On Regular Neighbourhoods of 2-Manifolds in 4-Euclidean Space. I

By Hiroshi Noguchi ${ }^{1)}$

Introduction

In 1921 L. Antoine [1] dealt with the embedding of sets in a Euclidean space R and he pointed out that there are three categories of the embeddings. Let P, Q be (topologically) equivalent sets in R. The first category: There is an orientation preserving homeomorphism onto $\psi: R \rightarrow R$ such that $\psi(P)=Q$. We say that P, Q are congruent. The second category: There are neighbourhoods $U(P), U(Q)$ of P, Q respectively such that there exists an orientation preserving homeomorphism onto $\psi: U(P) \rightarrow U(Q)$ such that $\psi(P)=Q$. We say that P, Q are semicongruent. The third category: P, Q are neither congruent nor semicongruent.

The present paper deals with the second category of the piecewise linear embedding of polyhedral manifolds in $R^{n}(n=3,4)$. The questions studied are mostly local in character. We often use some of the results and methods due to J.H.C. Whitehead [9] and V.K.A.M. Gugenheim [6. I, 6. II]. I am greatly indebted to their papers.

The exposition is as follows: In section 1 the results which are well known and will be used in the rest of the paper are stated. The results in section 2 are analogous appropriate to congruence of theorems due to Whitehead concerning regular neighbourhoods of polyhedra in a Euclidean space. Section 3 contains the fundamental definitions and lemmas. In section 4 we deal with ($n-1$)-manifolds in $R^{n}(n=3,4)$ and show that the equivalent manifolds are semicongruent (Theorem 2). In section 5 we deal with 2 -manifolds in R^{4} (Theorem 3) and characterize the semicongruence classes of equivalent oriented 2 -manifolds in R^{4} (Theorem 4). Section 6 contains some geometric applications of the above considerations.

1. Preliminaries

1.1. R^{n} will stand throughout this paper for n-dimensional metric

1) The paper was written while the author held an Yukawa Fellowship at Osaka University.

Euclidean space (in the statements using this and other points sets the superscripts which denote the dimensionalities will often be omitted when they are clear from the context). By a simplex we shall mean a closed Euclidean simplex, and by a complex, a rectilinear closed locally finite simplicial subcomplex of some Euclidean space (we only deal with finite complexes except for R). Let K be a complex; we denote by $|K|$ the point set covered by the simplexes of K; such a point set will be called a polyhedron and K a partition of the polyhedron. For convenience sake we very often use K instead of $|K|$.

Polyhedra having isomorphic partitions will be said to be equivalent. Let K, L be isomorphic partitions of polyhedra P, Q. Let $\phi: P \rightarrow Q$ be the homeomorphism obtained by mapping each simplex of K linearly onto its correlate in L. We call ϕ a piecewise linear homeomorphism onto, or PLO. Let $Q \subset T$, where T is a polyhedron. Then the mapping $\psi: P \rightarrow T$ defined by $\psi(x)=\phi(x)$ for $x \in P$ is called a piecewise linear homeomorphism into, or PLI. The identity map be denoted by 1.

By I we shall denote the closed interval $0 \leqq t \leqq 1$. Let P, Q be polyhedra and let

$$
\phi_{I}: P \times I \rightarrow Q \times I
$$

be a PLI such that $\phi_{I}(x, t)=(y, t)$, where $x \in P, y \in Q$ and $t \in I$. If x, y and t are related as above, we write $y=\phi_{t}(x)$, and have thus defined a map $\phi_{t}: P \rightarrow Q$ which is a PLI and is such that

$$
\phi_{I}(x, t)=\left(\phi_{t}(x), t\right) .
$$

In the above situation, the PLI ϕ_{I} or the family of PLI ϕ_{t} are called an into isotopy between the PLI ϕ_{0} and ϕ_{1}, which are said to be into isotopic; we write $\phi_{0} \sim \phi_{1}$. If ϕ_{I} is a PLO or equivalently, if each ϕ_{t} is a PLO, then we refer to an onto isotopy, we say that ϕ_{0}, ϕ_{1} are onto isotopic and write $\phi_{0} \approx \phi_{1}$. Both \sim and \approx are equivalence relations [6. I].
1.2. By a q-element E^{q} we shall mean a polyhedron equivalent to a q-simplex Δ^{q}, by a q-sphere S^{q} one equivalent to the boundary of a ($q+1$)-simplex.

Let K be a complex and H a set of simplexes in K. We denote by $N(H, K)$ the set of all simplexes of K which contain one or more simplexes in H and referred to as the star of H in K. The set of simplexes of K which are faces not intersecting H in some simplexes of $N(H, K)$ is denoted by $L(H, K)$ and referred to as the link of H in K.

A (combinatorial) q-manifold M^{q} is defined as a complex M^{q} such
that $|N(\Delta, M)|$ is a q-element for every simplex $\Delta \subset M$. Alternatively, it is characterized as follows: Let x be any vertex of M. Then $|L(x, M)|$ is a $(q-1)$-element if $x \in \dot{M}$, a $(q-1)$-sphere if $x \in I M$, where \dot{M} will denote the boundary of M and $I M=M-\dot{M}$.

From now on manifold will mean connected manifold. Let M^{q} be an orientable q-manifold. An orientation preserving PLI $\phi: N^{q} \rightarrow M^{q}$, where $N^{q} \subset M^{q}$ is an orientable submanifold, is said to be positive in M^{q}. If a PLO $\phi: M^{q} \rightarrow M^{q}$ is positive in M^{q} we call it a +PLO.

The following is well known:
(a) Let S be a sphere and $\phi: S \rightarrow S$ a +PLO. Then $\phi \approx 1$ [6.1].
(b) Let E be an element and $\phi: E \rightarrow E$ a + PLO. Then $\phi \approx 1$ [6. I].
(c) Let M^{2} be an orientable closed 2-manifold and $\phi: M^{2} \rightarrow M^{2}$ a PLO such that ϕ induces an inner automorphism of the fundamental group of M^{2}. Then $\phi \approx 1$ [4].
(d) Let M^{q} be an orientable q-manifold and $E_{i}^{q}(i=1,2) q$-elements in $I M^{q}$. Let $P \subset M^{q}-E_{1}^{q}-E_{2}^{q}$ be a polyhedron which does not disconnect M^{q} and let $\phi: E_{1}^{q} \rightarrow E_{2}^{q}$ be a given PLO which is positive in M^{q}. There is a +PLO $\psi: M^{q} \rightarrow M^{q}$ such that $\psi|P=1, \psi| E_{1}^{q}=\phi$ and $\psi \approx 1$ [6. I, Theorem 3 and also see its Remark].
(e) Let M^{q} be a q-manifold $(q>1)$ and $x_{i}, y_{i}(i=1, \cdots, k)$ points in $I M^{q}$. Then there is a + PLO $\phi: M^{q} \rightarrow M^{q}$ such that $\phi\left(x_{i}\right)=y_{i}$ for each i and $\phi \approx 1$ (it is trivial, see [8]).
1.3. Let M be an orientable manifold and P, Q polyhedra of M. We say that P, Q are congruent in $M, P \equiv Q$ in M, if there is a +PLO $\phi: M \rightarrow M$ such that $\phi(P)=Q$. In statements using this and consequential definitions the words in M will often be omitted when they are clear. In the rest part of the paper by polyhedron we shall either mean polyhedron P in the same sense as up to now; or else oriented polyhedron \boldsymbol{P}, in which latter case all PLI, equivalence and congruence relations are taken to be consistent with the given orientations.

The following is due to Gugenheim [6. II]. A polyhedron \boldsymbol{P} is said to be locally embedded in an orientable n-manifold M^{n} if there is an n-element $E^{n} \subset M^{n}$ such that $P \subset 1 E^{n}$ and P does not disconnect M^{n}. By $\left\{\boldsymbol{P}, \boldsymbol{M}^{n}\right\}$ we shall denote a polyhedron \boldsymbol{P} locally embedded in M^{n} and the oriented manifold \boldsymbol{M}^{n}. We call $\left\{\boldsymbol{P}, \boldsymbol{M}^{n}\right\}$ a pair. We say that the pair $\left\{\boldsymbol{P}, \boldsymbol{M}^{n}\right\}$ and $\left\{\boldsymbol{Q}, \boldsymbol{N}^{n}\right\}$ are congruent, $\left\{\boldsymbol{P}, \boldsymbol{M}^{n}\right\} \equiv\left\{\boldsymbol{Q}, \boldsymbol{N}^{n}\right\}$, if, since \boldsymbol{P} is locally embedded, there is a + PLO $\phi: \boldsymbol{E}^{n} \rightarrow \boldsymbol{N}^{n}$, where \boldsymbol{E}^{n} has the orientation induced by \boldsymbol{M}^{n} such that $\phi(\boldsymbol{P})=\boldsymbol{Q}$. Congruence is an equivalence relation between pairs.

Let $\Pi \Pi$ be an equivalence class of polyhedra. By (Π, n) we denote
the set of congruence classes of pairs $\left\{\boldsymbol{P}, \boldsymbol{M}^{n}\right\}$, where $\boldsymbol{P} \in \Pi$ and \boldsymbol{M}^{n} is an oriented n-manifold.

For $q<n$, let $\langle q, n\rangle$ denote the set of congruence classes of oriented q-elements of $R^{n},\langle q, n\rangle$ is a commutative semigroup and the zero element $0 \in\langle q, n\rangle$ denotes the congruence class of flat q-elements which are congruent in R^{n} to an arbitrary oriented q-simplex. We shall take $\langle n, n\rangle=0$ as a formal way of saying that all n-elements of R^{n} which have the orientations which are induced by a fixed orientation of R^{n}, are flat (see 1.2 (d)).

For $q<n-1$, let (q, n) denote the set of congruence classes of oriented q-spheres of $R^{n},(q, n)$ is a commutative semigroup and the zero element $0 \in(q, n)$ denotes the congruence class of flat q-spheres which are congruent in R^{n} to an arbitrary oriented boundary of a $(q+1)$ simplex. Choose an orientation of R^{n} and give to every ($n-1$)-sphere of R^{n} the orientation induced by its interior; then $(n-1, n)$ denotes the congruence classes of ($n-1$)-spheres so oriented.

