Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, II¹⁾

By Zenjiro KURAMOCHI

The present article is concerned with the equilibrium potential on Riemann surfaces with positive boundary.

1. Let R^* be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0, 1, 2, \cdots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R=R^*-R_0$. Let $N_n(z, p)$ be a positive function in R_n-R_0 harmonic in R_n-R_0 except one point $p \in R$ such that $N_n(z, p) = 0$ on ∂R_0 , $\frac{\partial N_n(z, p)}{\partial n} = 0$ on ∂R_n and $N_n(z, p) + \log |z-p|$ is harmonic in a neighbourhood of p. Then the *-Dirichlet integral of $N_n(z, p)$ taken over R_n-R_0 is $D^*(N_n(z, p)) = U_n(p)$, where $U_n(p) = \lim_{z \to p} (N_n(z, p) + \log |z-p|)$ and the *-Dirichlet integral is taken with respect to $N_n(z, p) + \log |z-p|$ in the neighbourhood of p. For $N_n(z, p)$ and $N_{n+i}(z, p)$, we have

$$\begin{split} D^*_{R_n-R_0}(N_n(z, p), \ N_{n+i}(z, p)) &= D^*_{R_{n+i}-R_0}(N_{n+i}(z, p)) = 2\pi U_{n+i}(p)^{2_i}, \\ D_{R_n-R_0}(N_n(z, p) - N_{n+i}(z, p)) &= D^*_{R_n-R_0}(N_n(z, p)) - 2D^*_{R_n-R_0}(N_n(z, p), \ N_{n+i}(z, p)) \\ &+ D^*_{R_n-R_0}(N_{n+i}(z, p)) < D^*_{R_n-R_0}(N_n(z, p)) - D^*_{R_{n+i}-R_0}(N_{n+i}(z, p)) \\ &= 2\pi (U_n(p) - U_{n+i}(p)) \;. \end{split}$$

Hence $\{U_n(p)\}$ is decreasing with respect to *n*. Since $\int_{\partial R_0} \frac{\partial N_n(z, p)}{\partial n} ds = 2\pi$ for every *n*, $\lim_{n \to \infty} U_n(p) > -\infty$, whence $\{U_n(p)\}$ converges. Therefore $D_{R_{n+i}-R_0}(N_{n+i}(z, p) - N_n(z, p))$ tends to zero if *n* and *i* tend to ∞ , which implies that $\{N_n(z, p)\}$ converges in mean. Further $N_n(z, p) = 0$ on ∂R_0 yields that $\{N_n(z, p)\}$ converges uniformly to a function N(z, p), which clearly has the minimal *-Dirichlet integral over *R*, in every compact part of *R*. Clearly by the compactness of ∂R_0 , we have $\int_{\partial R_0} \frac{\partial N(z, p)}{\partial n} ds =$

¹⁾ Resumé of this article appeared in Proc. Japan Acad. 32, 1956.

²⁾ Let $v_r(p)$ be a circular neighbourhood of p with respect to the local parameter: $v_r(p) = E[z \in R : |z-p| < r]$. Then $D^*(N_n(z, p), N_{n+i}(z, p)) = \int_{\partial^{U}(p)} (N_{n+i}(z, p) + \log |z-p|) \frac{\partial N_n(z, p)}{\partial n} ds$. By letting $r \to 0$, we have $D^*(N_{n+i}(z, p), N_n(z, p)) = 2\pi U_{n+i}(p)$. Clearly *-Dirichlet integral reduces to Dirichlet integral when the functions have no pole.

 $\int_{\partial R_0} \lim_{n \to \infty} \frac{\partial N_n(z, p)}{\partial n} ds = 2\pi.$ We call N(z, p) the *-Green's function of R with pole at p.

As in case of a Riemann surface with null-boundary, we define for R^* the ideal boundary point, by making use of $\{N(z, p_i)\}$, that is, if $\{p_i\}$ is a sequence of points in R having no point of accumulation in $R + \partial R_0$ for which the corresponding functions $N(z, p_i)$ $(i=1, 2, 3, \cdots)$ converge uniformly in every compact set of R, we say that $\{p_i\}$ is a fundamental sequence determining an *ideal boundary point*. The set of all the ideal boundary points will be denoted by B and the set R+B, by \overline{R} . The domain of definition of N(z, p) may now be extended by writing $N(z, p) = \lim_{i \to \infty} N(z, p_i)$ $(z \in R \text{ and } p \in B)$, where $\{p_i\}$ is any fundamental sequence determining p. For p in B, the flux of N(z, p) along ∂R_0 is also 2π . The distance between two points p_1 and p_2 of \overline{R} is defined by

$$\delta(p_1, p_2) = \sup_{z \in R_1 - R_0} \left| \frac{N(z, p_1)}{1 + N(z, p_1)} - \frac{N(z, p_2)}{1 + N(z, p_2)} \right|.$$

The topology induced by this metric is homeomorphic to the original topology in R and we see easily that $R-R_1+\partial R_1+B$ and B are closed and compact. Evidently, if $\{p_i\}$ tends to p in δ -sense (with respect to δ -metric), then $N(z, p_i)$ tends to N(z, p), that is N(z, p) is continuous with respect to this metric and derivatives of $N(z, p_i)$ converges to those of N(z, p) at every point z of R.

First, we shall prove the following

Lemma 1. Let G be a compact or non-compact closed set containing a relatively closed set F and suppose that there exists at least one harmonic function U(z) such that $U(z) = \varphi$ on $\partial R_0 + \partial F$ and whose Dirichlet integral taken over R-F is finite. Let $U_F(z)$ be the harmonic function in R-Fhaving the minimal Dirichlet integral over R-F with boundary value φ on $\partial R_0 + \partial F$ among all functioh $\{U_{\alpha}(z)\}$ having the same boundary value φ on $\partial R_0 + \partial F$. Let $U_G(z)$ be a harmonic function in R-G with the boundary value $U_F(z)$ on $\partial G + \partial R_0$ such that $U_G(z)$ has the minimal Dirichlet integral taken over R-G among all functions with the boundary value $U_F(z)$ on $\partial G + \partial R_0$. Then

$$U_G(z) = U_F(z)$$
.

Proof. Let $U'_n(z)$ be a harmonic function in $R_n - R_0 - G$ such that $U'_n(z) = U_F(z)$ on $\partial G + \partial R_0$ and $\frac{\partial U'_n(z)}{\partial n} = 0$ on $\partial R_n - G$. Then we see as

in case of N(z, p) that $\{U'_n(z)\}$ converges to a function U'(z) in mean and that U'(z) has the minimal Dirichlet integral (we shortly it denote by M.D.I) among all functions with boundary value $U_F(z)$ on $\partial R_0 + \partial G$. Assume $D_{R-G}(U'(z)) \leq D_{R-G}(U_F(z)) - d$ (d > 0). Then $D_{R_n-R_0-G}(U'_n(z)) < D_{R-G}(U_F(z)) - d$ $(n=1,2,3,\cdots)$. Now let $U''_n(z)$ be a harmonic function in $R_n - R_0 - F$ such that $U''_n(z) = U_F(z)$ on $\partial R_n \cap (G-F) + \partial R_0$ and $U''_n(z) = U'(z)$ on $\partial R_n - G$. Then by Dirichlet principle, $D_{R_n-R_0-F}(U''_n(z)) \leq D_{R_n-R_0-G}(U''_n(z)) + D_{(R_n-R_0)\cap (G-F)}(U_F(z)) \leq D_{R_n-R_0-F}(U(z)) - d$.

Choose a subsequence $\{U_{n'}'(z)\}$ of $\{U_{n'}'(z)\}$ which converges uniformly in every compact set of R-F to a function $U^*(z)$. Then we have also $D_{R-F}(U^*(z)) \leq \lim_{n'=\infty} D_{R_{n'}-R_0}(U_{n'}'(z)) \leq D_{R-F}(U_F(z)) - d$. This contradicts the minimality of $D_{R-F}(U_F(z))$. Hence $D_{R-G}(U'(z)) = D_{R-G}(U_F(z))$ and U'(z) is clearly the harmonic continuation of $U_F(z)$ by Dirichlet principle. On the other hand, it is clear that such U'(z) is determined uniquely³ by the boundary value on $\partial R_0 + \partial G$. Hence $U_F(z) = U'(z) = U_G(z)$. Next, we consider the Dirichlet integral of N(z, p).

Lemma 2. Put $N^{M}(z, p) = \min[M, N(z, p)] p \in \overline{R}$. Then the Dirichlet integral of $N^{M}(z, p)$ over R satisfies

$$D_R(N^M(z, p)) \leq 2\pi M : M \geq 0$$
 .

Proof. We shall prove the lemma in three cases as follows:

Case 1. $p \in R$ and the set $V_M(p) = E[z \in R : N(z, p) \ge M]$ is compact. Case 2. $p \in R$ and $V_M(p)$ is non-compact. Case 3. $p \in B$.

Case 1. $p \in R$ and $V_M(p)$ is compact. Let $N_n(z, p)$ be a function in $R_n - R_0$ such that $N_n(z, p)$ is harmonic in $R_n - R_0$ except p, $N_n(z, p) + \log |z-p|$ is harmonic in a neighbourhood of p, $N_n(z, p) = 0$ on ∂R_0 and $\frac{\partial N_n(z, p)}{\partial n} = 0$ on ∂R_n . Let $N'_n(z, p)$ be a harmonic function in $R_n - R_0 - V_M(p)$ such that $N'_n(z, p) = M$ on $\partial V_M(p)$, $N'_n(z, p) = 0$ on ∂R_0 and $\frac{\partial N'_n(z, p)}{\partial n} = 0$ on ∂R_n . Then the Dirichlet integral is $D_{R_n - R_0 - V_M(p)}(N'_n(z, p)) = \int_{\partial R_0} M \frac{\partial N'_n(z, p)}{\partial n} ds$. Clearly, $\{D_{R_n - R_0 - V_M(p)}(N'_n(z, p)\}$ is increasing with

whence $D(U_1(z) - U_2(z)) = 0$, i.e. $U_1(z) = U_2(z)$.

