Fox, Ralph H. Osaka Math. J. 10 (1958), 31-35

On Knots whose Points are Fixed under a Periodic Transformation of the 3-Sphere

By R. H. Fox

Let Λ be a simple closed curve in the 3-sphere Σ and let g be a positive integer greater than 1. If the knot type of Λ is trivial there are transformations of Σ of period g that leave fixed every point of Λ . An example of such a transformation is one that is equivalent to a rotation of Σ , or if g=2, one that is equivalent to a reflection. Furthermore [1] there exist transformations of period g that leave fixed every point of a wild knot Λ . However it is generally conjectured that no such transformation is possible if the knot type of Λ is tame and non-trivial. Although a complete proof may well turn out to be extremely difficult, it is possible, assuming, as we shall from now on, that the transformation is semi-linear, to verify this conjecture for certain integers g and knots Λ of certain tame non-trivial types.

Thus Montgomery and Samelson [2] proved a theorem that, together with the recently proved [3] Dehn lemma, shows that, for g=2, Λ cannot be the boundary of any Möbius band. More recently Kinoshita proved [4], again for g=2, that, modulo the Poincaré conjecture, Λ cannot be any of the prime knots of fewer than 10 crossings except possibly 8_9 or 8_{20} .

In this note I shall extend part of the Montgomery-Samelson result to a rather larger class of knots. The method is the same as that of Kinoshita, and is based on a formula to be found in [6]. Along the way I shall show that, by referring to Blanchfield's theorem [9], Kinoshita's argument is seen to be valid without assumption of Poincaré's conjecture.

§1. Let Λ be a simple closed curve in the 3-sphere Σ whose knot type is tame and non-trivial, and suppose that T is a semi-linear transformation of Σ of period $g \ge 2$ such that T(p) = p for each point p of Λ . Then it follows from theorems of P. A. Smith [7] that (1) the points of Λ are the only points of Σ that are fixed under T, and (2) T preserves the orientation of Σ . The orbit space S is a simply connected 3-dimensional manifold and Σ is a g-fold cyclic covering of S ramified over the simply closed curve L that lies under Λ . I do not assume that S is necessarily the 3-sphere. Denote by $\Delta(\tau)$ and D(t) the Alexander polynomials of the fundamental groups $\pi(\Sigma - \Lambda)$ and $\pi(S-L)$ respectively. Then [6, p. 418]

$$\Delta(\tau) = \prod_{j=0}^{q-1} D(\omega^j t) ,$$

where ω is a primitive *g*-th root of unity and $t^g = \tau$. (As Kinoshita remarked [4], the derivation of this formula is entirely valid if the hypothesis "S is a 3-sphere" is weakened to the hypotheses "S is simply connected".) If the roots of D(t) = 0 are $\alpha_1, \dots, \alpha_n$ then

$$D(t) = c \prod_{i=1}^{n} (t - \alpha_i);$$

hence

$$\Delta(\tau) = c^{\sigma} \prod_{i=1}^{n} \prod_{j=0}^{q-1} (\omega^{j} t - \alpha_{i})$$
$$= c^{\sigma} \prod_{i=1}^{n} (\tau - \alpha_{i}^{\sigma}) .$$

Thus

(1) The leading coefficient of $\Delta(\tau)$ is the g-th power of the leading coefficient of D(t).

(2) The roots of $\Delta(\tau)$ are the *g*-th powers $\alpha_1^{\sigma}, \dots, \alpha_n^{\sigma}$ of the roots $\alpha_1, \dots, \alpha_n$ of D(t); in particular $\Delta(\tau)$ and $D(\tau)$ have the same degree.