Then we may identify

$$
\begin{array}{llll}
\left(\mathrm{E}^{q}, n\right) & \text { and } \quad<q, n> & \text { if } & q<n \\
\left(\sum^{q}, n\right) & \text { and } \quad(q, n) & \text { if } & q<n-1
\end{array}
$$

where E^{q} are the equivalence class of oriented q-elements and Σ^{q} that of oriented q-spheres. The following is well known.
(a) Let $P, Q \subset R^{n}$ be polyhedra and let $\phi: R^{n} \rightarrow R^{n}$ be a + PLO such that $\phi(P)=Q$. Then there is an n-element E_{0}^{n} and $+\mathrm{PLO} \phi_{0}: R^{n} \rightarrow R^{n}$ such that $\phi_{0} \mid c l\left(R^{n}-E_{0}^{n}\right)=1$ and $\phi_{0}|P=\phi| P[6 . \mathrm{I}, 5,7]$.
(b) Let $P, Q \subset R^{n}$ be q-dimensional polyhedra, $2 q+2 \leqq n$, and $\phi: P \rightarrow Q$ be a given PLO. Then there is a +PLO $\psi: R^{n} \rightarrow R^{n}$ such that $\psi \mid P=\phi$ [6. I].
(c) $\langle 1, n\rangle=0$ for each $n \geqq 1 \quad[6 . \mathrm{I}]$,

$<q, n>=0$	for $2 q+1 \leqq n$		$[6$. II $]$,
$<2, n>=0$	for $n \neq 4$		$[6 . \mathrm{II}, 5]$,
$(1,2)$	0	well known,	
$(q, n)=0$	for $2 q+2 \leqq n$	$[6 . \mathrm{I}]$,	
$(2,3)$	$=0$	Alexander's theorem $[5,7]$.	

2. Regular Neighbourhoods in $\boldsymbol{R}^{\boldsymbol{n}}$

2.1. If K is a complex, K^{\prime} and $K^{\prime \prime}$ will stand for the first and second derived complexes of K. Let M^{n} be an n-dimensional manifold which contains K as a subcomplex. By a regular neighbourhood of K in M^{n} we shall mean a subcomplex $U(K, M)$ of M, such that $U(K, M)$
is an n-dimensional manifold and $U(K, M)$ contracts geometrically into K. The main results of Whitehead [9, p. 293] are;
(a) $N\left(K^{\prime \prime}, M^{\prime \prime}\right)$ is a regular neighbourhood.
(b) Any two regular neighbourhoods of K in M are equivalent.
(c) If K is geometrically collapsible, $U\left(K, M^{n}\right)$ is an n-element.

By $U(K)$ we often denote $U(K, M)$ when $M=R$.
2.2. Let M^{q} be a q-manifold and E^{q} a q-element such that

$$
M^{q} \cap E^{q}=\dot{M}^{q} \cap \dot{E}^{q}=E^{q-1}
$$

a ($q-1$)-element. We say that M^{q} and E^{q} have regular contact in E^{q-1}. A transformation $M^{q} \rightarrow M^{q} \cup E^{q}$, where M^{q} and E^{q} have regular contact in a $(q-1)$-element on the boundary of both, or the resultant of a finite sequence of such transformations, will be called a regular expansion of M^{q} [9, p. 291].

Let $M^{q} \subset R^{n}$ be a q-manifold and $F^{q} \subset M^{q}$ a q-element such that

$$
\dot{M}^{q} \cap \dot{F}^{q}>F^{q-1}
$$

a ($q-1$)-element. Let $E^{q} \subset R^{n}$ have regular contact with M^{q} in F^{q-1} and let the q-element $E^{q} \cup F^{q}$ be flat. Then we call E^{q} a flat attachment to M^{q} [6. I, p. 33].

Lemma. If $M^{n} \subset R^{n}$ is an n-manifold, $E^{n} \subset R^{n}$ is an n-element and $M^{n} \rightarrow M^{n} \cup E^{n}$ is a regular expansion of M^{n}, then E^{n} is a flat attachment to M^{n}.

Proof. Since the transformation $M^{n} \rightarrow M^{n} \cup E^{n}$ is a regular expansion, E^{n} meets M^{n} in an $(n-1)$-element F^{n-1} on the boundary of both. Let $F^{n}=U\left(F^{n-1}, M^{n}\right)$. By 2.1 (c) F^{n} is an n-element in M^{n} such that $\dot{M}^{n} \cap \dot{F}^{n} \supset F^{n-1}$. Since, by 1.2 (d), the n-element $E^{n} \cup F^{n}$ is flat, E^{n} is a flat attachment to M^{n}.
2. 3. Theorem 1. If P is a polyhedron in R^{n}, any two regular neighbourhoods $U_{1}(P)$ and $U_{2}(P)$ are congruent in R^{n} relative to P, that is to say, there is $a+P L O \phi: R^{n} \rightarrow R^{n}$ such that $\phi\left(U_{1}(P)\right)=U_{2}(P)$ and $\phi \mid P=1$.

Proof. Let $|K|=P$ be a partition such that K is a subcomplex of R and each of the regular neighbourhood $U_{i}(P)$ contracts formally into $K, i=1,2$ [9, p. 296]. By the second corollary to Lemma 10 of [9, p. 293], $U_{i}^{\prime \prime}$ expands regularly into $N\left(U_{i}^{\prime \prime}, R^{\prime \prime}\right)$. Since K expands formally into U_{i}, it follows from Lemma 11 of [9, p. 294] that $N\left(K^{\prime \prime}, R^{\prime \prime}\right)$ expands regularly into $N\left(U_{i}^{\prime \prime}, R^{\prime \prime}\right)$. Hence by Lemma 2.2 and Theorem 6 of [6. I]

$$
U_{i} \equiv U_{i}^{\prime \prime} \equiv N\left(U_{i}^{\prime \prime}, R^{\prime \prime}\right) \equiv N\left(K^{\prime \prime}, R^{\prime \prime}\right)
$$

Therefore there is a $+\mathrm{PLO} \phi: R \rightarrow R$ such that $\phi\left(U_{1}\right)=U_{2}$. Since by 2.1 (a) we may assume that F^{n} in Lemma 2.2 which arises at each step of regular expansions is disjoint from $P, \phi \mid P=1$.
2.4. Corollary 1. If P, Q are congruent polyhedra in R^{n}, then $U(P)$ and $U(Q)$ are congruent in R^{n}.

Proof. Let $\phi_{1}: R \rightarrow R$ be a + PLO such that $\phi_{1}(P)=Q$. Then $\phi_{1}(U(P))$ is an n-manifold which contracts geometrically into $\phi_{1}(P)=Q$, that is to say, $\phi_{1}(U(P))$ is a regular neighbourhood of Q in R. Hence, by Theorem 1, there is a + PLO $\phi_{2}: R \rightarrow R$ such that $\phi_{2} \phi_{1}(U(P))=U(Q)$.
2.5. Corollary 2. If P, Q are equivalent q-dimensional polyhedra in R^{n}, then $U(P)$ and $U(Q)$ are congruent and also equivalent provided $n \geq 2 q+2$.

This follows from 1.3 (b) and 2.4 (see Theorem 24 of [9]).
2.6. Remark. We can prove the following but since it is unnecessary in the rest of the paper, the proof is omitted:

If E^{m} is an m-element in $R^{n}(m \leqq n)$. Then the fundamental group of $R^{n}-E^{m}$ is the unity.
3. Local congruence and semicongruence.
3.1. Let \boldsymbol{R}^{n} be R^{n} with a given orientation which we keep fixed throughout; all n-elements of R^{n} and their boundaries will be given the induced orientation.

Let \boldsymbol{M}^{q} be an oriented q-manifold of R^{n}, and let $q<n$; we give to all q-elements of M^{q} and their boundaries the induced orientation.

Then we have for any vertex $x \in M^{\prime}$ the pairs $\left\{\boldsymbol{N}\left(x, M^{\prime \prime}\right), \boldsymbol{R}\right\}$, $\left\{\boldsymbol{L}\left(x, M^{\prime \prime}\right), \boldsymbol{L}\left(x, R^{\prime \prime}\right)\right\}$. If $q<n-1,\left\{\boldsymbol{N}\left(x, M^{\prime \prime}\right), \boldsymbol{R}\right\}$ represents an element in $\langle q, n\rangle,\left\{\boldsymbol{L}\left(x, M^{\prime \prime}\right), \boldsymbol{L}\left(x, R^{\prime \prime}\right)\right\}$ represents an element in $(q-1, n-1)$ if $x \in I M$ and in $<q-1, n-1\rangle$ if $x \in \dot{M}$.
3. 2. Defintion 1. Let $\boldsymbol{M}^{q}, \boldsymbol{N}^{q}$ be equivalent oriented q-manifolds of R^{n}. We say that $\boldsymbol{M}^{q}, \boldsymbol{N}^{q}$ are locally congruent in R^{n}, if there is a + PLO $\phi: \boldsymbol{M}^{q} \rightarrow \boldsymbol{N}^{q}$ such that for any vertex $x \in M^{\prime}$

$$
\left\{\boldsymbol{L}\left(x, M^{\prime \prime}\right), \boldsymbol{L}\left(x, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{L}\left(\phi(x), N^{\prime \prime}\right), \boldsymbol{L}\left(\phi(x), R^{\prime \prime}\right)\right\}
$$

If M^{q}, N^{q} are nonorientable, M^{q}, N^{q} are locally congruent when there is a PLO $\phi: M^{p} \rightarrow N^{q}$ as above, where the orientation of $\boldsymbol{L}\left(x, M^{\prime \prime}\right)$
is any one of the possible orientations of $L\left(x, M^{\prime \prime}\right)$ and that of $\boldsymbol{L}\left(\phi(x), N^{\prime \prime}\right)$ is one induced by ϕ and that of $\boldsymbol{L}\left(x, M^{\prime \prime}\right)$.

Definition 2. Let $\boldsymbol{M}^{q}, \boldsymbol{N}^{q}$ be equivalent oriented q-manifolds of R^{n}. We say that $\boldsymbol{M}^{q}, \boldsymbol{N}^{q}$ are semicongruent in R^{n} if there are regular neighbourhoods $U\left(M^{q}\right), U\left(N^{q}\right)$ and +PLO $\psi: \boldsymbol{U}\left(M^{q}\right) \rightarrow \boldsymbol{U}\left(N^{q}\right)$ such that $\boldsymbol{\psi}(\boldsymbol{M})=\boldsymbol{N}$. If M^{q}, N^{q} are nonorientable, M^{q}, N^{q} are semicongruent when there is a +PLO $\psi: \boldsymbol{U}\left(M^{q}\right) \rightarrow \boldsymbol{U}\left(N^{q}\right)$ such that $\psi(M)=N$.

Remark. It is clear that local congruence is an equivalence relation. The reflexive and symmetric laws are clear for semicongruence and the transitive law is easily proved by Theorem 1. Thus semicongruence is an equivalence relation. Hence we may define local congruence classes and semicongruence classes of equivalent oriented (or nonorientable) manifolds in R^{n}. If $\boldsymbol{M}^{q}, \boldsymbol{N}^{q}$ of R^{n} are semicongruent, they are locally congruent. But whether in general the converse is true I do not know.
3. 3. Lemma. If $S_{i}(i=1,2)$ are oriented 1-spheres of R^{3} and ϕ is $a+P L O: \mathbf{S}_{1} \rightarrow \mathbf{S}_{2}$. Then there is a + PLO $\phi: \mathbf{N}\left(S_{1}^{\prime \prime}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(S_{2}^{\prime \prime}, R^{\prime \prime}\right)$ such that $\psi \mid S_{1}=\phi$.