³⁾ Let $U_i(z)$ (i=1,2) be a harmonic function in R-G such that $U_1(z)=U_2(z)$ on $\partial G+\partial R_0$ and $U_i(z)$ has the finitely minimal Dirichlet integrals over R-G. Then by the minimality of $D(U_i(z))$, we have $D(U_i(z), V(z))=0$, where V(z) is a harmonic function in R-G such that V(z)=0 on $\partial R_0+\partial G$ and $D(V(z))<\infty$. We can consider $U_1(z)-U_2(z)$ as V(z). Hence $D(U_1(z)-U_2(z), U_1(z))=D(U_1(z)-U_2(z), U_2(z))=0$

respect to n and $N'_n(z, p)$ converges in mean and also converges uniformly in every compact set of $R - V_M(p)$ to a function N'(z, p) and $D_{R-V_M(p)}(N'(z, p)) = 2\pi M$ and further N'(z, p) has M.D.I over $R - V_M(p)$ among all functions having the value M on $\partial V_M(p)$ and zero on ∂R_0 . Let R' be a compact component of R bounded by ∂R_0 and a compact analytic curve γ which separates $V_M(p)$ from ∂R_0 . Denote by $\omega^*(z)$ a harmonic function in R' such that $\omega^*(z) = 0$ on ∂R_0 and $\omega^*(z) = 1$ on γ and let $\omega_n(z)$ be a harmonic function in $R_n - R_0 - V_M(p)$ such that $\omega_n(z) = 1$ on $\partial V_M(p)$, $\omega_n(z) = 0$ on ∂R_0 and $\frac{\partial \omega_n(z)}{\partial n} = 0$ on ∂R_0 . Then clearly, $D_{R_n-R_0-V_M(p)}(\omega_n(z)) \leq D_{R'}(\omega^*(z))$. On the other hand, by the maximum principle

$$|N_n(z, p) - N_n'(z, p)| \leq \delta_n \omega_n(z)$$
,

where $\delta_n = \max \left[|N_n(z, p) - M| \right]$ on $\partial V_M(p)$. Let $n \to \infty$. Then $N_n(z, p)$ tends to M(=N'(z, p)) on $\partial V_M(p)$ and consequently $\delta_n \to 0$ as $n \to \infty$. Since $\delta_n \omega_n(z) \to 0$ as $n \to \infty$, we have N(z, p) = N'(z, p) and $D_R(N^M(z, p)) = D_{R-V_M(p)}(N(z, p)) = \lim_{n \to \infty} M \int_{\partial R_0} \frac{\partial N_n'(z, p)}{\partial n} ds = 2\pi M.$

Case 2. $p \in R$ and $V_M(p)$ is non-compact. Take M' large so that $V_{M'}(p)$ is compact. Then since $N(z, p) (p \in R)$ has the M.D.I over $R - V_{M'}(p)$, N(z, p) also has M.D.I over $R - V_M(p)$ by lemma 1. Therefore $N(z, p) = \lim_{n \to \infty} N'_n(z, p)$ in $R - V_M(p)$, where $N'_n(z, p)$ is harmonic in $R - R_0 - V_M(p)$, $N'_n(z, p) = 0$ on ∂R_0 , $N'_n(z, p) = M$ on $\partial V_M(p)$ and $\frac{\partial N'_n(z, p)}{\partial n} = 0 \ \partial R_n - V_M(p)$. Hence

$$D_R(N^M(z, p)) = D_{R-V_M(p)}(\lim_{n \to \infty} N'_n(z, p)) = \lim_{n \to \infty} M \int_{\partial R_0} \frac{\partial N'_n(z, p)}{\partial n} ds = 2\pi M.$$

Case 3. $p \in B$. Let $\{p_i\}$ be a fundamental sequence determining p. Then for any given positive number \mathcal{E} , we can find a narrow strip $S^{(4)}$ such that the interior of S contains $\partial V_M(p) \cap (R_n - R_0)$ and that $D_{Rn-R_0-V_M(p)-S}(N(z, p)) \geq D_{R_n-R_0-V_M(p)}(N(z, p)) - \mathcal{E}$ and further $(V_M(p_i) \cap (R_n-R_0)) \subset (S+V_M(p))$ for any $i \geq i_0(S)$, where $V_M(p_i) = E[z \in R: N(z, p_i)] \geq M]$ and $i_0(S)$ is a suitable number depending on S and \mathcal{E} , because $N(z, p_i)$ converges uniformly in every compact part of R to N(z, p). On the other hand, since the derivatives of $N(z, p_i)$ converge to those of N(z, p) uniformly in $R_n - R_0$, we have

⁴⁾ S may consist of a finite number of components.

$$D_{R_n-R_0-V_{\mathcal{M}}(p)-S}(N(z, p)) \leq \lim_{i \to \infty} D_{R-V_{\mathcal{M}}(p_i)}(N(z, p_i)) \leq 2\pi M.$$

Hence, by letting $\mathcal{E} \to 0$ and then $n \to \infty$,

$$D_R(N^M(z, p)) = D_{R-V_M(p)}(N(z, p)) \le 2\pi M$$
.

In the present part, we consider only positive continuous function U(z) such that U(z) = 0 on ∂R_0 and $D_R(U^M(z)) < \infty$ for every M, where $U^M(z) = \min[M, U(z)]$. In what follows, in order to introduce the harmonicity or superharmonicity in \overline{R} , we make some preparations:

2. Capacity and the Equilibrium Potential of Relatively closed Sets in *R*.

Let F be a compact or non-compact relatively closed set in R having no common point with R_1 . Denote by $\omega_n(z)$ a harmonic function in R_n-R_0-F such that $\omega_n(z) = 0$ on ∂R_0 , $\omega_n(z) = 1$ on F except possibly a subset of capacity zero of F and $\frac{\partial \omega_n(z)}{\partial n} = 0$ on $\partial R_n - F$. Then the Dirichlet integral of $\omega_n(z)$ and $\omega_{n+i}(z)$ taken over R_n-R_0-F is $D_{R_n-R_0-F}$ $(\omega_n(z)-\omega_{n+i}(z), \omega_n(z))=0$, whence

$$\begin{split} D_{R_{n-R_{0}-F}}(\omega_{n+i}(z)) &= D_{R_{n-R_{0}-F}}(\omega_{n}(z)) + D_{R_{n-R_{0}-F}}(\omega_{n+i}(z) - \omega_{n}(z)) \ , \\ D_{R_{n-R_{0}-F}}(\omega_{n}(z)) &\leq D_{R_{n+i-R_{0}-F}}(\omega_{n+i}(z)) < D_{R_{1}-R_{0}}(\omega^{*}(z)) \ , \end{split}$$

where $\omega_*(z)$ is a harmonic function in $R_1 - R_0$ such that $\omega^*(z) = 0$ on ∂R_0 and $\omega^*(z) = 1$ on ∂R_1 . Hence $\{D_{R_n - R_0 - F}(\omega_n(z))\}$ is convergent, which implies that

$$D_{R_{n}-R_{0}}(\omega_{n+i}(z)-\omega_{n}(z)) = D_{R_{n}-R_{0}}(\omega_{n+i}(z))-D_{R_{n}-R_{0}}(\omega_{n}(z)),$$

tends to zero as n and i tend to ∞ .

Hence $\omega_n(z)$ converges to a harmonic function $\omega_F(z)$ in mean. Since $\omega_n(z) = 0$ on ∂R_0 , $\omega_n(z)$ converges to $\omega_F(z)$ uniformly in every compact set of R-F. Evidently, $\omega_F(z)$ has M.D.I over R-F among all functions having the value 1 on F except possibly a subset of capacity zero of F. We call such $\omega_F(z)$ the equilibrium potential of F and $D(\omega_F(z)) = \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds$ the capacity of F. Then we have the following

Theorem 1.

1) If $F_n \uparrow F$, then $\omega_{F_n}(z) \uparrow \omega_F(z)$ and $\operatorname{Cap}(F_n) \uparrow \operatorname{Cap}(F)$.

2) Let G_{ε} be the domain such that $G_{\varepsilon} = E[z \in R : \omega_F(z) \ge 1 - \varepsilon]$ and let $\omega_{G_{\varepsilon}}(z)$ be the equilibrium potential of G_{ε} . Then

$$\omega_F(z) = (1 - \varepsilon) \omega_{G_{\sigma}}(z)$$
.

Z. KURAMOCHI

3) Let ∂G_{ϵ} be the niveau curve of $\omega_F(z)$ with height $1-\epsilon$. Then there exists a set H in the interval (0, 1) such that $\operatorname{mes} H = 1$ and that $1-\epsilon \in H$ implies

$$\operatorname{Cap}(F) = \int_{\mathfrak{d}_{\mathfrak{g}}} \frac{\partial \omega_F(\boldsymbol{z})}{\partial n} ds = \int_{\mathfrak{d}_{\mathfrak{g}}} \frac{\partial \omega_F(\boldsymbol{z})}{\partial n} ds.$$

Proof. Let $\omega_F(z)$ and $\omega_{F_n}(z)$ be the equilibrium potentials of F and F_n respectively. Then $\omega_F(z) \ge \omega_{F_n}(z)$ and $D(\omega_F(z)) \ge D(\omega_{F_n}(z))$. On the other hand, clearly $\omega_{F_n}(z)$ is increasing with respect to n and $\lim_{n \to \infty} \omega_{F_n}(z)$ attains 1 on F except possibly a subst of F of capacity zero. Since $\omega_F(z)$ has the M.D.I, we have $D(\omega_F(z)) = \lim_{n \to \infty} D(\omega_{F_n}(z))$ and $\omega_F(z) = \lim_{n \to \infty} \omega_{F_n}(z)$, because such a function is determined uniquely by its boundary value on F.

Proof of 2). If we replace $U_F(z)$ in lemma 1 by $\omega_F(z)$ in this Theorem, then we have at once 2).