Condition (1) alone is sufficient to show that Λ cannot belong to any of the thirty four types

5₂, 6₁, 7₂, 7₃, 7₅, 8₁, 8₄, 8₆, 8₈, 8₁₁, 8₁₃, 8₁₄, 8₁₅, 9₃, 9₄, 9₅, 9₆, 9₇, 9₈, 9₉, 9₁₂, 9₁₄, 9₁₅, 9₁₆, 9₁₉, 9₂₁, 9₂₅, 9₃₅, 9₃₇, 9₃₈, 9₃₉, 9₄₁, 9₄₆, 9₄₉, for any g, or to any of the seven types 7₄, 8₃, 9₂, 9₁₀, 9₁₃, 9₁₈, 9₂₃, for any $g \ge 3$. It is also sufficient to show, for example, that $\Delta(\tau)$ cannot, for any g, be a reducible quadratic. For $\Delta(1) = \pm 1$ and $\Delta(1/\tau) = \tau^{2r} \Delta(\tau)$ [8] show that a reducible quadratic $\Delta(\tau)$ must be of the form

$$\Delta(\tau) = ((h+1) \tau - h) (h\tau - (h+1));$$

but, of course, for no integer $h \neq 0$, -1 is h(h+1) ever a power.

§2. Since¹⁾ $\pi(S-L)$ has a presentation in which the number of

32

¹⁾ If M is any triangulated closed 3-dimensional manifold and K is a 1-dimensional subcomplex which has μ components and whose 1-dimensional betti number is p, then $\pi(M-K)$ has a presentation in which the number of generators exceeds the number of relators by $p-\mu+1$.

Proof: In K select p (open) edges $\sigma_1, \dots, \sigma_p$ such that $K - (\sigma_1 + \dots + \sigma_p)$ is a tree T^* and let T be a maximal tree that contains T^* . In T^* select $\mu - 1$ edges $\tau_1, \dots, \tau_{\lambda-1}$ such that each of the μ components of $T' = T - (\tau_1 + \dots + \tau_{\lambda-1})$ contains a component of K. Note that $\pi(M-K) \approx \pi(M - (K+T'))$.

Let C be a maximal cave in M, i.e. the dual of a maximal tree in the dual triangulation. Since the Euler characteristic of M is equal to zero, the number α_1 of edges of M that are not on T is equal to the number α_2 of faces of M that are not in C.

The group $\pi(M-(K+T'))$ has a presentation $(x_1, \dots, x_n: r_1, \dots, r_m)$ in which the generators x_j correspond to the faces of M that are not in C, and the relators r_i correspond to the edges that are not in K+T'. Thus $n=\alpha_2=\alpha_1$ and $m=\alpha_1+(\mu-1)-p=n+\mu-1-p$.

generators exceeds the number of relations by one, the first elementary ideal is the principal ideal [5] generated by $\pm t^r D(t)$. Since H(S-L) is infinite cyclic, $D(1) = \pm 1$. Therefore it follows from a theorem of Blanchfield [9] that $t^u D(1/t) = \varepsilon D(t)$ where u is some integer and $\varepsilon = \pm 1$. Since $\Delta(t)$ is a knot polynomial its degree is even, say 2r. But D(t)must have the same degree. If we write $D(t) = c \prod_{i=1}^{2r} (t - \alpha_i)$ we see that u must equal 2r. Thus

$$c \prod_{i=1}^{2r} (1 - \alpha_i t) = \varepsilon c \prod_{i=1}^{2r} (t - \alpha_i)$$
.

Denoting by σ_k the k-th symmetric function of the roots $\alpha_1, \dots, \alpha_{2r}$ we get (since $c \neq 0$)

$$1 - \sigma_1 t + \sigma_2 t^2 - \cdots + \sigma_{2r} t^{2r} = \mathcal{E}(\sigma_{2r} - \sigma_{2r-1} t + \cdots - \sigma_1 t^{2r-1} + t^{2r}),$$

whence

$$\sigma_{2r} = \mathcal{E}, \quad \sigma_{2r-1} = \mathcal{E}\sigma_1, \cdots, \quad \sigma_{r+1} = \mathcal{E}\sigma_{r-1}, \quad \sigma_r = \mathcal{E}\sigma_r.$$

Hence

$$D(1) = c(1 - \sigma_1 + \sigma_2 - \dots + \sigma_{2r})$$

= $c(1 + \mathcal{E})(1 - \sigma_1 + \sigma_2 - \dots + (-1)^{r-1}\sigma_{r-1}) - (-1)^r c\sigma_r = \pm 1$,

so that

$$(-1)^r c\sigma_r \equiv 1 \pmod{2}$$
 hence $\sigma_r \neq 0$.