Proof. Let $S_{i}(i=1,2)$ be subcomplexes of R^{3}. Let x_{j} be vertices of $S_{1}{ }^{\prime}$ and $\phi\left(x_{j}\right)=y_{j}$ vertices of $S_{2}{ }^{\prime}(j=1, \cdots, p)$ which are ordered by the orientation of $S_{i}(i=1,2)$. It is well known that $N\left(S_{i}^{\prime \prime}, R^{\prime \prime}\right)$ is the aggregate of 3 -elements $N\left(z_{i j}, R^{\prime \prime}\right)$, where $z_{i j}$ is a vertex of S_{i}^{\prime}, that is to say, $N\left(S_{i}^{\prime \prime}, R^{\prime \prime}\right)=N\left(\bigcup_{j=1}^{p} z_{i j}, R^{\prime \prime}\right)$ [9, p. 294]. Let $N\left(z_{i j}, R^{\prime \prime}\right) \cap N\left(z_{i j+1}, R^{\prime \prime}\right)$ $=D_{i j}$,

$$
D_{i j}\left\{\begin{array}{l}
=N\left(L\left(z_{i j}, S_{i}^{\prime \prime}\right) \cap L\left(z_{i j+1}, S_{i}^{\prime \prime}\right), L\left(z_{i j}, R^{\prime \prime}\right)\right) \tag{1}\\
=N\left(L\left(z_{i j}, S_{i}^{\prime \prime}\right) \cap L\left(z_{i j+1}, S_{i}^{\prime \prime}\right), L\left(z_{i j+1}, R^{\prime \prime}\right)\right)
\end{array}\right.
$$

is a 2 -element $(i=1,2 . \quad j=1, \cdots, p \bmod p)$.
Since $L\left(z_{i j}, S_{i}^{\prime \prime}\right)$ is two points and $L\left(z_{i j}, R^{\prime \prime}\right)$ is a 2 -sphere such that $L\left(z_{i j}, S_{i}^{\prime \prime}\right) \subset L\left(z_{i j}, R^{\prime \prime}\right)$, by 1.2 (e) for each $j=1, \cdots, p$

$$
\begin{equation*}
\left\{\boldsymbol{L}\left(x_{j}, S_{1}^{\prime \prime}\right), \boldsymbol{L}\left(x_{j}, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{L}\left(y_{j}, S_{2}^{\prime \prime}\right), \boldsymbol{L}\left(y_{j}, R^{\prime \prime}\right)\right\} \tag{2}
\end{equation*}
$$

By (2) there is a + PLO $\psi_{1}^{\prime \prime}: \boldsymbol{L}\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right)$ such that $\psi_{1}^{\prime \prime}\left(\boldsymbol{L}\left(x_{1}, S_{1}^{\prime \prime}\right)\right)$ $=\boldsymbol{L}\left(y_{1}, S_{2}^{\prime \prime}\right)$. Since $D_{i j-1} \cup D_{i j} \neq L\left(z_{i j}, R^{\prime \prime}\right)$ for $i=1,2$ and $j=1, \cdots, p \bmod p$, from (1) and Theorem 1 we have a +PLO $\rho_{1}: \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right)$ such that

$$
\begin{aligned}
& \rho_{1}\left(\psi_{1}^{\prime \prime}\left(D_{1 j}\right)\right)=D_{2 j} \quad j=1, p \quad \text { and } \\
& \rho_{1} \mid L\left(y_{1}, S_{2}^{\prime \prime}\right)=1
\end{aligned}
$$

Hence $\psi_{1}^{\prime \prime}: \boldsymbol{L}\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right)$ defined by $\psi_{1}^{\prime}=\rho_{1} \psi_{1}^{\prime \prime}$ is a +PLO such
that $\quad \psi_{1}^{\prime}{ }^{\prime}\left(D_{1 j}\right)=D_{2 j}(j=1, p) \quad$ and $\quad \psi_{1}^{\prime}\left(\boldsymbol{L}\left(x_{1}, S_{1}^{\prime \prime}\right)\right)=\boldsymbol{L}\left(y_{1}, S_{2}^{\prime \prime}\right)$. Then we extend ψ_{1}^{\prime} to a +PLO $\psi_{1}: \boldsymbol{N}\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1}, R^{\prime \prime}\right)$ by the usual method (see 3.11 of [6. I]), we have ψ_{1} such that $\psi_{1} \mid N\left(x_{1}, S_{1}^{\prime \prime}\right)=\phi$ and $\psi_{1}\left(D_{1 j}\right)$ $=D_{2 j}(j=1, p)$.

As above by (2), we have a +PLO $\psi_{2}^{\prime \prime}: \boldsymbol{L}\left(x_{2}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{2}, R^{\prime \prime}\right)$ such that $\psi_{2}^{\prime \prime}\left(\boldsymbol{L}\left(x_{2}, S_{1}^{\prime \prime}\right)\right)=\boldsymbol{L}\left(y_{2}, S_{2}^{\prime \prime}\right)$. From (1) and Theorem 1 we can assume that

$$
\psi_{2}^{\prime \prime}\left(D_{1 j}\right)=D_{2 j} \quad(j=1,2)
$$

Since D_{21} is a 2-element and $\psi_{1} \psi_{2}^{\prime \prime-1} \mid D_{21}$ is a +PLO : $D_{21} \rightarrow D_{21}$, by 1.2 (d) there is a $+\operatorname{PLO} \rho_{2}: \boldsymbol{L}\left(y_{2}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{2}, R^{\prime \prime}\right)$ such that $\rho_{2} \mid c l\left(L\left(y_{2}, R^{\prime \prime}\right)-H_{12}\right)$ $=1, \rho_{2} \mid D_{21}=\psi_{1} \psi_{2}^{\prime \prime-1}$, where $H_{j k}$ is a regular neighbourhood of $D_{2 j}$ in $L\left(y_{k}, R^{\prime \prime}\right)$ which is disjoint from $H_{j+1 k}$. Hence $\psi_{2}^{\prime}: \boldsymbol{N}\left(x_{2}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{2}, R^{\prime \prime}\right)$ defined by $\psi_{2}{ }^{\prime}=\rho_{2} \psi_{2}^{\prime \prime}$ on $L\left(x_{2}, R^{\prime \prime}\right)$ and the usual method (see 3.11 of [6. I]) on $N\left(x_{2}, R^{\prime \prime}\right)-L\left(x_{2}, R^{\prime \prime}\right)$, is a +PLO which is consistent with ψ_{1} on D_{21}. Then $\psi_{2}: \boldsymbol{N}\left(x_{1} \cup x_{2}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1} \cup y_{2}, R^{\prime \prime}\right)$ defined by

$$
\begin{array}{lll}
\psi_{2}=\psi_{1} & \text { on } & N\left(x_{1}, R^{\prime \prime}\right), \\
\psi_{2}=\psi_{2}^{\prime} & \text { on } & \boldsymbol{N}\left(x_{2}, R^{\prime \prime}\right)
\end{array}
$$

is a +PLO such that $\psi_{2} \mid N\left(x_{1} \cup x_{2}, S_{1}^{\prime \prime}\right)=\phi$ and $\psi\left(D_{1 j}\right)=D_{2 j}(j=p, 2)$.
Since the same construction can be applied succesively, we have a + PLO $\quad \psi_{p-1}: \boldsymbol{N}\left(x_{1} \cup \cdots \cup x_{p-1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1} \cup \cdots \cup y_{p-1}, R^{\prime \prime}\right) \quad$ such that $\psi_{p-1} \mid N\left(x_{1} \cup \cdots \cup x_{p-1}, S_{1}^{\prime \prime}\right)=\phi$ and $\psi_{p-1}\left(D_{1 j}\right)=D_{2 j}(j=p, p-1)$.

As above there is a +PLO $\psi_{p}^{\prime \prime}: \boldsymbol{L}\left(x_{p}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{p}, R^{\prime \prime}\right)$ such that $\psi_{p}^{\prime \prime}\left(\boldsymbol{L}\left(x_{p}, S_{1}^{\prime \prime}\right)\right)=\boldsymbol{L}\left(y_{p}, S_{2}^{\prime \prime}\right)$ and $\psi_{p}^{\prime \prime}\left(D_{1 j}\right)=D_{2 j}(j=p, p-1)$. By twice applications of 1.2 (d) there is a +PLO $\rho_{p}: \boldsymbol{L}\left(y_{p}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{p}, R^{\prime \prime}\right)$ such that $\rho_{p} \mid D_{2 p-1} \cup D_{2 p}=\psi_{p-1} \psi_{p}^{\prime \prime-1} \quad$ and $\quad \rho_{p} \mid c l\left(L\left(y_{p}, R^{\prime \prime}\right)-H_{p-1 p}-H_{p p}\right)=1$. Hence $\psi_{p}^{\prime}: \boldsymbol{N}\left(x_{p}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{p}, R^{\prime \prime}\right)$ defined by $\psi_{p}^{\prime}=\rho_{p} \psi_{p}^{\prime \prime}$ on $L\left(x_{p}, R^{\prime \prime}\right)$ and the usual way on $N\left(x_{p}, R^{\prime \prime}\right)-L\left(x_{p}, R^{\prime \prime}\right)$ is a +PLO which is consistent with ψ_{p-1}. Then

$$
\psi=\psi_{p}: \mathbf{N}\left(x_{1} \cup \cdots \cup x_{p}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1} \cup \cdots \cup y_{p}, R^{\prime \prime}\right)
$$

defined by taking

$$
\begin{array}{lll}
\psi=\psi_{p-1} & \text { on } & \boldsymbol{N}\left(x_{1} \cup \cdots \cup x_{p-1}, R^{\prime \prime}\right) \quad \text { and } \\
\psi=\psi_{p}^{\prime} & \text { on } & \boldsymbol{N}\left(x_{p}, R^{\prime \prime}\right)
\end{array}
$$

is a + PLO such that $\psi \mid S_{1}=\phi$.
3.4. From 3.3, 1.2 (a) and Theorem 1 we have the well known result [3].

REmARK. Any two oriented 1-spheres in R^{3} are semicongruent in R^{3}.