Proof of 3). Let $\omega_n'(z)$ be a harmonic function in $R_n - R_0 - G_{\varepsilon}$ such that $\omega_n'(z) = 0$ on ∂R_0 , $\omega_n'(z) = 1 - \varepsilon$ on ∂G_{ε} and $\frac{\partial \omega_n'(z)}{\partial n} = 0$ on $\partial R_n - G_{\varepsilon}$. Then, since $\lim_{n \to \infty} \omega_n'(z)$ has M.D.I over $R - G_{\varepsilon}$, we have $\lim_{n \to \infty} \omega_n'(z) = \omega_F(z)$ by 2). On the other hand, since $\int_{\partial G_{\varepsilon} \cap (R_n - R_0)} \frac{\partial \omega_n'(z)}{\partial n} ds = \int_{\partial R_0} \frac{\partial \omega_n'(z)}{\partial n} ds$, $\frac{\partial \omega_n'(z)}{\partial n} \ge 0$ on ∂G_{ε} and $\lim_{n \to \infty} \int_{\partial R_0} \frac{\partial \omega_n'(z)}{\partial n} ds = \int_{\partial R_0} \frac{\partial \omega_n'(z)}{\partial n} ds$, we have by Fatou's lemma

$$L_{\mathfrak{e}} = \int_{\mathfrak{d}_{\mathfrak{e}}} \frac{\partial \omega_F(z)}{\partial n} ds \leq \lim_{n = \infty} \int_{\mathfrak{d}_{\mathfrak{e}}} \frac{\partial \omega_n'(z)}{\partial n} ds = \int_{\mathfrak{d}_{\mathfrak{e}}} \frac{\partial \omega_F(z)}{\partial n} ds = L = D(\omega_F(z)).$$

Now we can take $p+iq = \omega_F(z) + i \,\overline{\omega}_F(z)$ as the local parameter at every point of R-F, where $\overline{\omega}_F(z)$ is the conjugate function of $\omega_F(z)$. Then $\frac{\partial \omega_F(z)}{\partial q} = 0$ and $\frac{\partial \omega_F(z)}{\partial p} = 1$ at every point of the niveau of $\omega_F(z)$ and the Dirichlet integral is

$$L = D(\omega_F(z)) = \iint_{R-F} \left\{ \left(\frac{\partial \omega_F(z)}{\partial p} \right)^2 + \left(\frac{\partial \omega_F(z)}{\partial q} \right)^2 \right\} dp dq = \int_0^1 L_\varepsilon dp \,.$$

If there were a set E of positive measure in (0, 1) such that $1-\varepsilon \in E$ implies $L_{\varepsilon} < L$, we have $D(\omega_F(z)) < L$. This is absurd. Hence we have 3).

Regular Domains. Let F be a compact or non-compact relatively closed domain in R and let $\omega_F(z)$ be its equilibrium potential of F. If

150

 $\int_{\partial F} \frac{\partial \omega_F(z)}{\partial n} ds = \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds, F \text{ is called a regular domain. We see at once by 3) of Theorem 1 that there exists a sequence of regular domains <math>G_{\varepsilon} = E[z \in R: \omega_F(z) \ge 1 - \varepsilon]$ which we call the regular domains generated by the equilibrium potential, containing any closed set F of positive capacity and that any compact closed domain with analytic relative boundaries is always regular.

3. Definition of $U_D(z)$ for compact or non-compact Domain D.

Suppose a continuous function U(z) in R such that U(z) = 0 on ∂R_0 , $D(U^M(z)) \leq \infty$ and a domain D. Let $U_D^M(z)$ be a harmonic function in R-D such that $U_D^M(z) = U^M(z)$ on $\partial R_0 + \partial D$ and $U_D^M(z)$ has M.D.I over R-D. Then evidently, $U_D^M(z)$ is determined uniquely. We define $U_D(z)$ by $\lim_{t \to \infty} U_D^M(z)$.

Theorem 3. Let D be a regular domain and let $N^{D}(z, p)$ be a function in R-D such that $N^{D}(z, p)$ is harmonic in R-D except p where $N(z, p) + \log |z-p|$ is harmonic, $N^{D}(z, p) = 0$ on $\partial R_{0} + \partial D$ and $N^{D}(z, p)$ has the minimal *-Dirichlet integral (it is taken with respect to N(z, p) $+ \log |z-p|$ in a neighbourhood of p). Then we have the following

$$U_{D}(p) = \frac{1}{2\pi} \int_{\partial D} U(z) \frac{\partial N^{D}(z, p)}{\partial n} ds. \qquad (1)$$

Proof. Let $\omega_n(z)$ be a harmonic function $R_n - R_0 - D$ such that $\omega_n(z) = 0$ on ∂R_0 , $\omega_n(z) = 1$ on ∂D and $\frac{\partial \omega_n(z)}{\partial n} = 0$ on $\partial R_n - D$ and let $N_n^D(z, p)$ be a harmonic function in $R_n - R_0 - D$ with one positive logarithmic singularity at p such that $N_n^D(z, p) = 0$ on $\partial R_0 + \partial D \cap (R_n - R_0)$ and $\frac{\partial N_n^D(z, p)}{\partial n} = 0$ on $\partial R_n - D$. Then by the maximum principle there exist constants M' and n such that $N_n^D(z, p) \leq M'$ for $n \geq n_0$ outside of a neighbourhood of p. Hence there exists a constant M'' such that $N_n^D(z, p) \leq M''(1 - \omega_n(z))$ in $R_n - R_0$ outside of a neighbourhood of p for every $n \geq n_0$, whence $0 \leq \frac{\partial N_n^D(z, p)}{\partial n} < -M'' \frac{\partial \omega_n(z)}{\partial n}$ on $\partial D \cap (R_n - R_0)$. Now since D is regular, we have $\int_{\partial R_0} \frac{\partial \omega_D(z)}{\partial n} ds = \int_{\partial D} \lim_{n \to \infty} \frac{\partial \omega_n(z)}{\partial n} ds$, where $\omega_0(z) = \lim_{n \to \infty} \omega_n(z)$ is the equilibrium potential of D. Assume that there exists a positive constant δ such that for infinitely many numbers m and n(n > m) such that $\int_{\partial D \cap (R_n - R_m)} \frac{\partial \omega_n(z)}{\partial n} ds > \delta$. Then

Z. KURAMOCHI

$$\int_{\partial D \cap (R_m - R_0)} \frac{\partial \omega_n(z)}{\partial n} ds < \int_{\partial D \cap (R_n - R_0)} \frac{\partial \omega_n(z)}{\partial n} ds - \delta.$$

Let *n* tend to ∞ . Then by Fatou's lemma

$$\int_{\partial D \cap (R_m - R_0)} \frac{\partial \omega_D(z)}{\partial n} ds \leq \lim_{n \to \infty} \int_{\partial D \cap (R_n - R_0)} \frac{\partial \omega_n(z)}{\partial n} ds - \delta \leq \lim_{n \to \infty} \int_{\partial R_0} \frac{\partial \omega_n(z)}{\partial n} ds - \delta.$$

Let *m* tend to ∞ . Then $\int_{\partial D} \frac{\partial \omega_D(z)}{\partial n} ds \leq \int_{\partial R_0} \frac{\partial \omega_D(z)}{\partial n} ds - \delta$. This contradicts the regularity of *D*. Hence, for any given positive number ε , there exist numbers *m* and $n_0(\varepsilon, m)$ such that $0 \leq \int_{\partial D \cap (R_n - R_m)} \frac{\partial \omega_n(z)}{\partial n} ds < \varepsilon$, for $n \geq n_0$. It follows that $\int_{\partial D \cap (R_n - R_0)} \frac{\partial N_n^D(z, p)}{\partial n} ds < M''\varepsilon$, for $n \geq n_0$. (2)

Let $U_n^M(z)$ be a harmonic function in $R_n - R_0 - D$ such that $U_n^M(z) = U^M(z)$ on $\partial R_0 + \partial D$ and $\frac{\partial U_n^M(z)}{\partial n} = 0$ on $\partial R_n - D$. Then by Green's formula

$$U_n^M(p) := \frac{1}{2\pi} \int_{\partial D \cap (R_n - R_0)} U^M(z) \frac{\partial N_n^D(z, p)}{\partial n} \, ds \, .$$

Let *n* tend to ∞ . Then since $U_n^M(z)$ tends to $U_D^M(z)$ and by (2), we have

$$U_D^M(p) = \frac{1}{2\pi} \int_{\partial D} U^M(z) \frac{\partial N^D(z, p)}{\partial n} ds$$
.

Hence by letting $M \to \infty$, we have $U_D(p) = \frac{1}{2\pi} \int_{\partial D} U(z) \frac{\partial N^D(z, p)}{\partial n} ds$.

5. Harmonicity and Superharmonicity in R. If U(z) is superharmonic in R and further, for any compact domain D, if $U(z) = U_D(z)$ or $U(z) > U_D(z)$, we say that U(z) is harmonic or superharmonic in \overline{R} respectively.

Theorem 3. If U(z) and V(z) are positive, U(z) = V(z) = 0 on ∂R_0 and harmonic in R and superharmonic in \overline{R} , then for a domain D

1) $U_D(z) \leq U(z)$.

2) $U(z) \ge V(z)$ implies $U_D(z) \ge V_D(z)$.

3)
$$U_D(z) + V_D(z) = {}_D(U+V)(z).$$

4) $(CU_D(z)) = _D(CU)(z)$ for $C \ge 0$.

- 5) $U_{D_1+D_2}(z) \leq U_{D_1}(z) + U_{D_2}(z)$ for two domains D_1 and D_2 .
- 6) If $D_1 > D_2$, then $D_1(U_{D_2}(z)) = U_{D_2}(z)$ and $U_{D_1}(z) \ge U_{D_2}(z)$.

The first five assertions are clear by definition. We shall prove 6). We see easily that $U^{\mathcal{M}}(z)$ is superharmonic in \overline{R} by the superharmonicity

152

of U(z) in \overline{R} . Assume $D_1 > D_2$. Then by lemma 1 $U_{D_1}^M(z) =_{D_2}(U_{D_1}^M(z))$. Hence by letting $M \to \infty$ $U_{D_1}(z) =_{D_2}(U_{D_1}(z)) \leq_{D_2}(U(z)) = U_{D_2}(z)$.