It follows now from $\sigma_r = \varepsilon \sigma_r$ that $\varepsilon = 1$. Therefore $t^{2r}D(1/t) = D(t)$. Since $D(1) = \pm 1$, it follows [8] that there must be some knot in ordinary 3-space whose Alexander polynomial is D(t). Thus D(t) is a knot polynomial.

In the proof of Kinoshita's theorem [4] the Poincaré conjecture is invoked solely for the purpose of showing that the polynomial D(t) is symmetric, i.e. $t^{2r}D(1/t) = D(t)$. Accordingly the above shows that it is not necessary to assume Poincaré's conjecture in that argument.

§3. Let the *d*-th cyclotomic polynomial be denoted by $\Phi_d(t)$. Its degree is $\phi(d)$ and its roots are the primitive *d*-th roots of unity. $\Delta(\tau)$ has a unique factorization of the form

$$\Delta(\tau) = \Phi_{a_1}^{m(a_1)}(\tau) \cdots \Phi_{a_r}^{m(a_r)}(\tau) \cdot \Psi(\tau) ,$$

where a_1, \dots, a_r are distinct from one another, and no root of $\Psi(\tau)$ is a root of unity.

Theorem. If p is any prime divisor of (g, a_i) then $m(a_i)$ must be divisible by the highest power of p that divides g.

R. H. Fox

Proof. Suppose that $\Phi_d(t) = \prod_{j=1}^{\phi(d)} (t - \omega_j)$ divides D(t). Then the corresponding factor of $\Delta(\tau)$ is $\prod_{j=1}^{\phi(d)} (\tau - \omega_j^g)$. Since each ω_j is a primitive *d*-th root of unity, each ω_j^g is a primitive *d'*-th root of unity, where d' = d/(g, d). (For $\omega_j^{g_x} = 1$ iff $d|g_x$, i.e. iff d'|g'x, where g' = g/(g, d); since (d', g') = 1 this holds iff d'|x.) Therefore

$$\Pi_{j=1}^{\phi(d)} (\tau - \omega_j^g) := \Phi_d^{n(d)}(\tau)$$

Furthermore, since $\Pi_{j=1}^{l(d)}(\tau - \omega_j^g)$ is of degree $\phi(d)$ and $\Phi_{d'}(\tau)$ is of degree $\phi(d')$, we have

$$n(d) = \phi(d)/\phi(d')$$
.

Clearly the exponent m(a) of the factor $\Phi_a^{m(a)}(\tau)$ of $\Delta(\tau)$ must therefore be of the form $\sum v_d n(d)$, where v_d are integers and the sum is extended over those integers d for which d' = a.

Let p range over the prime divisors of a, and let q range over the remaining primes. Write $a = \prod p^{\alpha}$, $d = \prod p^{\delta} \prod q^{\beta}$ and $g = \prod p^{\gamma} \prod q^{\theta}$. If d' = a then we must have $0 < \alpha = \gamma < \delta$ and $\beta \le \theta$. It follows that $d/d' = (g, d) = \prod p^{\min(\delta, \gamma)} \prod q^{\min(\beta, \theta)}$ must be divisible by p^{γ} , and hence that p^{γ} must divide $n(d) = \phi(d)/\phi(d') = d \prod \left(1 - \frac{1}{p}\right) \prod_{\beta > 0} \left(1 - \frac{1}{q}\right) / d' \prod \left(1 - \frac{1}{p}\right)$. Since p^{γ} devides n(d) for each d for which d' = a, it follows that p^{γ} divides m(a).