Therefore the topological type of any regular neighbourhood of 1-sphere in R^{3} is the full torus, that is to say, the Cartesian product of a 2-element with a 1-sphere.
3.5. Lemma. If \boldsymbol{S}_{i} are 1-spheres of $3-$ spheres $\mathbf{S}_{i}^{\mathbf{3}}(i=1,2)$ and ϕ is a $+P L O: S_{1} \cup \boldsymbol{N}\left(x_{h}, S_{1}^{3 \prime \prime}\right) \cup \cdots \cup \boldsymbol{N}\left(x_{k}, S_{1}^{3 \prime \prime}\right) \rightarrow \mathbf{S}_{2} \cup \boldsymbol{N}\left(y_{h}, S_{2}^{3 \prime \prime}\right) \cup \cdots \cup \boldsymbol{N}\left(y_{k}, S_{2}^{3 \prime \prime}\right)$ such that $\phi\left(\mathbf{S}_{1}\right)=\boldsymbol{S}_{2}, \phi\left(\boldsymbol{N}\left(x_{h}, S_{1}^{3 \prime \prime}\right)\right)=\boldsymbol{N}\left(y_{h}, S_{2}^{3 \prime \prime}\right), \cdots, \phi\left(\boldsymbol{N}\left(x_{k}, S_{1}^{3 \prime \prime}\right)\right)=\boldsymbol{N}\left(y_{k}, S_{2}^{3 \prime \prime}\right)$ and $\phi\left(N\left(x_{l}, S_{1}^{3 \prime \prime}\right) \cap N\left(x_{m}, S_{1}^{3 \prime \prime}\right)\right)=N\left(y_{l}, S_{2}^{3 \prime \prime}\right) \cap N\left(y_{m}, S_{2}^{3 \prime \prime}\right) \quad$ for $\quad l \in(h, \cdots, k)$, $m \bar{\in}(h, \cdots, k)$, where $x_{j}, \phi\left(x_{j}\right)=y_{j}$ are the vertices of $S_{1}{ }^{\prime}, S_{2}{ }^{\prime}$ respectively $(j=1, \cdots, p)$ and $(h, \cdots, k) \neq(1, \cdots, p)$. Then there is a + PLO $\psi: \boldsymbol{N}\left(S_{1}^{\prime \prime}, S_{1}^{3 \prime \prime}\right)$ $\rightarrow \boldsymbol{N}\left(S_{2}^{\prime \prime}, S_{2}^{3 \prime \prime}\right)$ such that $\psi \mid S_{1} \cup N\left(x_{h}, S_{1}^{3 \prime \prime}\right) \cup \cdots \cup N\left(x_{k}, S_{1}^{3 \prime \prime}\right)=\phi, \psi\left(\boldsymbol{N}\left(x_{j}, S_{1}^{3 \prime \prime}\right)\right)$ $=\boldsymbol{N}\left(y_{j}, S_{2}^{3 \prime \prime}\right)$ for each $j=1, \cdots, p$ and $\psi\left(a_{1}\right), \psi\left(b_{1}\right)$ are homotopic to a_{2}, b_{2} respectively, where a_{i}, b_{i} is an appropriately oriented canonical curve system of the torus $\dot{N}\left(S_{i}^{\prime \prime}, S_{i}^{3 \prime \prime}\right)$ such that a_{i} is homotopic to zero in $N\left(S_{i}^{\prime \prime}, S_{i}^{3 \prime \prime}\right)$ ($i=1,2$).

Proof. The first part of Lemma is clear from the proof of Lemma 3.3. Since a_{1} is homotopic to zero in $N\left(S_{1}^{\prime \prime}, S_{1}^{3 \prime \prime}\right), \psi\left(a_{1}\right)$ is also homotopic to zero in $N\left(S_{2}^{\prime \prime}, S_{2}^{3 \prime \prime}\right)$, that is to say, $\psi\left(a_{1}\right)$ is homotopic to a_{2}.

If $\psi\left(b_{1}\right)$ is not homotopic to b_{2}, it is homotopic to $a_{2}^{l} b_{2}$, where $l \neq 0$ is an integer. Since $(h, \cdots, k) \neq(1, \cdots, p)$, there is a number, say p, such that ϕ does not define on $N\left(x_{p}, S_{1}^{3 \prime \prime}\right)$. In the construction of ψ, we take a + PLO $\rho_{p}: \boldsymbol{L}\left(y_{p}, S_{2}^{3 \prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{p}, S_{2}^{3 / \prime}\right)$ such that

$$
\begin{aligned}
& \rho_{p} \mid D_{2 p-1} \cup D_{2 p}=\psi_{p-1} \psi_{p}^{\prime \prime-1} \quad \text { and } \\
& \rho_{p} \mid c l\left(L\left(y_{p}, S_{2}^{3 \prime \prime}\right)-H_{p-1 p}-H_{p p}\right)
\end{aligned}
$$

is an appropriate l-times rotation of the cylinder $c l\left(L\left(y_{p}, S_{2}^{3 / \prime}\right)\right.$ $\left.-H_{p-1 p}-H_{p p}\right)$ about S_{2} which is the identity on the boundary of the cylinder and whose direction is the inverse of the orientation of a_{2}. Thus the resulting ψ is a +PLO: $\boldsymbol{N}\left(S_{1}^{\prime \prime}, S_{1}^{3 \prime \prime}\right) \rightarrow \boldsymbol{N}\left(S_{2}^{\prime \prime}, S_{2}^{3 \prime}\right)$ such that $\psi\left(b_{1}\right)$ is homotopic to b_{2}. Hence ψ is the required + PLO.

4. $(\boldsymbol{n}-1)$-Manifolds in $\boldsymbol{R}^{\boldsymbol{n}}(\boldsymbol{n}=3,4)$

4. 5. Let M^{n-1} be a manifold in $R^{n}(n=3,4)$ and x_{0}, x_{j} vertices of M^{\prime} which are the boundary of the 1 -simplex $\left(x_{0}, x_{j}\right)$ of M^{\prime}, then

$$
N\left(x_{0}, M^{\prime \prime}\right) \cap N\left(x_{j}, M^{\prime \prime}\right)=C_{j}
$$

is an ($n-2$)-element which is the dual cell of $\left(x_{0}, x_{j}\right)$ in $M^{\prime \prime}$, and $N\left(x_{0}, R^{\prime \prime}\right) \cap N\left(x_{j}, R^{\prime \prime}\right)=E_{j}$ is an ($n-1$)-element which is the dual cell of $\left(x_{0}, x_{j}\right)$ in $R^{\prime \prime}$. Let x_{1}, \cdots, x_{p} be vertices of M^{\prime} which belong to $L\left(x_{0}, M^{\prime}\right)$,
$\bigcup_{j=1}^{p} C_{j}=L\left(x_{0}, M^{\prime \prime}\right)$, an $(n-2)$-sphere if $x_{0} \in I M$, an ($n-2$)-element if ${ }_{x_{0} \in 1} \in \dot{M}$ and

$$
\bigcup_{j=1}^{p} E_{j}=N\left(L\left(x_{0}, M^{\prime \prime}\right), L\left(x_{0}, R^{\prime \prime}\right)\right) .
$$

4. 2. Lemma n. Let \mathbf{S}_{i}^{n-1} be ($n-1$)-spheres $(n=2,3,4)$, let $\mathbf{S}_{i}^{n-2} \subset \mathbf{S}_{i}^{n-1}$ be ($n-2$)-spheres $(i=1,2)$ and $\phi:\left(\boldsymbol{S}_{1}^{n-2} \cup \boldsymbol{E}_{1 h} \cup \cdots \cup \boldsymbol{E}_{1 k}\right) \rightarrow\left(\boldsymbol{S}_{2}^{n-2} \cup \boldsymbol{E}_{2 h} \cup \cdots \cup\right.$ $\left.\boldsymbol{E}_{2 k}\right)$ be $a+$ PLO such that $\phi\left(\boldsymbol{S}_{1}^{n-2}\right)=\boldsymbol{S}_{2}^{n-2}, \phi\left(\boldsymbol{E}_{1 h}\right)=\boldsymbol{E}_{2 h}, \cdots, \phi\left(\boldsymbol{E}_{1 k}\right)=\boldsymbol{E}_{2 k}$ and $\phi\left(E_{1 l} \cap E_{1 m}\right)=E_{2 l} \cap E_{2 m}$ for $l \in(h, \cdots, k), m \bar{\in}(h, \cdots, k)$, where $E_{i j}$ is the star of vertex $x_{i j}(j=1, \cdots, p)$ of $\left(S_{i}^{n-2}\right)^{\prime \prime}$ in $\left(S_{i}^{n-1}\right)^{\prime \prime}$ such that $\bigcup_{j=1}^{p} E_{i j}=N\left(\left(S_{i}^{n-2}\right)^{\prime \prime},\left(S_{i}^{n-1}\right)^{\prime \prime}\right)$ and $I E_{i j}, I E_{i k}$ are disjoint for $j \neq k$ and $\phi\left(x_{1 j}\right)=x_{2 j}$. Then there is a + PLO $\psi: S_{1}^{n-1} \rightarrow S_{2}^{n-1}$ such that $\psi \mid S_{1}^{n-2} \cup E_{1 k}$ $\cup \cdots \cup E_{1 k}=\phi$ and $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each j.

Proof. We shall prove the Lemma by induction. Since the Lemma is clear for the case $n=2$, we wish to make the inductive step.

Let C_{1}^{n-1}, C_{2}^{n-1} be $(n-1)$-elements and $\rho:\left(C_{1}^{n-1}\right)^{\cdot} \rightarrow\left(C_{2}^{n-1}\right)^{\cdot}$ a +PLO, there is a +PLO $\eta: \boldsymbol{C}_{2}^{n-1} \rightarrow C_{2}^{n-1}$ such that $\eta \mid\left(C_{1}^{n-1}\right)^{\cdot}=\rho$ (see 3.12 of [6. I]). Since by $(n-2, n-1)=0$ for $n=3,4, c l\left(S_{i}^{n-1}-\bigcup_{j=1}^{p} E_{i j}\right)$ is two ($n-1$)-elements, it is sufficient to prove the Lemma that there is a +PLO $\psi:\left(\bigcup_{j=1}^{p} \boldsymbol{E}_{1 j}\right) \rightarrow\left(\bigcup_{j=1}^{p} \boldsymbol{E}_{2 j}\right)$ such that $\psi \mid S_{1}^{n-2} \cup E_{1 h} \cup \cdots \cup E_{1 k}=\phi$ and $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each j.