Another Definition of $U_D(z)$. If U(z) is superharmonic in \overline{R} , $U_D(z)$ is given as follows: Put $D_n = D \cap (R_n - R_0)$. Then

$$U_D(z) = \lim_{n = \infty} U_{D_n}(z) .$$

Proof. $U_{D_n}(z)$ is increasing with respect to n by 6) of the above Theorem. Hence $\{U_{D_n}(z)\}$ converge. Since $D(U_D^M(z)) \leq D(U^M(z)) < \infty$, for any given positive number \mathcal{E} there exists a number n_0 such that $D_{D \cap (R-R_0)}(U_D^M(z)) < \mathcal{E}$ for $n \geq n_0(M)$. On the other hand, since $U_{D_n}^M(z)$ has M.D.I over $R - D_n$ with boundary value $U^M(z) = U_{D_n}^M(z)$ on ∂D_n ,

$$D_{R-Dn}(U^M_{Dn}(z)) \leq D_{R-Dn}(U^M_D(z)) \leq D_{R-D}(U^M(z)) + \varepsilon \quad \text{for } n \geq n_0(M) \;.$$

Let $n \rightarrow \infty$ and then $\mathcal{E} \rightarrow 0$. Then

$$D_{R-D}(U_D^M(\boldsymbol{z})) \geq \lim_{n = \infty} \left(D_{R-D_n}(U_{D_n}^M(\boldsymbol{z})) \geq D_{R-D}(\lim_{n = \infty} U_{D_n}^M(\boldsymbol{z})) \right).$$

Hence $\lim_{n\to\infty} U_{D_n}^M(z)$ has M.D.I over R-D with boundary value $U^M(z)$ on ∂D , whence $\lim_{n\to\infty} U_{D_n}^M(z) = U_D^M(z)$ and $\lim_{n\to\infty} U_{D_n}(z) \ge U_D^M(z)$. Let $M \to \infty$. Then

$$\lim_{n\to\infty} U_{D_n}(z) \ge U_D(z) \; .$$

Next, put $M_n = \sup_{z \in R_n - R_0} U(z)$. Then clearly $U_{D_n}(z) = U_{D_n}^{M_n}(z) \leq U_D^{M_n}(z)$. Let $n \to \infty$. Then $\lim_{n \to \infty} U_{D_n}(z) \leq U_D(z)$. Thus we have $\lim_{n \to \infty} U_{D_n}(z) = U_D(z)$.

6. Equilibrium Potential of a closed subset A of B. Let A be a δ -closed set of B. Put $A_m = E\left[z \in \overline{R} : \delta(z, A) \leq \frac{1}{m}\right]$. Then $R \cap A_m$ is a relatively closed set of R and $\bigcap_{m > 0} A_m = A$. Let $\omega_{A_m,n}(z)$ be a harmonic function in $R_n - R_0 - A_m$ such that $\omega_{A_m,n}(z) = 0$ on ∂R_0 , $\omega_{A_m,n}(z) = 1$ on ∂A_m and $\frac{\partial \omega_{A_m,n}(z)}{\partial n} = 0$ on $\partial R_n - A_m$. Then

$$D_{R_n-R_0-A_m}(\omega_{A_m,n}(z), \ \omega_{A_{m+i,n}}(z)) = \int_{\partial A_m \cap (R_n-R_0)} \frac{\partial \omega_{A_{m+i,n}}(z)}{\partial n} ds$$
$$= \int_{\partial A_{m+i} \cap (R_n-R_0)} \frac{\partial \omega_{A_{m+i,n}}(z)}{\partial n} ds = D_{R_n-R_0-A_{m+i}}(\omega_{A_{m+i,n}}(z)).$$

Since $D(\omega_{A_{m,n}}(z))$ and $D(\omega_{A_{m+i,n}}(z))$ converge as $n \to \infty$, we have $D_{R-R_0-A_m}(\omega_{A_{m+i,n}}(z), \omega_{A_m}(z)) = D_{R-R_0-A_{m+i}}(\omega_{A_{m+i}}(z))$. Hence $D_{R-R_0-A_m}(\omega_{A_m}(z)) - \omega_{A_{m+i}}(z) = D_{R-R_0-A_m}(\omega_{A_m}(z)) - 2D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z)) - 2D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z)) - 2D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_{m+i}}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z), \omega_{A_m}(z)) + D_{R-R_0-A_m}(\omega_{A_m}(z)) + D_{R-R_0-A_m}(\omega_{A_m}($

Z. KURAMOCHI

 $(\omega_{A_{m+i}}(z)) \leq D_{R-R_0-A_m}(\omega_{A_m}(z)) - D_{R-R_0-A_m}(\omega_{A_{m+i}}(z))$ and $D_{R-R_0-A_m}(\omega_{A_m}(z))$ is decreasing with respect to m. Therefore $\omega_{A_m}(z)$ converges to a function $\omega_A(z)$ in mean as $m \to \infty$. We call $\omega_A(z) = \lim_{m \to \infty} \omega_{A_m}(z)$ the equilibrium potential of A. Suppose $\omega_A(z) > 0$. Let V(z) be a harmonic function in R-G such that V(z) = 0 on $\partial R_0 + \partial G$ and $D(V(z)) < \infty$, where G is a relatively closed set containing A. Then by lemma 1 $\omega_{A_m}(z)$ $(A_m < G)$ has M.D.I over R-G among all functions having the boundary value $\omega_{A_m}(z)$ on ∂G . Hence

$$D(\omega_{A_n}(z) \pm \mathcal{E}V(z)) \ge D(\omega_{A_n}(z))$$
,

for every small positive number ε . Since $\omega_{A_m}(z)$ converges to $\omega_A(z)$ in mean,

$$D(\omega_{A_m}(z) - \omega_A(z), V(z)) \leq \sqrt{D(\omega_{A_m}(z) - \omega_A(z))D(V(z))}$$
 ,

which implies $D(V(z), \omega_A(z)) = 0$. Since V(z) is arbitrary, $\omega_A(z)$ has also M.D.I over R-G among all functions having the boundary value $\omega_A(z)$ on ∂G . Therefore ${}_A\omega_A(z) = \omega_A(z)$. Hence if we take $G_{\varepsilon} = [z \in R : \omega_A(z) \ge 1-\varepsilon], \frac{\omega_A(z)}{1-\varepsilon}$ is the equilibrium potential of G_{ε} .

7. Integral Representation of Superharmonic Functions in R.

Definition of $U_A(z)$ for a δ -closed subset A of B. $A_m = E \left[z \in R : \delta(z, A) \leq \frac{1}{m} \right]$. Then A_m is relatively closed set and clearly $U_{A_m}(z)$ is decreasing as $m \to \infty$. We define $U_A(z)$ by $\lim U_{A_m}(z)$.

Theorem 4.

1) $N(z, p) \ (p \in \overline{R})$ is superharmonic in R and superharmonic in \overline{R} , more generally $\int N(z, p) d\mu(p)$ is superharmonic in \overline{R} for $\mu > 0$. 2) $\omega_D(z)$ and $\omega_A(z)$ are superharmonic in \overline{R} .

Proof of 1). First, suppose $p \in R$. Since clearly N(z, p) is superharmonic in R, it is sufficient to prove that $N(z, p) \ge N_D(z, p)$ for every *compact* domain D. Since N(z, p) has the minimal *-Dirichlet integral over R, we have by Green's formula and by Theorem 2

$$N(z, p) = \mathrm{or} > \frac{1}{2\pi} \int_{\partial D} N(\zeta, p) \frac{\partial N^{D}(\zeta, z)}{\partial n} ds = N_{D}(z, p),$$

according as $p \in D$ or $p \notin D$.

Next, consider $p \in B$. Let $\{p_i\}$ be a fundamental sequence determining p. Then $N(z, p_i)$ tends to N(z, p) on ∂D , hence

Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, II 155

$$N(z, p) = \lim_{i=\infty} N(z, p_i) \geq \frac{1}{2\pi} \int_{\partial D} \lim_{i=\infty} N(\zeta, p_i) \frac{\partial N^D(\zeta, z)}{\partial n} ds = N_D(z, p) .$$

Thus $N(z, p)(p \in \overline{R})$ is superharmonic in \overline{R} .

The approximation to $V(z) = \int N(z, p) d\mu(p)$ by a sequence of functions $V_n(z)$ $(n=1, 2, \cdots)$ of the form $V_n(z) = \sum_{i=1}^n c_i N(z, p_i)$ can be done in every compact part of R. $V_n(z) = \frac{1}{2\pi} \int_{\partial D} V_n(\zeta) \frac{\partial N^D(\zeta, z)}{\partial n} ds$, which implies by letting $n \to \infty$ $V(z) = \frac{1}{2\pi} \int_{\partial D} V(\zeta) \frac{\partial N^D(\zeta, z)}{\partial n} ds = V_D(z)$. Therefore V(z) is superharmonic in \overline{R} .

Proof of 2). Let G be a compact domain and let $\omega_D^n(z)$ be a harmonic function in $R - R_n - D$ such that $\omega_D^n(z) = 0$ on ∂R_0 , $\omega_D^n(z) = 1$ on $\partial D \cap (R_n - R_0)$ and $\frac{\partial \omega_D^n(z)}{\partial n} = 0$ on $\partial R_n - D$. Then

$$\omega_D^n(z) \geq \frac{1}{2\pi} \int\limits_{\partial G \cap (R_n - R_0)} \omega_D^n(\zeta) \frac{\partial N_n^G(\zeta, z)}{\partial n} ds,$$

where $N_n^G(\zeta, z)$ is the *-Green's function of $R_n - R_0 - G$ with pole at z. Let $n \to \infty$. Then

$$\omega_D(z) \geq rac{1}{2\pi} \int\limits_{\partial G} \omega_D(\zeta) rac{\partial N^G(\zeta, z)}{\partial n} ds = {}_G \omega_D(z) \; .$$

Hence $\omega_D(z)$ is superharmonic in \hat{R} .

