+T^{\prime}\right)\right)$.

 Let C be a maximal cave in M, i.e. the dual of a maximal tree in the dual triangulation. Since the Euler characteristic of M is equal to zero, the number α_{1} of edges of M that are not on T is equal to the number α_{2} of faces of M that are not in C.

 The group $\pi\left(M-\left(K+T^{\prime}\right)\right)$ has a presentation ($x_{1}, \cdots, x_{n}: r_{1}, \cdots, r_{m}$) in which the generators x_{j} correspond to the faces of M that are not in C, and the relators r_{i} correspond to the edges that are not in $K+T^{\prime}$. Thus $n=\alpha_{2}=\alpha_{1}$ and $m=\alpha_{1}+(\mu-1)-p=n+\mu-1-p$.

