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On Knots whose Points are Fixed under a Periodic
Transformation of the 3-Sphere

By R. H. Fox

Let A be a simple closed curve in the 3-sphere = and let g be a
positive integer greater than 1. If the knot type of A is trivial there
are transformations of 3 of period g that leave fixed every point of A,
An example of such a transformation is one that is equivalent to a
rotation of 3, or if g= 2, one that is equivalent to a reflection. Further-
more [17] there exist transformations of period g that leave fixed every
point of a wild knot A. However it is generally conjectured that no
such transformation is possible if the knot type of A is tame and non-
trivial. Although a complete proof may well turn out to be extremely
difficult, it is possible, assuming, as we shall from now on, that the
transformation is semi-linear, to verify this conjecture for certain integers
g and knots A of certain tame non-trivial types.

Thus Montgomery and Samelson [2] proved a theorem that, toge-
ther with the recently proved [3] Dehn lemma, shows that, for g=2, A
cannot be the boundary of any Mobius band. More recently Kinoshita
proved [4], again for g=2, that, modulo the Poincaré conjecture, A
cannot be any of the prime knots of fewer than 10 crossings except
possibly 8, or 8,.

In this note I shall extend part of the Montgomery-Samelson result
to a rather larger class of knots. The method is the same as that of
Kinoshita, and is based on a formula to be found in [6]. Along the way
I shall show that, by referring to Blanchfield’s theorem [9], Kinocshita’s
argument is seen to be valid without assumption of Poincaré’s conjecture.

§1. Let A be a simple closed curve in the 3-sphere ¥ whose knot
type is tame and non-trivial, and suppose that 7 is a semi-linear trans-
formation of = of period g2 such that T(p) =p for each point p of A.
Then it follows from theorems of P. A. Smith [7] that (1) the points of A
are the only points of 3 that are fixed under T, and (2) T preserves the
orientation of =. The orbit space S is a simply connected 3-dimensional
manifold and 2 is a g-fold cyclic covering of S ramified over the simply
closed curve L that lies under A. I do not assume that S is neces-
sarily the 3-sphere.
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Denote by A(r) and D(f) the Alexander polynomials of the funda-
mental groups #(%—A) and =(S—L) respectively. Then [6, p. 418]

A(r) = 1923 D(w't) ,
where o is a primitive g-th root of unity and t*=. (As Kinoshita
remarked [4], the derivation of this formula is entirely valid if the

hypothesis “S is a 3-sphere” is weakened to the hypotheses “S is simply
connected”.) If the roots of D() =0 are «,, ---, @, then

D) =cIl}_, (t—a) ;
hence
A7) = ¢ I}, TT555 (07— )
= I}, (r—a9) .

Thus

(1) The leading coefficient of A(r) is the g-th power of the leading
coefficient of D(t).

(2) The roots of A(r) are the g-th powers i, --- , af of the roots ¢, , -+, @,
of D(t) ; in particular A(r) and D(r) have the same degree.

Condition (1) alone is sufficient to show that A cannot belong to
any of the thirty four types
52; 61, 72; 73: 75; 81; 84, 86) 887 8117 813, 814, 815; 93: 94) 95’ 96) 97: 98’ 99) 912:
9> 915y 96s Y5, Dts 9y ss5 a1y 9y 9305 9y i, s, for any g, or to any
of the seven types 7,, 8, 9,, 9%, 9, 9, 9,5, for any g=>3. It is also
sufficient to show, for example, that A(r) cannot, for any g, be a re-
ducible quadratic. For A(1) ==x1 and A(l/7) =7"A(r) [8] show that a
reducible quadratic A(r) must be of the form

A() = ((k+1) v—h) (hr— (h+1)) ;

but, of course, for no integer h=i:0,. —1 is h(kh+1) ever a power.

§2. Since® #(S—L) has a presentation in which the number of

1) If M is any triangulated closed 3—-dimensional manifold and K is a 1-dimensional subcomplex
which has p components and whose 1-dimensional betti number is p, then *(M—K) has a presenta-
tion in which the number of generators exceeds the number of relators by p—p+1.

Proof: In K select p (open) edges oy, -+, op such that K— (o,+--+0;p) is a tree T* and
let T be a maximal tree that contains 7% In T* select u—1 edges 7y, :--, 7.—; such that
each of the p components of 7=7T — (7;+:--+7u_,) contains a component of K. Note that
(M- K)=r(M- (K+T")).

Let C be a maximal cave in M, i.e. the dual of a maximal tree in the dual triangulation.
Since the Euler characteristic of M is equal to zero, the number «, of edges of M that are
not on 7T is equal to the number a, of faces of M that are not in C.