Put $G = A_m$. Then $\omega_{A_m}(z) \ge \frac{1}{2\pi} \int_{\partial G} \omega_{A_m}(\zeta) \frac{\partial N^G(\zeta, z)}{\partial n} ds = {}_G \omega_{A_m}(z)$. Let $m \to \infty$. Then $\omega_A(z) \ge \frac{1}{2\pi} \int_{\partial G} \omega_A(\zeta) \frac{\partial N^G(\zeta, z)}{\partial n} ds = {}_G \omega_A(z)$.

Thus $\omega_A(z)$ is also superharmonic in \overline{R} .

Theorem 5. If U(z) is positive harmonicin R and superharmonic in \overline{R} , then for a δ -closed subset A of B, we have

1) There exists a mass distribution μ on A such that

$$U_A(z) = rac{1}{2\pi} \int\limits_A N(z, p) \, d\mu(p) \, ,$$

for all point z in R. The total mass $\mu(A)$ is given by $\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial U_A(z)}{\partial n} ds$. 2) $_{A}\omega_A(z) = \omega_A(z) = \frac{1}{2\pi} \int_A N(z, p) d\mu(p)$ for $\omega_A(z) > 0$. 2') If p is an ideal boundary point such that $\omega_b(z) > 0$, then

$$\omega_p(z) = KN(z, p), \quad K > 0.$$

Z. KURAMOCHI

3)
$$U(z) = \frac{1}{2\pi} \int_{B} N(z, p) d\mu(p)$$

Proof. Put $A_m = E\left[z \in R: \delta(z, A) \leq \frac{1}{m}\right]$ and $A_{m,n} = A_m \cap (R_n - R_0)$. Then by 5. $U_A(z) = \lim_{m \to \infty} \lim_{n \to \infty} U_{A_m,n}(z)$. Now $U(z) \geq U_{A_m}(z) \geq U_{A_m,n}(z)$ for $z \notin A_{m,n}$, $U(z) = U_{A_m,n}(z)$ for $z \in A_{m,n}(z)$ is continuous on $A_{m,n}(z)$, whence $U_{A_m,n}(z)$ is superharmonic at every point of $A_{m,n}$. Hence it can be proved by the method of F. Riesz-Frostmann that the functional

$$J(\mu) = \frac{1}{2} \frac{1}{4\pi^2} \int_{A_{m,n}} \int N(z, p) d\mu(p) d\mu(z) - \frac{1}{2\pi} \int_{A_{m,n}} U_{A_{m,n}}(z) d\mu(z) ,$$

is minimized by a unique mass distribution on $\mu(A_{m,n})$ on $A_{m,n}$ among all non negative mass distributions. The function V(z) given by $\frac{1}{2\pi} \int_{A_{m,n}} N(z, p) d\mu(p)$ is equal to U(z) on $A_{m,n}$ except possibly a subset of capacity zero of $A_{m,n}$ and has the M.D.I, because V(z) is a linear form of N(z, p) $(p \in R)$. Therefore $U_{A_m,n}(z) = V(z)$, where the total mass is given by $\frac{1}{2\pi} \int \frac{\partial U_{A_m,n}(z)}{\partial n} ds$ for every n and m. Since N(z, p) is a δ continuous function of p for fixed z and the total mass is less than $\frac{1}{2\pi} \int_{R_0} \frac{\partial U(z)}{\partial n} ds$, $\mu(A_{m,n})$ has an weak limit $\mu(A_m)$ on A_m as $n \to \infty$. Hence $U_{A_m}(z) = \frac{1}{2\pi} \int_{A_m} N(z, p) d\mu(p)$ and by letting $m \to \infty$, $U_A(z) = \frac{1}{2\pi} \int_A N(z, p) d\mu(p)$. 2) and 2') are clear by the property of $\omega_A(z)$ and 3) is also clear, if we consider B as A.

8. Classifications of the Ideal Boundary Points.

Regular or Singular ideal Boundary Point. Take an ideal boundary point p as a closed subst A of B. Then we call p a regular or singular ideal boundary point according as $\omega_p(z) = 0$ or $\omega_p(z) > 0$.

In what follows, we shall consider another classification. We shall prove the following

Theorem 6. Let U(z) be a harmonic in R and superharmonic function in \overline{R} and let A be a closed subset of capacity zero of \overline{R} . Then

$$_A U_A(z) = U_A(z)$$

Proof. Let G be a compact domain in R. Then

$$U(z) = V_G(z) + U'(z) \quad \text{for} \quad z \in R - G, \quad (a)$$

where $V_G(z)$ is a harmonic function in R-G such that $V_G(z) = U(z)$ on

156

 $\partial G + \partial R_0$ and $V_G(z)$ has M.D.I over R - G and U'(z) is a harmonic function in R--G such that U'(z) = 0 on $\partial G + \partial R_0$ and U'(z) is superharmonic in $\overline{R-G}$. In fact, let D be a domain in R. Then since D + G > G, by Lemma 1, $V_G(z) = V_{D+G}(z)$, where $V_{D+G}(z)$ is a harmonic function in R - G - Dsuch that $V_{D+G}(z) = V_G(z)$ on $\partial D + \partial G + \partial R_0$ and $V_{D+G}(z)$ has M.D.I over R - G - D. Now, since U(z) is superharmonic in \overline{R} and $V_G(z) = V_{G+D}(z)$,

$$U(z) = U'(z) + V_G(z) \ge \frac{1}{2\pi} \int_{(\partial G - D) + (\partial D - G)} U(\zeta) \frac{\partial N^{D+G}(\eta, z)}{\partial \eta} ds$$

= $\frac{1}{2\pi} \int_{(\partial G - D) + (\partial D - G)} (V_G(z) + U'(z)) \frac{\partial N^{D+G}(\zeta, z)}{\partial \eta} ds = V_{G+D}(z) + U_D'(z).$

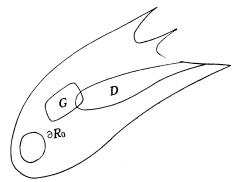
Hence

$$U'(z) \ge U_D'(z)$$
 , (b)

where $U_D'(z)$ is a harmonic function in R-G-D such that $U_D'(z) = 0$ = U'(z) on $\partial G + \partial R_0 - D$, $U_D'(z) = U'(z)$ on $\partial D - G$ and U'(z) has M.D.I over R-G-D. This means that U'(z) is superharmonic in $\overline{R-G}$. Consider $A_{m,n} = A_m \cap (R_n - R_0)$ as D in (a). Then by (a)

$$U_{A_{m,n}}(z) = V_{A_{m,n}}(z) + U'_{A_{m,n}}(z) + (V_G - V_{A_{m,n}})(z) \quad \text{ for } z \in R - A_{m,n} - G, \quad (c)$$

where $V_{A_{m,n}}(z)$ is a harmonic function in R-G such that $V_{A_{m,n}}(z) = U_{A_{m,n}}(z)$ on $\partial R_0 + \partial G$ and $V_{A_{m,n}}(z)$ has M.D.I over R-G and $U'_{A_{m,n}}(z)$ is a harmonic function in $R-G-A_{m,n}$ such that $U'_{A_{m,n}}(z) \equiv 0$ on $\partial R_0 + \partial G - A_{m,n}$, $U'_{A_{m,n}}(z) \equiv U'(z)$ on $\partial A_{m,n} - G$ and $U'_{A_{m,n}}(z)$ has M.D.I over $R-G - A_{m,n}$. Hence by (b) $U'_{A_{m,n}}(z) \leq U'(z)$.



And $(V_G - V_{A_m, n})(z)$ is a harmonic

function in $R-G-A_{m,n}$ such that $(V_G-V_{A_{m,n}})(z) = 0$ on $\partial R_0 + \partial G - D$, $(V_G-V_{A_{m,n}})(z) = V_G(z) - V_{A_{m,n}}(z) (V_G(z) = U(z) \text{ and } \partial G) \text{ on } \partial A_{m,n}$ and $(V_G-V_{A_{m,n}})(z)$ has M.D.I over $R-G-A_{m,n}$. Clearly since $U(z) \ge U_{A_{m,n}}(z)$, $0 \le (V_G-V_{A_{m,n}}(z) \le M\omega'_{A_{m,n}}(z)$, where $M = \max_{z \in \partial G} V_G(z)$ and $\omega'_{A_{m,n}}(z)$ is the equilibrium potential of $A_{m,n}$ with respect to R-G.

Let $n \to \infty$. Then $U'_{A_{m,n}}(z) \uparrow U'_{A_m}(z)$, since U'(z) is superharmonic in R-G. $U_{A_{m,n}}(z) \uparrow U_{A_m}(z)$ implies $V_{A_m,n}(z) \uparrow V_{A_m}(z)$. $(V_G - V_{A_m,n})(z) \to (V_G - V_{A_m})(z)$. Here $V_{A_m,n}(z)$ converges to $V_{A_m}(z)$ in mean, because $D_{R-G}(V_{A_m,n}(z)) = \int_{\partial G} V_{A_m,n}(z) \frac{\partial V_{A_m,n}(z)}{\partial n} ds$ and ∂G is compact. Hence

 $V_{A_m}(z)$ has also M.D.I over R-G with boundary value $U_{A_m}(z)$ on ∂G and 0 on ∂R_0 . Therefore

$$U_{A_{m}}(z) = V_{A_{m}}(z) + U'_{A_{m}}(z) + (V_{G} - V_{A_{m}})(z) \ . \tag{d} \)$$

Let $m \to \infty$. Then $V_{A_m}(z) \downarrow U_A(z)$, $V_{A_m}(z) \downarrow V_A(z)$, $U'_{A_m}(z) \downarrow U_A(z)$ and $0 = \lim_{m \to \infty} (V_G - V_{A_m})(z) \leq M \omega_A'(z) = 0$. Hence

$$U_A(z) = V_A(z) + U_A'(z)$$
. (e)

By (d) and (e), we have

$$U_{A_{\textit{m}}}(\textit{z}) - U_{A}(\textit{z}) = V_{A_{\textit{m}}}(\textit{z}) - V_{A}(\textit{z}) + (U'_{A_{\textit{m}}}(\textit{z}) - U'_{A}(\textit{z})) + (V_{G} - V_{A_{\textit{m}}})(\textit{z}) \ ,$$

where $V_{A_m}(z) = {}_G U_{A_m}(z)$ and $V_A(z) = {}_G U_A(z)$ by definition and the last two terms on the right hand side are non negative. Hence

$$U_{A_m}(z) - U_A(z) \geq {}_{G}(U_{A_m}(z) - U_A(z))$$

Suppose $G = A_{m',n'}$ (n' < m). Then by letting $n' \to \infty$, we have

$$U_{A_{m}}(z) - U_{A}(z) \ge {}_{A_{m'}}(U_{A_{m}}(z) - U_{A}(z)) \; . \tag{f} \;)$$

Proof of the theorem. Since $U_A(z)$ is representable in the form (e) for any compact domain G, $U_A(z)$ is clearly superharmonic in \overline{R} , that is $U_A(z) \ge {}_G U_A(z) = V_A(z)$ for domain G. Hence ${}_{Am'}U_A(z) \le U_A(z)$ for every m' and ${}_A U_A(z) \le U_A(z)$.