We construct a +PLO ψ by the stepwise extension of ϕ. Let $E_{1 q}$ be a star such that $q \neq h, \cdots, k$. Since $(n-3, n-2)=0$ for $n=3,4$, there is a +PLO $\psi_{q}^{\prime \prime}:\left(\boldsymbol{E}_{1 q}\right)^{\prime} \rightarrow\left(\boldsymbol{E}_{1 q}\right)^{\cdot}$ such that $\psi_{q}^{\prime \prime}\left(\dot{\boldsymbol{D}}_{1 q}\right)=\dot{\boldsymbol{D}}_{2 q}$ where $D_{i q}$ is the star of $x_{i q}$ of $\left(S_{i}^{n-2}\right)^{\prime \prime}$ in $\left(S_{i}^{n-2}\right)^{\prime \prime}$. If there is an $E_{1 j}$ such that $j \in(h, \cdots, k)$ and $E_{1 j} \cap E_{1 q}$ is not empty. Since $\phi \psi_{q}^{\prime \prime-1} \mid \dot{D}_{2 q}$ is a +PLO, by 1. 2 (d), $\phi \psi_{q}^{\prime \prime-1} \mid \dot{D}_{2 q} \approx 1$. By Theorem 5 in 6.2 there is a +PLO $\eta:\left(\boldsymbol{E}_{2 q}\right)^{\text {. }}$ $\rightarrow\left(\boldsymbol{E}_{2 q}\right)^{\text {s }}$ such that $\eta\left|\dot{D}_{2 q}=\phi \psi_{q}^{\prime \prime-1}\right| \dot{D}_{2 q}$. Then $\psi_{q}{ }^{\prime}:\left(\boldsymbol{E}_{1 q}\right)^{\cdot} \rightarrow\left(\boldsymbol{E}_{2 q}\right)$ defined by $\psi_{q}^{\prime}=\eta \psi_{q}^{\prime \prime}$ is a +PLO such that $\psi_{q}^{\prime} \mid \dot{D}_{q 1}=\phi$. If $E_{1 j} \cap E_{1 q}$ is empty for each $j=h, \cdots, k$, we take $\psi_{q}^{\prime}=\psi_{q}^{\prime \prime}$.

Since $\dot{E}_{i q}, \dot{D}_{i q}$ may correspond with S_{i}^{n-2}, S_{i}^{n-3} of Lemma for the case $n-1$, by the inductive hypothesis and the usual extension (see 3.11 of [6. I]) we have a +PLO $\psi_{q}^{*}: \boldsymbol{E}_{1 q} \rightarrow \boldsymbol{E}_{2 q}$ such that $\psi_{q}^{*} \mid\left(\left(S_{1}^{n-1} \cup E_{1 n} \cup \cdots \cup\right.\right.$ $\left.\left.E_{1 k}\right) \cap E_{1 q}\right)=\phi$ and $\psi_{q}^{*}\left(F_{1 r}\right)=F_{2 r}$, where $F_{i r}$ is the star of vertex $x_{i r}$ of $\left(\dot{D}_{i q}\right)^{\prime \prime}$ in $\left(\dot{E}_{2 q}\right)^{\prime \prime}$.

Then $\psi_{1}:\left(\boldsymbol{S}_{1}^{n-2} \cup \boldsymbol{E}_{1 h} \cup \cdots \cup \boldsymbol{E}_{1 k} \cup \boldsymbol{E}_{1 q}\right) \rightarrow\left(\boldsymbol{S}_{2}^{n-2} \cup \boldsymbol{E}_{2 h} \cup \cdots \cup \boldsymbol{E}_{2 k} \cup \boldsymbol{E}_{2 q}\right)$ defined by taking

$$
\begin{array}{lll}
\psi_{1}=\phi & \text { on } \quad S_{1}^{n-2} \cup E_{1 k} \cup \cdots \cup E_{1 k} \\
\psi_{1}=\psi_{q}^{*} & \text { on } & E_{1 q}
\end{array}
$$

is a +PLO which is the extension of ϕ over $S_{1}^{n-2} \cup E_{1 h} \cup \cdots \cup E_{1 k} \cup E_{1 q}$ and $\psi_{1}\left(\boldsymbol{E}_{1 q}\right)=\boldsymbol{E}_{2 q}$. By the same constructions we can extend ϕ to $\psi:\left(\bigcup_{j=1}^{p} \boldsymbol{E}_{1 j}\right) \rightarrow\left(\bigcup_{j=1}^{p} \boldsymbol{E}_{2 j}\right)$ such that $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each $j=1, \cdots, p$. This completes the proof.

4.3. The following is evident.

Lemma n. Let S_{i}^{n-1} be ($n-1$)-spheres $(n=2,3,4)$, let $C_{i}^{n-2} \subset S_{i}^{n-1}$ be $(n-2)$-elements. $(i=1,2)$ and let $\phi:\left(\boldsymbol{C}_{1}^{n-2} \cup \boldsymbol{E}_{1 k} \cup \cdots \cup \boldsymbol{E}_{1 k}\right) \rightarrow\left(\boldsymbol{C}_{2}^{n-2} \cup \boldsymbol{E}_{2 h}\right.$ $\left.\cup \cdots \cup \boldsymbol{E}_{2 k}\right)$ be $a+$ PLO such that $\phi\left(\boldsymbol{C}_{1}^{n-2}\right)=\boldsymbol{C}_{2}^{n-2}, \phi\left(\boldsymbol{E}_{1 h}\right)=\boldsymbol{E}_{2 h}, \cdots, \phi\left(\boldsymbol{E}_{1 k}\right)$ $=\boldsymbol{E}_{2 k}$ and $\phi\left(E_{1 l} \cap E_{1 m}\right)=E_{2 l} \cap E_{2 m}$ for $l \in(h, \cdots, k), m \bar{\epsilon}(h, \cdots, k)$, where $E_{i j}$ is the star of vertex $x_{i j}(j=1, \cdots, p)$ of $\left(C_{i}^{n-2}\right)^{\prime \prime}$ in $\left(S_{i}^{n-1}\right)^{\prime \prime}$ such that $\bigcup_{j=1}^{p} E_{i j}=N\left(\left(C_{i}^{n-2}\right)^{\prime \prime},\left(\mathrm{S}_{i}^{n-1}\right)^{\prime \prime}\right)$ and $I E_{i j}, I E_{i k}$ are disjoint for $j \neq k$ and $\phi\left(x_{1 j}\right)=x_{2 j}$. Then there is a +PLO $\psi: S_{1}^{n-1} \rightarrow S_{2}^{n-1}$ such that $\psi \mid C_{1}^{n-2} \cup E_{1 h}$ $\cup \cdots \cup E_{1 k}=\phi$ and $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each $j=1, \cdots, p$.
4.4. Lemma. If $M_{i}(i=1,2)$ are ($n-1$-manifolds in $R^{n}(n=3,4)$ and $\phi: \boldsymbol{M}_{1} \rightarrow \boldsymbol{M}_{2}$ is a + PLO, then there is $a+P L O \psi: \boldsymbol{N}\left(M_{1}^{\prime \prime}, R^{\prime \prime}\right)$ $\rightarrow \boldsymbol{N}\left(M_{2}^{\prime \prime}, R^{\prime \prime}\right)$ such that $\psi \mid M_{1}=\phi$.

Proof. Let x_{j} be vertices of M_{1}^{\prime} and $\phi\left(x_{j}\right)=y_{j}$ vertices of M_{2}^{\prime} $(j=1, \cdots, m)$. Since the topological type of $L\left(x_{1}, M_{1}^{\prime \prime}\right)$ coincides with that of $L\left(y_{1}, M_{2}^{\prime \prime}\right)$ (see 4.1), there is a +PLO $\psi \mid L\left(x_{1}, M_{1}^{\prime \prime}\right): L\left(x_{1}, M_{1}^{\prime \prime}\right)$ $\rightarrow \boldsymbol{L}\left(y_{1}, M_{2}^{\prime \prime}\right)$ and $L\left(z_{i j}, R^{\prime \prime}\right)$ is an $(n-1)$-sphere, where $z_{i j}$ is a vertex of M_{i}^{\prime}, by Lemma 4.2 or Lemma 4.3 there is a +PLO $\psi_{1}^{\prime}: L\left(x_{1}, R^{\prime \prime}\right)$ $\rightarrow \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right)$ such that $\psi_{1}^{\prime} \mid L\left(x_{1}, M_{1}^{\prime \prime}\right)=\phi$ and $\psi\left(\boldsymbol{E}_{1 a}\right)=\boldsymbol{E}_{2 a}$, where $E_{i a}$ is the star of vertex $z_{i a}$ of $L\left(z_{i 1}, M_{i}^{\prime \prime}\right)$ in $L\left(z_{i 1}, R^{\prime \prime}\right)$ (see 4.2 or 4.3). Then, extending ψ_{1}^{\prime} to a + PLO $\psi_{1}: N\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1}, R^{\prime \prime}\right)$ by the usual method, we have

$$
\psi_{1} \mid N\left(x_{1}, M_{1}^{\prime \prime}\right)=\phi \quad \text { and } \quad \psi_{1}\left(E_{1 a}\right)=E_{2 a} \quad \text { for each } \quad a .
$$

As above, by Lemma 4.2 or 4.3 we have a + PLO $\psi_{2}^{\prime \prime}: \boldsymbol{L}\left(x_{2}, R^{\prime \prime}\right)$ $\rightarrow \boldsymbol{L}\left(y_{2}, R^{\prime \prime}\right) \quad$ such that $\psi_{2}^{\prime \prime}\left|N\left(x_{1}, R^{\prime \prime}\right) \cap L\left(x_{2}, R^{\prime \prime}\right)=\psi_{1}, \psi_{2}^{\prime \prime}\right| L\left(x_{1}, M_{1}^{\prime \prime}\right)=\phi$ and $\psi_{2}^{\prime \prime}\left(\boldsymbol{F}_{1 b}\right)=\boldsymbol{F}_{2 b}$, where $F_{i b}$ is the star of vertex $z_{i k}$ of $L\left(z_{i 2}, M_{i}^{\prime \prime}\right)$ in $L\left(z_{i 2}, R^{\prime \prime}\right)$. Then we extend $\psi_{2}^{\prime \prime}$ to a +PLO $\psi_{2}^{\prime}: \boldsymbol{N}\left(x_{2}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{2}, R^{\prime \prime}\right)$ by the usual method which is consistent with ψ_{1}. Thus $\psi_{2}: N\left(x_{1} \cup x_{2}, R^{\prime \prime}\right)$ $\rightarrow \boldsymbol{N}\left(y_{1} \cup y_{2}, R^{\prime \prime}\right)$ defined by taking

$$
\begin{array}{lll}
\psi_{2}=\psi_{1} & \text { on } & N\left(x_{1}, R^{\prime \prime}\right), \\
\psi_{2}=\psi_{2}^{\prime}, & \text { on } & N\left(x_{2}, R^{\prime \prime}\right)
\end{array}
$$

is a +PLO such that

$$
\begin{aligned}
& \psi_{2} \mid N\left(x_{1} \cup x_{2}, M_{1}^{\prime \prime}\right)=\phi, \quad \boldsymbol{\psi}_{2}\left(\boldsymbol{E}_{1 a}\right)=\boldsymbol{E}_{2 a} \quad \text { and } \\
& \boldsymbol{\psi}_{2}\left(\boldsymbol{F}_{1 b}\right)=\boldsymbol{F}_{2 b} \quad \text { for each } \quad a, b .
\end{aligned}
$$

Since the same construction can be applied to x_{3}, \cdots, x_{m} succesively, we have a + PLO $\psi_{m}: \boldsymbol{N}\left(x_{1} \cup \cdots \cup x_{m}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1} \cup \cdots \cup y_{m}, R^{\prime \prime}\right)$ such that $\psi_{m} \mid N\left(x_{1} \cup \cdots \cup x_{m}, M_{1}^{\prime \prime}\right)=\phi$. Thus $\psi=\psi_{m}$ is the required +PLO.