The group n(M—(K+T’)) has a presentation (xy, --+, x,: 7, -+, 7,,) in which the genera-
tors x; correspond to the faces of M that are not in C, and the relators 7; correspond to the
edges that are not in K+7’. Thus n=a,=a; and m=ay,+(p—-1)—p=n+p—-1-p.
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generators exceeds the number of relations by one, the first elementary
ideal is the principal ideal [5] generated by =*t¢"D(f). Since H(S—L) is
infinite cyclic, D(1)=+1. Therefore it follows from a theorem of
Blanchfield [9] that t“D(1/t)=&D® where u is some integer and &= x1.
Since A(f) is a knot polynomial its degree is even, say 2r. But D(?)
must have the same degree. If we write D()=cII¥, ({—c;) we see
that # must equal 2». Thus

cIZ, l—a;t) =& IIZ, (t—a,) .

Denoting by o, the k-th symmetric function of the roots «,, -+, «,, we
get (since c==0)

1—of+o,t2— o+ +0,t7 = E(o,,— 0yt + oo —a 1),
whence

o,y =6, oy =¢&0, ", o,,=°¢E,,, o =C¢,.

Hence
D) =c(l—o,+0,— +++ +o0y,)
=cl+8(1—0c+0,— =+ +(—1)""0,_)—(—1) ¢co, = %1,

so that
(—1)" co,=1 (mod 2) hence o,==0.

It follows now from o,=¢&qr, that &=1. Therefore #*D(1/t)=D(¢).
Since D(1) = %1, it follows [8] that there must be some knot in ordinary
3-space whose Alexander polynomial is D(f). Thus D() is a knot

polynomial.
In the proof of Kinoshita’s theorem [4] the Poincaré conjecture is

invoked solely for the purpose of showing that the polynomial D(#) is
symmetric, i.e. #”D(1/t)=D(#). Accordingly the above shows that it is
not necessary to assume Poincaré’s conjecture in that argument.

§3. Let the d-th cyclotomic polynomial be denoted by ®,(#). Its
degree is ¢(d) and its roots are the primitive d-th roots of unity. A(r)
has a unique factorization of the form

A(r) = q)Z‘l(“l) (7) --- P2 (7) W (7) ,

where q,, ---, a, are distinct from one another, and no root of ¥(r) is a
root of unity.

Theorem. If p is any prime divisor of (g, a;) then m(a;) must be
divisible by the highest power of p that divides g.
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Proof. Suppose that @ (f)=I1¢% (t— w;) divides D(f). Then the
corresponding factor of A(r) is II{% (r—w%). Since each w; is a primi-
tive d-th root of unlty, each of is a primitive d’-th root of unity, where

=d/(g, d). (For of"=1 iffd|gx, i.e. iffd'|g’x, where g’'=g/(g, d);
since (d’, g’)=1 this holds iff d’|x.) Therefore

I (r—of) = P50 ()

Furthermore, since II;% (r—w%) is of degree ¢(d) and P (1) is of degree
¢(d’), we have

n(d) = $(d)/p(d’) .

Clearly the exponent m(a) of the factor ®2(r) of A(r) must there-
fore be of the form >} v,m(d), where v, are integers and the sum is
extended over those integers d for which d'=a.

Let p range over the prime divisors of @, and let ¢ range over the
remaining primes. Write a=1Ip% d=1Ip* 11 ¢? and g=11p" IIg°. If
d' =a then we must have 0< a=y< 8 and B<6. It follows that
d|d = (g, d) =Tpmn@&» Igmin®.6 must be divisible by »?, and
hence that p* must divide #(d)= <!>(d)/¢>(d’)——dH(1—-2)113;0(1—%1—)/
al <1——};) Since p' devides n(d) for each d for which d'=a, it
follows that p" divides m(a).

8§4. Corollary 1. If g and AB are not relatively prime them A
cannot be a torus knot of type A, B.

Proof. If A is a torus knot of type A, B then

_ 1) _
A= iy ey =

a5 (7) -

so that m(AB)=1. It follows from the theorem that if p is any prime
divisor of (g, AB) then p ' g; consequently (g, AB)=1.

Corollary 2. (MONTGOMERY-SAMELSON) If g=2, A cannot be the
boundary of a twisted® Mobius band.

Proof. If « is the knot type of a Mobius band then [10]

any prime d1v1sor of B. Smce (2, By=1, ¢_>2. Thus

, where A, is the polynomial of «. Let ¢ be

2) The twist p of Mobius band in 3-space was defined in [11] to be &-v(k, /), where &
is the boundary of the Mobius band, / is its meridian, » denotes linking number, and e=-1.
By a twisted Mobius band I mean one for which |p|>1.
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(TP=1D(r—1) _
=1 (-1

(I)Zq(rr) oo

Now if ®,(r) divides A.(r) the corresponding factor of A,(7?) must be

D7) =D,,(7) if d is even
=®,,(1) D,(r) if d is odd.
Hence @,,(r)|A.(r%) only if @, (r)|A(r).
But this last is impossible because A.(1)=+1 and ®,(1)=¢. Thus
we conclude that
A(r) = D, (7) ---,

i.e. that m(2q) =1. Therefore, by the theorem, 1 must be divisable by
the highest power of p=2 that divides 2. This is impossible.

(Received February 5, 1958)
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