Let z be a point of R. Then, since $U_{A_m}(z) \downarrow U_A(z)$ as $m \to \infty$, for any given positive number \mathcal{E} , there exists a number m_0 depending on z such that

$$\varepsilon > U_{A_{m+i}}(z) - U_A(z) > 0$$
 for $m+i \ge m_0$.

Then by (f)

$$0 \! <_{A_{m'}}\!(U_{\!A_{m+i}}(z)) \! - \! U_{\!A}(z)) \! < \! U_{\!A_{m+i}}(z) \! - \! U_{\!A}(z) \! < \! \varepsilon \, .$$

On the other hand, by 6) of Theorem 3 $_{A_{m'}}(U_{A_{m+i}}(z)) = U_{A_{m+i}}(z)$ for $m+i \ge m'$. Hence

$$A_{m'}(U_{A_{m+i}}(z) + U_A(z) - U_{A_{m+i}}(z)) \ge U_{A_{m+i}}(z) - \varepsilon$$

Thus by letting $\varepsilon \to 0$, $_{A_{m'}}(U_A(z)) \ge U_A(z)$. Therefore $_AU_A(z) = U_A(z)$.

Putting A = q, we define the function $\Psi(q)$ of q in B as $\frac{1}{2\pi} \int_{\mathcal{R}_0} \frac{\partial N_q(z, q)}{\partial n} ds$. Then we have

Theorem 7.

1) $\Phi(q)$ has only two possible values 1 and 0.

2) Denote by B_0 and B_1 the sets of points of B for which $\Psi(q) = 0$ and $\Psi(q) = 1$ respectively. Then $B = B_0 + B_1$ and B_0 is void or an F_{σ} .

We shall prove 1) in two cases as follows:

Case 1. q is regular ideal boundary point, i.e. $\omega_q(z) = 0$.

Case 2. q is a singular ideal boundary point, i.e. $\omega_q(z) > 0$.

Case 1. $\omega_q(z) = 0$. We have $N_q(z, q) = \Psi(q)N(z, q)$ by 2) of Theorem 5 and $_qN_q(z, q) = \Psi^2(q)N(z, q) = \Psi(q)N(z, q) = N_q(z, q)$ by Theorem 6. Hence we have $\Psi(q) = 0$ or 1.

Case 2. $\omega_q(z) > 0$. In this case we have $N(z, q) = K\omega_q(z) = N_q(z, q)$ = $K_q \omega_q(z) = K \Psi(q) N_q(z, q)$ by 2') of Theorem 5. Hence $\omega_q(z) > 0$ implies $\Psi(q) = 1$.

Proof of 2). The set Γ_m is defined as the set (possible void) of all points q of B such that $\Psi(A_m(q)) = \frac{1}{2\pi} \int_{\partial R_0} \frac{\partial N_{A_m(q)}(z, q)}{\partial n} ds \leq \frac{1}{2}$ (this means $\Psi(q) = 0$), where $A_m(q) = E\left[z \in \overline{R} : \delta(z, q) \leq \frac{1}{m}\right]$. Then clearly $B_0 = \bigvee_{m \geq 1} \Gamma_m$. We shall show that $\Psi(A_m(q))$ is a lower semicontinuous function of q. By definition $N_{A_m(q)}(z, q) = \lim_{m \to \infty} N_{A_m,n(q)}(z, q)$, where $A_{m,n}(q) = A_m(q) \cap$

 $(R_n - R_0)$. Hence, for any given positive number \mathcal{E} , there exists a number n such that $\Psi(A_{m,n}(q)) = \frac{1}{2\pi} \int_{\partial R_0} \frac{\partial N_{Am,n'(q)}(z,q)}{\partial n} ds \ge \frac{1}{2\pi} \int_{\partial R_0} \frac{\partial N_{Am'(q)}(z,q)}{\partial n} ds - \mathcal{E} = \Psi(A_m(q)) - \mathcal{E}$. Suppose $q_i \to q$. Then $A_{m,n}(q_i) \to A_{m,n}(q)$. Hence by the compactness of $A_{m,n}(q)$

_ _ _ .

$$\lim_{i \to \infty} N_{A_{m,n}(q_i)}(z, q_i) \ge \lim_{i \to \infty} \int_{\partial A_{m,n}(q_i)} N(\zeta, q_i) \frac{\partial N^{A_{m,n}(q_i)}(\zeta, z)}{\partial n} ds$$
$$= \int_{\partial A_{m,n}(q)} N(\zeta, q) \frac{\partial N^{A_{m,n}(q_i)}(\zeta, z)}{\partial n} ds = N_{A_{m,n}(q)}(z, q) .$$

 $\begin{array}{ll} \text{Consequently} & \displaystyle \lim_{i \to \infty} \Psi(A_m(q_i)) \geq \Psi(A_m(q)) - \varepsilon, & \text{whence by letting } \varepsilon \to 0 \\ \\ & \displaystyle \lim_{i \to \infty} \Psi(A_m(q_i)) \geq \Psi(A_m(q)) \;. \end{array}$

Therefore $\Psi(A_m(q))$ is lower semicontinuous with respect to q, whence Γ_m is closed and B_0 is an F_{σ} .

9. Canonical Distributions. We shall consider properties of B_0 and B_1 . Theorem 8.

1) $Cap (B_0) = 0.$ 2) If U(z) is given by $\frac{1}{2\pi} \int_{B_0} N(z, p) d\mu(p), U_{B_0}(z) = 0$

Z. KURAMOCHI

3) Every function U(z) which is harmonic in R and superharmonic in \overline{R} is representable by a mass distribution on B_1 such that

$$U(z) = \frac{1}{2\pi} \int_{B_1} N(z, p) d\mu(p) .$$

Proof of 1). The set Γ_m , being closed and compact, may be covered by a finite number of its closed subsets whose diameters are less than $\frac{1}{m}$. It is sufficient, by 5) of Theorem 4, to prove 1) for any closed subset A whose diameter is less than $\frac{1}{m}$, of Γ_m . Assume $\operatorname{Cap}(A) > 0$. Then $0 <_A \omega_A(z) = \omega_A(z) = \frac{1}{2\pi} \int_A N(z, p) d\mu(p)$ by 1) of Theorem 5. On the other hand, since $_A \omega_A(z) = \lim_{m \to \infty} \lim_{n \to \infty} A_{m,n} \omega_A(z)$, for any given positive number ε , there exist numbers m and n such that

$$\operatorname{Cap}(A) = \int_{\partial R_0} \frac{\partial \omega_A(z)}{\partial n} ds \leq \int_{\partial R_0} \frac{\partial (A_{m,n} \omega_A(z))}{\partial n} ds + \varepsilon$$

where $A_m = E\left[z \in \overline{R} : \delta(z, A) \leq \frac{1}{m}\right]$ and $A_{m,n} = A_m \cap (R_n - R_0)$.

Now $\omega_A(z)$ can be approximated on $A_{m,n}$ by a sequence of functions $V_l(z) = \sum_{i=1}^{l} c_i N(z, q_i) (q_i \in A) \ (l=1, 2, \cdots)$. Then by Fatou's lemma

$$\begin{aligned} \operatorname{Cap}\left(A\right) &= \int\limits_{\partial R_{0}} \frac{\partial \omega_{A}(z)}{\partial n} ds \leq \lim_{I = \infty} \int\limits_{\partial R_{0}} \frac{\partial V_{I}(z)}{\partial n} ds \leq \frac{1}{2} \int\limits_{\partial R_{0}} \frac{\partial \omega_{A}(z)}{\partial n} ds + \varepsilon \\ &= \frac{1}{2} \operatorname{Cap}\left(A\right) + \varepsilon \,, \end{aligned}$$

because $A_m < v_m(q_i) = E\left[z \in \overline{R} : \delta(z, q_i) \leq \frac{1}{m}\right]$ for every $q_i \in A$ implies $\int_{\partial R_0} \frac{\partial N_{v_m(q_i)}(z, q_i)}{\partial n} ds \leq \frac{1}{2} \int_{\partial R_0} \frac{\partial N(z, q_i)}{\partial n} ds$. This is absurd. Hence Cap (A) = 0, Cap $(\Gamma_m) = 0$ and Cap $(B_0) = 0$.

Proof of 2). As above, we have for $A \in \Gamma_m$, $U_A(z) \leq U_{A_m}(z)$ and $\int_{\partial R_0} \frac{\partial U_A(z)}{\partial n} ds \leq \int_{\partial R_0} \frac{\partial U_{A_m}(z)}{\partial n} ds \leq \frac{1}{2} \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds$, whence mass of $U_A(z) \leq \frac{1}{2}$ mass of U(z) and mass of $_AU_A(z) \leq \frac{1}{2}$ mass of $U_A(z)$. On the other hand, since Cap (A) = 0, we have by Theorem 6 $_AU_A(z) = U_A(z)$. Hence $U_A(z)$ $= 0, \ U_{\Gamma_m}(z) = 0$ and $U_{B_0}(z) = 0$.