4.5. From 4.4 we have

Theorem 2. Any two equivalent ($n-1$)-manifolds in $R^{n}(n=3,4)$ are semicongruent.

Remark. From Theorem 2, 2.1 (c) and 1.2 (d), we have $<3.4>=0$ [6. II].

5. Orientable 2 -manifolds in \boldsymbol{R}^{4}

5.1. Let M be a 2 -manifold in R^{4} and x_{0}, x_{j} vertices of M^{\prime} which are the boundary of the 1 -simplex $\left(x_{0}, x_{j}\right)$ of M^{\prime}. Then

$$
N\left(x_{0}, M^{\prime \prime}\right) \cap N\left(x_{j}, M^{\prime \prime}\right)=C_{j}
$$

is a 1 -element which is the dual cell of $\left(x_{0}, x_{j}\right)$ in $M^{\prime \prime}$, and

$$
N\left(x_{0}, R^{\prime \prime}\right) \cap N\left(x_{j}, R^{\prime \prime}\right)=E_{j}
$$

is a 3-element which is the dual cell of $\left(x_{0}, x_{j}\right)$ in $R^{\prime \prime}$.
Let x_{1}, \cdots, x_{p} be vertices of M^{\prime} which belong to $L\left(x_{0}, M^{\prime}\right)$,
and

$$
\bigcup_{j=1}^{p} C_{j}=L\left(x_{0}, M^{\prime \prime}\right)=\left\{\begin{array}{lll}
\text { a } & 1 \text {-sphere if } & x_{0} \in I M \\
\text { a } & 1 \text {-element if } & x_{0} \in \dot{M}
\end{array}\right.
$$

$$
\bigcup_{j=1}^{\nu} E_{j}=N\left(L\left(x_{0}, M^{\prime \prime}\right), L\left(x_{0}, R^{\prime \prime}\right)\right) .
$$

5. 2. Lemma. Let \boldsymbol{S}_{i}^{3} be 3 -spheres, let $\mathbf{S}_{i}^{1} \subset \boldsymbol{S}_{i}^{3}(i=1,2)$ be 1 -spheres such that $\left\{\boldsymbol{S}_{1}^{1}, \boldsymbol{S}_{1}^{3}\right\} \equiv\left\{\boldsymbol{S}_{2}^{1}, \boldsymbol{S}_{2}^{3}\right\}$ and let $\phi:\left(\boldsymbol{S}_{1}^{1} \cup \boldsymbol{E}_{1 h} \cup \cdots \cup \boldsymbol{E}_{1 k}\right) \rightarrow\left(\boldsymbol{S}_{2}^{1} \cup \boldsymbol{E}_{2 h}\right.$ $\left.\cup \cdots \cup \boldsymbol{E}_{2 k}\right)$ be a + PLO such that $\phi\left(\boldsymbol{S}_{1}^{1}\right)=\boldsymbol{S}_{2}^{1}, \phi\left(\boldsymbol{E}_{1 h}\right)=\boldsymbol{E}_{2 h}, \cdots, \phi\left(\boldsymbol{E}_{1 k}\right)=\boldsymbol{E}_{2 k}$ and $\phi\left(E_{1 l} \cap E_{1 m}\right)=E_{2 l} \cap E_{2 m}$ for $l \in(h, \cdots, k), m \bar{\in}(h, \cdots, k)$ and (h, \cdots, k) $\neq(1, \cdots, p)$, where $E_{i j}$ is $N\left(z_{i j}, S_{i}^{3 \prime \prime}\right)$ in Lemma $3.5(j=1, \cdots, p)$. Then there is $a+P L O \psi: \mathbf{S}_{1}^{3} \rightarrow \mathbf{S}_{2}^{3}$ such that $\psi \mid S_{1}^{1} \cup E_{1 h} \cup \cdots \cup E_{1 k}=\phi$ and $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each $j=1, \cdots, p$.

Proof. Since $\left\{\boldsymbol{S}_{1}^{1}, \boldsymbol{S}_{1}^{3}\right\} \equiv\left\{\boldsymbol{S}_{2}^{1}, \boldsymbol{S}_{2}^{3}\right\}$, there is a +PLO $\theta: \boldsymbol{S}_{2}^{3} \rightarrow \boldsymbol{S}_{1}^{3}$ such that $\theta\left(\mathbf{S}_{2}^{1}\right)=\boldsymbol{S}_{1}^{1}$ and $\theta\left(N\left(S_{2}^{1}, S_{2}^{3 \prime \prime}\right)=N\left(S_{1}^{1 \prime \prime}, S_{1}^{3 \prime \prime}\right)\right.$. Let a, b be the canonical curve system of $\dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{\prime \prime}\right)$ such that a is homotopic to zero in $N\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right), \theta(a), \theta(b)$ is also the canonical curve system of $\dot{N}\left(S_{1}^{1 \prime \prime}, S_{1}^{3 \prime \prime}\right)$. By Lemma 3.5 there is a +PLO $\psi^{\prime}: \boldsymbol{N}\left(S_{1}^{1 \prime \prime}, S_{1}^{3 \prime \prime}\right) \rightarrow \boldsymbol{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)$ such that
$\psi^{\prime} \mid S_{1}^{1} \cup E_{1 k} \cup \cdots \cup E_{1 k}=\phi$ and $\psi^{\prime}\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each j and $\psi^{\prime} \theta(a), \psi^{\prime} \theta(b)$ are homotopic to a, b respectively. Thus $\psi^{\prime} \theta \mid \dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right): \dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)$ $\rightarrow \dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)$ is a PLO which induces the identical automorphism of the fundamental group of $\dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)$. By $1.2(\mathrm{c}), \psi^{\prime} \theta \mid \dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right) \approx 1$. By Theorem 5 in 6.2, there is an isotopy $\lambda_{t}: S_{2}^{3} \rightarrow S_{2}^{3}$ such that $\lambda_{0}=1$, $\lambda_{1}\left|\dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)=\psi^{\prime} \theta\right| \dot{N}\left(S_{2}^{1 \prime \prime}, S_{2}^{3 \prime \prime}\right)$. Then $\psi: \boldsymbol{S}_{1}^{3} \rightarrow \boldsymbol{S}_{2}^{3}$ defined by taking

$$
\begin{array}{lll}
\psi=\psi^{\prime} & \text { on } & N\left(S_{1}^{1 \prime \prime}, S_{1}^{3 \prime \prime}\right) \\
\psi=\lambda_{1} \theta^{-1} & \text { on } & c l\left(S_{1}^{3}-N\left(S_{1}^{1 \prime \prime}, S_{1}^{3 \prime \prime}\right)\right)
\end{array}
$$

is the required +PLO .
5.3. Since $(2,3)=0$, the following is evident.

Lemma. Let \boldsymbol{S}_{i}^{3} be 3-spheres, let $\boldsymbol{C}_{i}^{1} \subset \boldsymbol{S}_{i}^{3}(i=1,2)$ be 1-elements and let $\phi:\left(\boldsymbol{C}_{1}^{1} \cup \boldsymbol{E}_{1 k} \cup \cdots \cup \boldsymbol{E}_{1 k}\right) \rightarrow\left(\boldsymbol{C}_{2}^{1} \cup \boldsymbol{E}_{2 h} \cup \cdots \cup \boldsymbol{E}_{2 k}\right)$ be a +PLO such that $\phi\left(\boldsymbol{C}_{1}^{1}\right)=\boldsymbol{C}_{2}^{1}, \phi\left(\boldsymbol{E}_{1 h}\right)=\dot{E}_{2 h}, \cdots, \phi\left(\boldsymbol{E}_{1 k}\right)=\boldsymbol{E}_{2 k} \quad$ and $\quad \phi\left(E_{1 l} \cap E_{1 m}\right)=E_{2 l} \cap E_{2 m} \quad$ for $l \in(h, \cdots, k), m \bar{\in}(h, \cdots, k)$, where $E_{i j}$ is analogous to Lemma 5.2 $(j=1, \cdots, p)$. Then there is a + PLO $\psi: \boldsymbol{S}_{1}^{3} \rightarrow \mathbf{S}_{2}^{3}$ such that $\psi \mid S_{1}^{1} \cup E_{1 h}$ $\cup \cdots \cup E_{1 k}=\phi$ and $\psi\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each $j=1, \cdots, p$.
5.4. Lemma. If $\boldsymbol{M}_{1}, \boldsymbol{M}_{2}$ are oriented 2-manifolds in R^{4} and $\phi: \boldsymbol{M}_{1} \rightarrow \boldsymbol{M}_{2}$ is a + PLO such that for any vertex $x \in M_{1}^{\prime}$

$$
\begin{equation*}
\left\{\boldsymbol{L}\left(x, M_{1}^{\prime \prime}\right), \quad \boldsymbol{L}\left(x, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{L}\left(\phi(x), \quad M_{2}^{\prime \prime}\right), \quad \boldsymbol{L}\left(\phi(x), R^{\prime \prime}\right)\right\} \tag{*}
\end{equation*}
$$

then there is $a+P L O \psi: N\left(M_{1}^{\prime \prime}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(M_{2}^{\prime \prime}, R^{\prime \prime}\right)$ such that $\psi \mid M_{1}=\phi$.
Proof. Let x_{i} be vertices of M_{1}^{\prime} and $\phi\left(x_{i}\right)=y_{i}$ vertices of M_{2}^{\prime} ($i=1, \cdots, n$). Since the topological type of $L\left(x_{1}, M_{1}^{\prime \prime}\right)$ coincides with that of $L\left(y_{1}, M_{2}^{\prime \prime}\right)$ and there is a +PLO $\phi \mid L\left(x_{1}, M_{1}^{\prime \prime}\right): \boldsymbol{L}\left(x_{1}, M_{1}^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{1}, M_{2}^{\prime \prime}\right)$ by 5.2 or 5.3 and (*) there is a + PLO $\psi_{1}^{\prime}: \boldsymbol{L}\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(y_{1}, R^{\prime \prime}\right)$ such that $\psi_{1} \mid L\left(x_{1}, M_{1}^{\prime \prime}\right)=\phi$ and $\psi_{1}^{\prime}\left(\boldsymbol{E}_{1 j}\right)=\boldsymbol{E}_{2 j}$ for each j (see 5.2 and 5.3). Then, extending ψ_{1}^{\prime} to a +PLO $\psi_{1}: \boldsymbol{N}\left(x_{1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1}, R^{\prime \prime}\right)$ by the usual method, we have $\psi_{1} \mid N\left(x_{1}, M_{1}^{\prime \prime}\right)=\phi$ and $\psi_{1}\left(E_{1 j}\right)=E_{2 j}$ for each j.