§ 4. Corollary 1. If g and AB are not relatively prime then Λ cannot be a torus knot of type A, B.

Proof. If Λ is a torus knot of type A, B then

$$\Delta(\tau) = rac{(au^{AB} - 1)(au - 1)}{(au^{A} - 1)(au^{B} - 1)} = \Phi_{AB}(au) \cdots$$

so that m(AB) = 1. It follows from the theorem that if p is any prime divisor of (g, AB) then $p \not\mid g$; consequently (g, AB) = 1.

Corollary 2. (MONTGOMERY-SAMELSON) If g=2, Λ cannot be the boundary of a twisted² Möbius band.

Proof. If κ is the knot type of a Möbius band then [10] $\Delta(\tau) = \Delta_{\kappa}(\tau^2) \cdot \frac{(\tau^2 - 1)(\tau^B - 1)}{(\tau^{2B} - 1)(\tau - 1)}$, where Δ_{κ} is the polynomial of κ . Let q be any prime divisor of B. Since (2, B) = 1, q > 2. Thus

²⁾ The twist ρ of Möbius band in 3-space was defined in [11] to be $\varepsilon \cdot v(k, l)$, where k is the boundary of the Möbius band, l is its meridian, v denotes linking number, and $\varepsilon = \pm 1$. By a twisted Möbius band I mean one for which $|\rho| > 1$.

On Knots whose Points are Fixed under a Periodic Transformation of the 3-sphere 35

$$\frac{(\tau^{2B}-1)(\tau-1)}{(\tau^2-1)(\tau^B-1)} = \Phi_{2q}(\tau) \cdots$$

Now if $\Phi_d(\tau)$ divides $\Delta_{\kappa}(\tau)$ the corresponding factor of $\Delta_{\kappa}(\tau^2)$ must be

$$\Phi_d(\tau^2) = \Phi_{_{2d}}(\tau)$$
 if d is even
 $= \Phi_{_{2d}}(\tau) \Phi_d(\tau)$ if d is odd.

Hence $\Phi_{2q}(\tau) | \Delta_{\kappa}(\tau^2)$ only if $\Phi_q(\tau) | \Delta_{\kappa}(\tau)$.

But this last is impossible because $\Delta_{\kappa}(1) = \pm 1$ and $\Phi_q(1) = q$. Thus we conclude that

$$\Delta(\tau) = \Phi_{2q}(\tau) \cdots,$$

i.e. that m(2q) = 1. Therefore, by the theorem, 1 must be divisable by the highest power of p=2 that divides 2. This is impossible.

(Received February 5, 1958)

References

- Bing, R. H.: Decomposition of E³ into points and tame arcs. Summary of lectures and seminars at the summer institute on set-theoretic topology Madison (1955), 40-47.
- [2] Montgomery, D. and Samelson, H.: A theorem on fixed points of involutions in S³. Canadian J. Math. 7 (1955), 208-220.
- [3] Papakyriakopoulos, C. D.: On Dehn's lemma and the asphericity of knots. Annals of Math. 66 (1957), 1-26.
- [4] Kinoshita, S.: Notes on knots and periodic transformations. Proc. Japan Acad.
 33 (1957), 358-362.
- [5] Fox, R. H.: Free differential calculus II. Annals of Math. 59 (1954), 196-210.
- [6] Fox, R. H.: Free differential calculus III. Annals of Math. 64 (1956), 407-419.
- [7] Smith, P. A.: Transformations of finite period II. Annals of Math. 40 (1939), 690-711.
- [8] Seifert, H.: Über das Geschlecht von Knoten. Math. Ann. 110 (1934), 571-592.
- [9] Blanchfield, R. C.: Intersection theory of manifolds with operators with applications to knot theory. Annals of Math. 65 (1957), 340-356.
- [10] Reidemeister, K.: Knotentheorie, Berlin (1932).
- [11] Kyle, R. H.: Embeddings of Möbius bands in 3-dimensional space. Proc. Royal Irish Acad. 57 section A No. 7 (1935), 131-136.