Proof of 3. Suppose $U(z) = \frac{1}{2\pi} \int_{B_0} N(z, p) d\mu(p)$. Put $\Gamma_{m,n} = E \left[z \in B : \delta(z, \Gamma_m) \leq \frac{1}{n} \right]$. Let z be a point R. Since $U_{\Gamma_m}(z) = 0$, for any given

positive number \mathcal{E} , there exists a number n(m) such that $U_{\Gamma_m,n}(z) \leq \frac{\mathcal{E}}{2^m}$ for $n \geq n(m)$. For each *m* select $\Gamma_m'(=\Gamma_{m,n})$ in this fashion. Put $C_m = \sum_{i=1}^m \Gamma_i'$. Then C_m are closed and form a increasing sequence as $m \to \infty$. Denote by \widetilde{A}_m the closure of the complement of C_m in *B*. Then the distance between \widetilde{A}_m and Γ_m is at least $\frac{1}{n(m)}$. Thus $\{\widetilde{A}_m\}$, which forms a descending sequence, has an intersection \widetilde{A} which is closed and, having no point in common with any Γ_m , is a subset of B_1 .

Now $U_{C_m}(z) \leq \sum_{i=1}^m U_{\Gamma_i}(z) \leq \sum_{i=1}^m 2^{-i} \varepsilon \leq \varepsilon$. Observing $\widetilde{A}_m + C_m = B$, we obtain

$$U(z) = U_B(z) = U_{\widetilde{A}_m+C_m}(z) \leq U_{\widetilde{A}_m}(z) + U_{C_m}(z) \leq U_{\widetilde{A}_m}(z) + \varepsilon.$$

Let $m \to \infty$ and then $\mathcal{E} \to 0$. Then $\bigcap_{m>1} \widehat{A}_m \subset B_1$ and $U(z) = U_{B_1}(z) = \frac{1}{2\pi} \int_{B_1} N(z, p) d\mu(p)$. Thus U(z) is representable by a mass distribution on B_1 without any change of U(z).

Proof of 3). Suppose that U(z) is harmonic in R and superharmonic in \overline{R} . Then $U(z) = \frac{1}{2\pi} \int_{B} N(z, p) d\mu(p) = \frac{1}{2\pi} \int_{B_1} N(z, p) d\mu_1(p)$ $+ \frac{1}{2\pi} \int_{B_0} N(z, p) d\mu_0(p)$ by 3) of Theorem 5. As above $\int_{B_0} N(z, p) d\mu_0(p)$ $= \int_{B_1} N(z, p) d\mu_1'(p)$. Then $U(z) = \frac{1}{2\pi} \int_{B_1} N(z, p) d(\mu_1 + \mu_1')$ (p). Thus we have 3). We call such distribution on B_1 canonical.

10. Minimal Functions. Let U(z) be a function which is harmonic in R and superharmonic in \overline{R} . If $U(z) \ge V(z) \ge 0$ implies V(z) = KU(z) $(0 \le K \le 1)$ for every function V(z) such that both U(z) - V(z) and V(z) are harmonic in R and superharmonic in \overline{R} , U(z) is called a *minimal* function.

Theorem 9.

1) Let U(z) be a minimal function such that $U_A(z) > 0$ and $U(z) - U_A(z)$ are superharmonic function in \overline{R} . Then $U(z) = \left(\frac{1}{2\pi} \int_{\partial \overline{K}_0} \frac{\partial U(z)}{\partial n} ds\right) N(z, p)$ $(p \in A)$.

2) Every minimal function is a multiple of some N(z, p) $(p \in B_i)$.

3) N(z, p) is minimal or not according as $\Psi(p) = 1$ or = 0.

Proof of 1). $U_A(z) = \frac{1}{2\pi} \int_A N(z, p) d\mu(p) > 0$ implies $\mu(A) > 0$ and $A \cap B_1 \neq 0$. Hence A has a closed subset A_1 for which $\mu(A_1) > 0$. A_1 , being compact, can be covered by a finite number of its closed subsets,

all of them having diameters less than some selected positive number. At least one such subset has a positive μ mass. We select a particular such and call it A_2 . By proceeding in this way inductively, it is possible to construct a descending sequence A_1, A_2, \cdots , of closed sets of A whose diameters approach zero and each of which has a positive μ mass. Let p be the unique point common to all A_n and B_1 . Now since $\mu(A_n) > 0$, the integral $\frac{1}{2\pi} \int_{A_n} N(z, p) d\mu(A_n)$ extended over A_n instead of A represents a superharmonic function $U_n(z)$ such that mass of $U(z) \geq \max$ of $U_n(z) = \max$ of $U_n(z) - U_A(z)$ is represented by a positive mass distribution. Hence the minimality of U(z) implies $U_n(z) = C_n U(z)$ ($0 < C_n \leq 1$). If we write $\mu_n'(e) = \mu \cdot \frac{1}{C_n} \{\mu_n'(e)\}$ has as an weak limit a point mass of amount $\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds$ located at p. Thus we have $U(z) = \left(\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds\right) N(z, p)$ ($p \in A$).

Proof of 2). Take B as A. Then we have at once 2).

Proof of 3). Suppose $p \in B_1$ and a function U(z) such that both U(z) and 0 < N(z, p) - U(z) = V(z) are harmonic in R and superharmonic in \overline{R} . Then

$$\begin{split} N_{p}(z,\,p) &= U_{p}(z) + V_{p}(z) = U(z) + V(z) = N(z,\,p) \;, \\ U_{p}(z) &\leq U(z), \; V_{p}(z) \leq V(z), \; \text{ whence } \; \; U_{p}(z) = U(z) \; \text{ and } \; \; V_{p}(z) = V(z) \;. \end{split}$$

Hence by 1) of Theorem 5 $U(z) = U_p(z) = K_1 V(z, p)$ and $V(z) = V_p(z) = K_2 N(z, p)$. Thus N(z, p) is minimal.

Next, suppose that $p \in B_0$ and N(z, p) is minimal. Then N(z, p) is representable by 3) of Theorem 8 by a mass distribution on B_1 , that is $N(z, p) = \int_{B_1} N(z, p) d\mu(p)$. If μ is a point mass at $q \in B_1$, N(z, p) = N(z, q). This implies $p = q \in B_1$. This is absurd. Hence μ is not a point mass. As 1) of this Theorem we can select a decessending sequence of closed subsets $\{A_n\}$ of B_1 such that $\mu(A_n) > 0$ and diameters of $\{A_n\}$ tend to zero as $n \to \infty$. Then the restriction of μ mass on A_n represents a superharmonic function $V_n(z)$ such that $N(z, p) - V_n(z)$ is superharmonic in \overline{R} . Hence as 1) we have $N(z, p) = N(z, p^*)$, i.e. $p^* = p$, where $p^* = \bigcap_{n \to \infty} A_n \subset B_1$. This contradicts $p \in B_0$. Hence N(z, p) is non-minial.

By preceeding paragraphs we have the shema as follows:

Ideal boundary point $\langle \begin{array}{c} \text{Regular I.B.P} \\ \text{Singular I.B.P} \\ \end{array} \xrightarrow{} B_{0} \text{ (non-minim point)} \\ B_{1} \text{ (minimal point)} \\ \end{array}$

We see easily that if $R \notin 0_{AD}$,⁵⁾ R has no singular ideal boundary point and if R is a Riemann surface of finite connectivity, R has no point of B_0 .

In what follow, we shall prove useful properties of points of $R+B_1$.

Theorem 10.

1) Let $V_m(p) = E[z \in R: N(z, p \ge m] \text{ and } v_n(p) = E[z \in \overline{R}: \delta(z, p) \le \frac{1}{n}]$ and suppose $p \in R + B_1$. Then

 $V_{V_m(p)}(z, p) = N(z, p)$ for very m less than $M^* = \sup_{z \in R} N(z, p)$.

Hence $N(z, p) = m\omega_{V_m(p)}(z)$.

2) For every $V_m(p) \ p \in R+B_1$ there exists a number n such that

$$V_{\pmb{m}}(\pmb{p}) \supset (\pmb{R} \cap \pmb{v}_{\pmb{n}}(\pmb{p}))$$
 .

Proof. Since $N(z, p) \ p \in R$ has the minimal *-Dirichlet integral over R, 1) is clear for $p \in R$ and since N(z, p) has its pole at p, 2) is also evident for $p \in R$. Hence we have only to prove for $N(z, p) \ p \in B_1$.

Proof of 1). First we remark that $p \in B_1$ and $\omega_p(z) = 0$ imply $\sup_{z \in R} N(z, p) = M^* = \infty$. In fact, suppose $N(z, p) \leq M < \infty$ and $\omega_p(z) = 0$. Then $N_p(z, p) \leq M \omega_p(z) = 0$, whence $p \in B_0$.

Therefore we shall prove 1) in two cases as follows:

Case 1. $p \in B_1$, $\omega_p(z) = 0$ and $\sup_{z \in R} N(z, p) = \infty$. Case 2. $p \in B_1$ and $\omega_p(z) > 0$.

Case 1. $p \in B_1$, $\omega_p(z) = 0$ and $\sup_{z \in R} N(z, p) = \infty$. Put $\lim_{n \to \infty} N_{v_n(p) - V_m(p)}(z, p) = N'(z, p)$. Then, since $v_n(p) > v_n(p) - V_m(p)$, N'(z, p) has no mass excep p. Hence N'(z, p) = KN(z, p) $(0 \le K < 1)$. But $\sup_{z \in R} N(z, p) = \infty$ and $\sup_{z \in R} N'(z, p) \le m$ implies N'(z, p) = 0. On the other hand, $N(z, p) = N_p(z, p) \le \lim_{n \to \infty} N_{v_n(p) \cap V_m(p)}(z, p) + N'(z, p) \le N(z, p)$. Therefore

$$N(z, p) \ge N_{V_{m}(p)}(z, p) \ge \lim_{n \to \infty} N_{v_n(p) \cap V_m(p)}(z, p) \ge N(z, p)$$
,

whence $N(z, p) = N_{V_m(p)}(z, p)$.

Case 2. $p \in B_1$ and $\omega_p(z) > 0$. In this case $N(z, p) = K\omega_p(z)$. Hence our assertion is evident.

⁵⁾ O_{AD} is the class of Riemann surfaces on which no non constant Dirichlet Bounded analytic function exists.