Since the analogous construction in 4.4 can be applied to x_{2}, \cdots, x_{n-1} succesively whenever the conditions of Lemma 3.5 are fulfilled, we may assume that there is a +PLO $\psi_{n-1}: \boldsymbol{N}\left(x_{1}, \cdots, x_{n-1}, R^{\prime \prime}\right) \rightarrow \boldsymbol{N}\left(y_{1} \cup \cdots \cup\right.$ $\left.y_{n-1}, R^{\prime \prime}\right)$ such that $\psi_{n-1} \mid N\left(x_{1} \cup \cdots \cup x_{n-1}, M_{1}^{\prime \prime}\right)=\phi$ and $\psi_{n-1}\left(\boldsymbol{G}_{1 j}\right)=\boldsymbol{G}_{2 j}$ for each j where $G_{1 j}, G_{2 j}$ are $E_{1 j}, E_{2 j}$ (of $N\left(x_{n}, S_{1}^{3 \prime \prime}\right), N\left(y_{n}, S_{2}^{3 \prime \prime}\right)$) in Lemmas 5.2 and 5.3.

If $x_{n} \in \dot{M}$, by using 5.3 we can continue the construction and have the required + PLO $\psi=\psi_{n}$. If $x_{n} \in I M$, by $(*)$ there is +PLO $\theta: \boldsymbol{L}\left(y_{n}, R^{\prime \prime}\right) \rightarrow \boldsymbol{L}\left(x_{n}, R^{\prime \prime}\right)$ such that $\theta\left(\boldsymbol{L}\left(y_{n}, M_{2}^{\prime \prime}\right)\right)=\boldsymbol{L}\left(x_{n}, M_{1}^{\prime \prime}\right)$ and further
$\theta^{-1} \mid L\left(x_{n}, M_{1}^{\prime \prime}\right)=\phi . \quad$ Let $\quad N\left(L\left(x_{i}, M_{1}^{\prime \prime}\right), L\left(x_{i}, R^{\prime \prime}\right)\right)=N_{i 1}, \quad N\left(L\left(y_{i}, M_{2}^{\prime \prime}\right)\right.$, $\left.L\left(y_{i}, R^{\prime \prime}\right)\right)=N_{i 2}$ and a, b a canonical curve system of $\dot{N}_{n 2}$ such that a is homotopic to zero in $N_{n 2}, \theta a, \theta b$ is a canonical curve system of $\dot{N}_{n 1}$ such that θa is homotopic to zero in $N_{n 1}$.

If $\psi_{n-1} \theta \mid \dot{N}_{n 2}: \dot{N}_{n 2} \rightarrow \dot{N}_{n 2}$ induces the identical automorphism of the fundamental group of $\dot{N}_{n 2}$, by the method of 5.2 we have the required +PLO as in 4.4.

If $\psi_{n-1} \theta \mid \dot{N}_{n 2}$ does not induce the identical automorphism of the fundamental group of $\dot{N}_{n 2}, \psi_{n-1} \theta(b)$ is homotopic to $a^{l} b$, where $l \neq 0$ is an integer. Let $\left(y_{n}, y_{u}, y_{v}\right)$ be a 2 -simplex of M_{2}^{\prime} whose vertices are y_{n}, y_{u} and y_{v}. Let $\dot{N}_{n 2} \cap \dot{N}_{u 2}=B_{n u}, \dot{N}_{n 2} \cap \dot{N}_{v 2}=B_{n v}, \dot{N}_{u 2} \cap \dot{N}_{v 2}=B_{u v}$, they are the cylinders. We deform ψ_{n-1} into a +PLO $\psi_{n-1}^{\prime}: N\left(\bigcup_{i=1}^{n-1} x_{i}, M_{1}^{\prime \prime}\right)$ $\rightarrow N\left(\bigcup_{i=1}^{n-1} y_{i}, M_{2}^{\prime \prime}\right)$ such that $\psi_{n-1}^{\prime} \mid N_{n 1}: \boldsymbol{N}_{n 1} \rightarrow \boldsymbol{N}_{n 1}$ is a +PLO which arises from ψ_{n-1} and $\frac{l}{2}$-times rotations of $B_{n u}$ and $B_{n v}$ about $L\left(y_{n}, M_{2}^{\prime \prime}\right)$ whose directions are the inverse of the orientation of a as in 3.5. Further $\psi_{n-1}^{\prime} \mid\left(N_{u 1} \cap N_{v 1}\right):\left(N_{u 1} \cap N_{v 1}\right) \rightarrow\left(N_{u 2} \cap N_{v 2}\right)$ is a +PLO which arises from ψ_{n-1} and $\frac{l}{2}$-times rotations of $B_{u v}$ about $L\left(y_{u}, M_{2}^{\prime \prime}\right)$ whose direction is the orientation of a as in 3.5. Since the rotations of $B_{n u}, B_{u v}$ $\left(B_{n v}, B_{u v}\right)$ do not induce to make the torsion of $\dot{N}_{u_{2}}\left(\dot{N}_{v 2}\right), \psi_{n-1}^{\prime}$ really exists such that $\psi_{n-1}^{\prime}\left|N\left(\bigcup_{i \neq n, u, v} x_{i}, R^{\prime \prime}\right)=\psi_{n-1}, \psi_{n-1}^{\prime}\right| N\left(\bigcup_{i=1}^{n-1} x_{i}, M^{\prime \prime}\right)=\phi$ and $\psi_{n-1}^{\prime} \theta(b)$ is homotopic to b in $\dot{N}_{n 2}$.

Then by 5.2 we can construct the required $\psi=\psi_{n}$.
5. 5. Remark. For nonorientable 2 -manifolds the Lemma is also true with slight modifications of the expression.
5.6. From 5.4,5.5 and Remark in 3.2, we have

Theorem 3. Any two equivalent 2 -manifolds in R^{4} are scinicongruent if and only if they are locally congruent.
5.7. The following is well known [6. II, p. 135]. For a vertex x of a 2 -manifold M^{\prime} in $R^{4},\left\{\boldsymbol{L}\left(x, M^{\prime \prime}\right), \boldsymbol{L}\left(x, R^{\prime \prime}\right)\right\} \neq 0$ is possible only if $x \in I M$. Hence there are k internal vertices $x_{1}, \cdots, x_{k} \in M^{\prime}$ such that $\left\{\boldsymbol{L}\left(x_{j}, M^{\prime \prime}\right), \boldsymbol{L}\left(x_{j}, R^{\prime \prime}\right)\right\} \neq 0$. We call such points x_{1}, \cdots, x_{k} singular points. of M in R^{4}. If M has no singular point, we say that M is locally flat in R^{4}.

Lemma. If $\boldsymbol{M}_{i}(i=1,2)$ are equivalent oriented 2 -manifolds in R^{4}. Then $\boldsymbol{M}_{1}, \boldsymbol{M}_{2}$ are semicongruent if and only if there is a one-one corre-
spondence between the singular points x_{1}, \cdots, x_{k} of M_{1} and the singular points y_{1}, \cdots, y_{k} of M_{2} such that for each $j=1, \cdots, k$

$$
\left\{\boldsymbol{L}\left(x_{j}, M_{1}^{\prime \prime}\right), \boldsymbol{L}\left(x_{j}, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{L}\left(y_{j}, M_{2}^{\prime \prime}\right), \boldsymbol{L}\left(y_{j}, R^{\prime \prime}\right)\right\}
$$

Proof. Let $\phi: \boldsymbol{M}_{1} \rightarrow \boldsymbol{M}_{2}$ be an arbitrary PLO. Since there is an orientation reversing PLO: $\boldsymbol{M}_{i} \rightarrow \boldsymbol{M}_{i}$, we may assume that $\phi: \boldsymbol{M}_{\boldsymbol{1}} \rightarrow \boldsymbol{M}_{2}$ be a +PLO. Let $y_{j}^{\prime}=\phi\left(x_{j}\right)$, by 1.2 (e) there is a +PLO $\rho: \boldsymbol{M}_{2} \rightarrow \boldsymbol{M}_{2}$ such that $\rho\left(y_{j}^{\prime}\right)=y_{j}$ for each j. Since the local congruence of M_{1}, M_{2} arises from $\rho \phi: \boldsymbol{M}_{1} \rightarrow \boldsymbol{M}_{2}$, the sufficiency of Lemma is established by 5.4. The necessity of Lemma is evident.
5.8. Lemma. Let $\left\{\mathbf{S}^{1}, \mathbf{S}^{3}\right\}$ be an arbitrary knot. Then there is a 2 -sphere \boldsymbol{S}^{2} in R^{4} which has the only one singular point O such that

$$
\left\{\boldsymbol{L}\left(O, S^{2 \prime \prime}\right), \boldsymbol{L}\left(O, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{S}^{1}, \boldsymbol{S}^{3}\right\}
$$

Proof. We take an R^{3} of R^{4} such that there is a S^{1} in R^{3} and $\left\{\boldsymbol{S}^{1}, \boldsymbol{R}^{3}\right\} \equiv\left\{\boldsymbol{S}^{1}, \boldsymbol{S}^{3}\right\}$. Then we take an R^{2} of R^{3} and consider the regular projection of the knot S^{1} onto R^{2}. Let y_{1}, \cdots, y_{n} be the double points of the projection and $x_{i 1}$ and $x_{i 2}$ the under and the upper points which

correspond to $y_{i}(i=1, \cdots, n)$. Let $C_{i 1}$ be a 1 -element such that $I C_{i 1} \ni x_{i 1}$ and E_{i} a sufficient small 2-element such that $S^{1} \cap E_{i}=C_{i 1} \cup x_{i 2}$ and $C_{i 2}=c l\left(\dot{E}_{i}-C_{i 1}\right)$. Since we can assume that $\left(S^{1}-\bigcup_{i=1}^{k} C_{i 1}\right) \cup\left(\bigcup_{i=1}^{k} C_{i 2}\right)=S_{0}$, for some $k \leqq n$, is unknotted, there is a 2 -element D_{0} of R^{3} such that $\dot{D}_{0}=S_{0}$. Let O be a point in $R^{4}-R^{3}$ and D_{i}^{\prime} a cone of the vertex O and
the base \dot{E}_{i} and $C_{i 3} \subset D_{i}^{\prime}$ a 1-element such that $\dot{C}_{i 3}=\dot{C}_{i 1}$ and $C_{i 1}$ corresponds topologically to $C_{i 3}$ by the generating lines of $D_{i}^{\prime}, i=1, \cdots, k$ (see Fig). Let O_{i} be a point of $R^{4}-\left(R^{3} \cup C_{i 3}\right)$ which belongs to the interior of the cone of the vertex O and the base $E_{i}, i=1, \cdots, k$. Let D_{i} be a cone of the vertex O_{i} and the base $C_{i 3} \cup C_{i 2}$. Let D be a cone of the vertex O and the base $\left(S^{1}-\bigcup_{i=1}^{k} C_{i 1}\right) \cup\left(\bigcup_{i=1}^{k} C_{i 3}\right)$. It follows from the construction that $D \cup\left(\bigcup_{i=1}^{k} D_{i}\right) \cup \dot{D}_{0}$ is a 2 -sphere S^{2}. If we orient S^{2} by the orientation of \boldsymbol{S}^{1}, we can easily see by Theorem 6 [6. I] that \boldsymbol{S}^{2} has only one singular point O such that $\left\{\boldsymbol{L}\left(O, S^{2 \prime \prime}\right), \boldsymbol{L}\left(O, R^{\prime \prime}\right)\right\} \equiv\left\{\boldsymbol{S}^{1}, \boldsymbol{S}^{3}\right\}$.
5.9. Theorem 4. There is a one-one correspondence between the semicongruence classes of equivalent oriented 2-manifolds in R^{4} and the (unordered) finite sets of knot types, where the empty set stands for the unknotted type.

Proof. By Lemma in 5.7 it is sufficient to prove the Theorem that for any orientable 2 -manifold M_{0} and any set of knot types ($\kappa_{1}, \cdots, \kappa_{k}$) there is a 2 -manifold \boldsymbol{M} in R^{4} such that \boldsymbol{M} is equivalent to M_{0} and \boldsymbol{M} has the singular points O_{i} whose knot types are $\kappa_{i}(i=1, \cdots, k)$.

If ($\kappa_{1}, \cdots, \kappa_{k}$) is the empty set, \boldsymbol{M} is a 2 -manifold in $R^{3} \subset R^{4}$ equivalent to M_{0}. Since a 1 -sphere of a 2 -sphere is flat in a 3 -sphere which contains the 2 -sphere and $\langle 1,3\rangle=0, \boldsymbol{M}$ is locally flat in R^{4}.

If ($\kappa_{1}, \cdots, \kappa_{k}$) is a nonempty set, there are by 5.9 mutually disjoint 2 -spheres S_{i}^{2} in R^{4} which have only one singular point O_{i} whose knot types are κ_{i} respectively $(i=1, \cdots, k)$ and a 2 -manifold \boldsymbol{M}_{*} in R^{3} of R^{4} equivalent to \boldsymbol{M}_{0}. Let $c_{i} \subset R^{3}(i=1, \cdots, k)$ be mutually disjoint 1 elements such that for each $i, C_{i} \cap M_{*}$ is one of the two end points and in $I M_{*}, C_{i} \cap S_{i}$ is the other end point and in $I S_{i}$ and C_{i} are disjoint form $S_{j}(i \neq j)$. Let H_{i} be an appropriate small regular neighbourhood of C_{i} in $R^{3} . M_{*}$ and S_{i} divide H_{i} into three 3-elements, let E_{i} be a 3-element of H_{i} which contains C_{i}. Since by appropriate modifications of H_{i} the orientations of $\boldsymbol{M}_{*}, \dot{\boldsymbol{E}}_{i}, \boldsymbol{S}_{i}$ will be coherent on their intersections, $\boldsymbol{M}=\boldsymbol{M}_{*}+\bigcup_{i=1}^{k}\left(\dot{\boldsymbol{E}}_{i}+\boldsymbol{S}_{i}\right)$ is an oriented 2-manifold, where the addition is the algebraic addition of complexs. It is easily seen that \boldsymbol{M} is equivalent to M_{0} and has the singular points O_{i} whose types are κ_{i} $(i=1, \cdots, k)$. Thus \boldsymbol{M} is the required manifold.
5.10. Remark. In the next paper we shall prove the following: If $\boldsymbol{M}_{i}^{2}(i=1,2)$ are equivalent oriented 2 -manifolds in R^{4} such that they are not semicongruent and $M_{i}^{3}(i=1,2)$ are the boundaries of regular neighbourhoods $U\left(M_{i}^{2}\right)$ in R^{4}, then M_{1}^{3} and M_{2}^{3} are not necessarily equivalent.

6. Applications

6.1. Since by Theorem 2 in 4.5 , the regular neighbourhood of any two equivalent $(n-1)$-manifolds in $R^{n}(n=3,4)$ are equivalent, the following will be seen easily (from Lemmas 4.2, 4.3 and elementary considerations).

Let M be an $(n-1)$-manifold in $R^{n}(n=3,4)$ and C^{1} a 1-element which will be thought of as a cone of the vertex $O \in I C^{1}$ and the base $B=\dot{C}^{1}$ and C^{2} a 2-element which will be thought of as a cone of the vertex $O \in \dot{C}^{2}$ and the case $B=1$-element C^{1} of \dot{C}^{2} such that $O \bar{\in} C^{1}$. Then

$$
U(M, R)=\left(\bigcup_{x \in I M} C^{1} \times x\right) \cup\left(\bigcup_{x \in M i} C^{2} \times x\right)
$$

where we identify (O, x) with x.
Since C^{1}, C^{2} are the cone of the vertex O and the base $B, C^{i}=\bigcup_{t \in I} B_{t}$ ($i=1,2$), where $B_{t}=\bigcup_{y \in B} y_{t}$ and y_{t} is a point of the segment $\overline{O y}$ such that $\overline{y y_{t}}: \overline{y_{t} 0}=t: 1-t$, thus $C^{y}=\bigcup_{y \in B, t \in I} y_{t}$, where $y_{1}=0$ and $y_{0}=y$.
6. 2. Theorem 5. If M^{n-1} is an ($n-1$)-manifold in $R^{n}(n=3,4)$ and $\phi: M^{n-1} \rightarrow M^{n-1}$ is a PLO such that $\phi \approx 1$, then there is a + PLO $\psi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that $\psi \mid M=\phi$.

Proof. Let $\phi_{t}: M \rightarrow M, t \in I$, be an isotopy between $\phi\left(=\phi_{1}\right)$ and $1\left(=\phi_{0}\right)$. Then $\psi: \boldsymbol{R} \rightarrow \boldsymbol{R}$ defined by taking

$$
\begin{aligned}
& \psi(z)=z \quad \text { if } \quad z \in R-U(M, R), \\
& \psi(z)=\left(y_{t}, \phi_{t}(x)\right), \quad \text { if } \quad z \in U(M, R) \quad \text { and } \quad z \in C^{i} \times x
\end{aligned}
$$

such that $z=\left(y_{t}, x\right)$, is a + PLO $: \boldsymbol{R} \rightarrow \boldsymbol{R}$ such that $\psi \mid M=\phi$.
Corollary. If H^{n-1} is an ($n-1$)-sphere or an ($n-1$)-element in R^{n} $(n=3,4)$ and $\phi: \boldsymbol{H}^{n-1} \rightarrow \boldsymbol{H}^{n-1}$ is a +PLO, then there is a +PLO $\psi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that $\psi \mid H=\phi$.

This follows from Theorem 5 and 1.2 (d) or 1.2 (b).
6. 3. Since the oriented 2 -manifold in R^{3} is locally flat in K^{4}, the topological type of any regular neighbourhood of an orientable 2manifold M in R^{4} which is locally flat is the Cartesian product of a 1-element with a regular neighbourhood of M in R^{3}. Hence we have the following: Let $C^{2}\left(C^{3}\right)$ be a 2 -element (3-element) which will be thought of as a cone of the vertex $O \in I C^{2}\left(O \in \dot{C}^{3}\right)$ and the base $B=\dot{C}^{2}$ $\left(B=2\right.$-element C^{2} of \dot{C}^{3} and $\left.C^{2} \ni O\right)$. Then $U(M, R)=\left(\bigcup_{x \in I M} C^{2} \times x\right) \cup\left(\bigcup_{x \in \dot{M}} C^{3} \times x\right)$,
where we identify (O, x) with x. By the similar argument to Theorem 5, we have

Theorem 6. If M^{n-2} is an orientable ($n-2$)-manifold in $R^{n}(n=3,4)$ which is locally flat if $n=4$ and $\phi: M^{n-2} \rightarrow M^{n-2}$ is a PLO such that $\phi \approx 1$, then there is $a+P L O \psi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that $\psi \mid M=\phi$.

Corollary. If H^{n-2} is an ($n-2$)-sphere or an ($n-2$)-element in R^{n} $(n=3,4)$ which is locally flat if $n=4$ and $\phi: \boldsymbol{H}^{n-2} \rightarrow \boldsymbol{H}^{n-2}$ is a + PLO, then there is $a+P L O \psi: \boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n}$ such that $\psi \mid H=\phi$.

Remark. If $n=4$, the condition of local flatness in Theorem 6 and its corollary is essential. By 1.2 (e) we easily have the following : Let M be an orientable 2-manifold R^{4}. For any PLO $\phi: M \rightarrow M$ such that $\phi \approx 1$, there is a + PLO $\psi: \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}^{4}$ such that $\psi \mid M=\phi$ if and only if M is locally flat.
6.4. The concept to be free defined by K. Borsuk [2] is an invariant under semicongruence. From the considerations above mentioned, we easily have the following :

Theorem 7. Any ($n-1$)-manifold and any orientable ($n-2$)-manifold which are locally flat in R^{n} are free in $R^{n}(n=3,4)$.

Waseda University
(Received September 30, 1956)

References

[1] L. Antoine: Sur l'homéomorphie de deux figures et de leurs voisinages, Jour. Math. pures appl. 8, 221-325 (1921).
[2] K. Borsuk: Über die Fundamentalgruppe der Polyeder in euklidishen dreidimesionalen Raume, Monatsch. Math. Phys. 41, 64-77 (1934).
[3] R. H. Fox: On the imbedding of polyhedra in 3-space, Ann. of Math. (2) 49, 462-469 (1948).
[4] L. Goeritz: Die Abbildungen der Brezelfäche und der Vollbrezel vom Geschlecht 2. Abh. Math. Sem. Univ. Hamburg 9, 244-259 (1933).
[5] W. Graeub: Die semilinearen Abbildungen, Sitzber. Heiderberger Akad. Wiss. 205-272 (1950).
[6.I] V.K.A. M. Gugenheim: Piecewise linear isotopy and embedding of elements and spheres (I), Proc. London Math. Soc. 3, 29-53 (1953).
[6. II] „ : (II), ibid, 3, 129-152 (1953).
[7] E. E. Moise: Affine structures in 3-manifolds II, Ann. of Math. (2) 55, 172176 (1952).
[8] H. Noguchi: On property of manifolds in the sense of Poincaré, Memo. of Faculty of Scien. Eng. Waseda Univ., 16, 118-119 (1952).
[9] J. H. C. Whitehead: Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc., 45, 243-327 (1939).