Proof of 2). Since $N_{V_m(p)}(z, p) = N(z, p)$ has M.D.I over $R - V_m(p)$, $\frac{N(z, p)}{m}$ can be considered as the equilibrium potential of $V_m(p)$. Hence we can suppose by 1) of Theorem 1 that $V_m(p)$ is regular, that is, $\int_{\partial V_m(p)} \frac{\partial N(z, p)}{\partial n} ds = 2\pi$.

Let q be a point R not contained in $V_m(p)$. Let $N_n(z, p)$ be a harmonic function in $R_n - R_0 - V_m(p)$ such that $N_n(z, p) = 0$ on ∂R_0 , $N_n(z, p) = m$ on $\partial V_m(p)$ and $\frac{\partial N_n(z, p)}{\partial n} = 0$ on $\partial R_n - V_m(p)$. Let $N_n(z, q)$ be a function in $R_n - R_0$ such that $N_n(z, q) = 0$ on ∂R_0 , $\frac{\partial N_n(z, q)}{\partial n} = 0$ on ∂R_n and $N_n(z, q)$ is harmonic in $R_n - R_0$ except q where $N_n(z, q)$ has a logarithmic singularity. Then clearly $\lim_{n \to \infty} N_n(z, p) = N(z, p)$, because $\frac{N(z, p)}{m} = \omega_{V_m(p)}(z)$. $N_n(z, q)$ converges to a function N(z, q).

By Green's formula

$$\int_{\partial V_m(p) \cap (R_n - R_0)} N_n(z, q) \frac{\partial N_n(z, p)}{\partial n} ds = 2\pi N_n(q, p)$$

Since $V_m(p)$ is regular and $N_n(z, q)$ is uniformly bounded on $\partial V_m(p)$, we have by letting $n \to \infty$

$$\frac{1}{2\pi} \lim_{n \to \infty} \int_{\partial V_m(p) \cap (R_n - R_0)} N_n(z, p) \frac{\partial N_n(z, p)}{\partial n} ds = \frac{1}{2\pi} \int_{\partial V_m(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds$$
$$= N(q, p) . \tag{5}$$

Assume that 2) is fales. Then there exists a sequence of point $\{q_i\}$ such that $q_i \notin V_m(p)$ and $\lim_{i \to \infty} \delta(q_i, p) = 0$. If $M^* = \infty$ (resp. $M^* < \infty$), let m' = 2m (resp. $m' = m^* : M^* - \frac{\delta}{2} > m^* > m + \frac{\delta}{2}$, where $\delta = \frac{M^* - m}{2}$) and suppose that $V_{m'}(p)$ is regular. Then $V_m(p) > V_{m'}(p) \notin q_i$. Since $\int_{\partial V_{m'}(p)} \frac{\partial N(z, p)}{\partial n} ds = 2\pi$, there exists a number n_0 such that $\int_{\partial V_{m'}(p) \cap (R_n - R_0)} \frac{\partial N(z, p)}{\partial n} ds > \frac{3\pi}{2} (\text{resp. } 2\pi - \varepsilon_0, \text{ where } 0 < \varepsilon_0 < \frac{\pi\delta}{2\left(m + \frac{\delta}{4}\right)})$

or
$$n \ge n_0$$
,

Now by 5)

$$\int_{\partial V_{m'}(p) \cap (R_{n_0}-R)} N(z, q_i) \frac{\partial N(z, p)}{\partial n} ds < \int_{\partial V_{m'}(p)} N(z, q_i) \frac{\partial N(z, p)}{\partial n} ds = N(q_i, p) < m.$$

Hence there exists at least one point z_i on $\partial V_{m'}(p) \cap (R_{n_0} - R_0)$ such that $N(z, q_i) < \frac{4m}{3} \left(\operatorname{resp.} < m \left(\frac{2\pi}{2\pi - \varepsilon_0} \right) \le m + \frac{\delta}{4} \right)$. Let i tend ∞ . Then we

have $N(z_0, p) < \frac{4m}{3} \left(\text{resp.} < m + \frac{\delta}{4} \right)$, where z_0 is one of the limiting points of $\{z_i\}$. This contradicts $N(z_0, p) = m'$. Hence we have 2).

11. The *-Green's Function N(z, q) in R.

We give definition of N(p, q) in three cases as follows: Case 1. N(p, q) when p or $q \in R$. Case 2. N(p, q) for $p \in (R+B_1)$ and $q \in \overline{R}$. Case 3. N(p, q) for $p \in B_0$ and $q \in \overline{R}$.

Definition of N(p, q) in case 1:p or q is contained in R. If two points p and q are contained in R, we have by definition $N_n(p, q) = N_n(q, p)$, where $N_n(z, p)$ and $N_n(z, q)$ are *-Green's functions of $R_n - R_0$ with poles at p and q respectively. Hence, by letting $n \to \infty$, N(p, q) = N(q, p). Next, suppose $p \in B$ and $q \in R$. Let $\{p_i\}$ be one of fundamental sequences determining p. Then, since $N(p_i, q) = N(q, p_i)$ and since $N(z, p_i)$ converges to N(z, p) uniformly in every compact set of R, $N(p_i, q)$ has a limit denoted by N(p, q) as $p_i \to p$. More generally, suppose that a sequence $\{p_i\}$ of \overline{R} tends to p with respect to δ -metric and that qbelongs to R. Then we have $N(q, p) = \lim_{i \to \infty} N(q, p_i) = \lim_{i \to \infty} N(p_i, q)$. Hence $N(z, q) (q \in R)$ has a limit when z tends to $p \in \overline{R}$. In this case we define the value of N(z, q) at p by this limit denoted by N(p, q). Thus we have the following

Lemma 1. If at least one of two points p and q is contained in R, then

$$N(p, q) = N(q, p)$$
.

N(z, q) is defined in \overline{R} for $q \in R$ but N(z, q) has been defined only in R for $q \in B$. In the sequel, we shall define N(z, q) in \overline{R} for $q \in B$. At first, consider case 2. For this purpose, we shall prove the following

Lemma. 2. Let $V_m(p)$ be the set $E[z \in R: N(z, p) \ge m]$ for $p \in B_1$. Then $V_m(p)$ may consist of at most enumerably infinite number of domains D_l $(l=1, 2, \cdots)$. Then

1) The Dirichlet integral of N(z, p) taken over $R - V_m(p)$ is $2\pi m$ for every $m < M^* = \sup_{z \in R} N(z, p)$.

2) Let D_l be a component of $V_m(p)$. Then D_l contains a subset D'_l of $V_{m'}(p)$ for $m': m < m' < M^*$.

3) For D_l of regular domain $V_m(p)$, the Dirichlet integral of N(z, p)taken over $D_l - D'_l$ is $2\pi (m' - m) \int_{\partial D_l} \frac{\partial N(z, p)}{\partial n} ds$ and

$$\lim_{n \to \infty} \int_{\partial D_{l} \cap (R_{n} - R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds = \lim_{n \to \infty} \int_{\partial D_{l} \cap (R_{n} - R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds = \int_{\partial D_{l}} \lim_{n \to \infty} \frac{\partial U_{n}(z)}{\partial n} ds$$
$$= \int_{\partial D_{l}'} \lim_{n \to \infty} \frac{\partial U_{n}(z)}{\partial n} ds = \int_{\partial D_{l}} \frac{\partial N(z, p)}{\partial n} ds,$$

where $U_n(z)$ is a harmonic function in $(D_l - D_l') \cap (R_n - R_0)$ such that $U_n(z) = m$ on ∂D_l , $U_n(z) = m'$ on $\partial D_l'$ and $\frac{\partial U_n(z)}{\partial n} = 0$ on $\partial R_n \cap (D_l - D_l')$.

Proof of 1). $p \in B_1$ implies by 1) of Theorem 10, that $N_{V_m(p)}(z, p) = N(z, p)$. Hence $\frac{N(z, p)}{m}$ is the equilibrium potential of $V_m(p)$. Therefore, $N(z, p) = \lim_{n \to \infty} U'_n(z)$, where $U'_n(z)$ is a harmonic function in $R_n - R_0 - V_m(p)$ such that $U'_n(z) = 0$ on ∂R_0 , $U'_n(z) = m$ on $\partial V_m(p)$ and $\frac{\partial U'_n(z)}{\partial n} = 0$ on $\partial R_0 \cap (R - V_m(p))$. The Dirichlet integral of $U'_n(z)$ over $R_n - R_0 - V_m(p)$ is $m \int_{\partial V_m(p) \cap (R_n - R_0)} \frac{\partial U_n(z)}{\partial n} ds$. Since $D(U'_n(z))$ is increasing with respect to n and $U'_n(z)$ tends to N(z, p) as $n \to \infty$,

$$\lim_{n \to \infty} D_{R_n - R_0 - V_m(p)}(U'_n(z)) = D_{R - V_m(p)}(N(z, p)) = \lim_{n \to \infty} m \int_{\partial R_0} \frac{\partial U'_n(z)}{\partial n} ds$$
$$= m \int_{\partial R_0} \frac{\partial N(z, p)}{\partial n} ds = 2\pi m.$$

Proof of 2). Assume that D_l has no point of $V_{m'}(p)$ (m' > m). Put $N'(z, p) \equiv m$ in D_l and N'(z, p) = N(z, p) for $z \in (R-D_l)$. Then D(N'(z, p)) < D(N(z, p)). This contradicts that $\frac{N(z, p)}{m}$ is the equilibrium potential of $V_m(p)$. Hence we have 2).

Proof of 3). Since $\frac{N(z, p)}{m}$ can be considered as the equilibrium potential of $V_m(p)$, N(z, p) has M.D.I over $V_m(p) - V_m'(p)$ among all functions having the boundary values m on $\partial V_m(p)$ and m' on $\partial V_{m'}(p)$ respectively, whence N(z, p) has also M.D.I over $D_l - D_l'$ among all functions with values m on ∂D_l and m' on $\partial D_l'$. Hence $U_n(z) \rightarrow N(z, p)$ as $n \rightarrow \infty$. Since $D(U_n(z))$ is increasing with respect to n and by Fatou's lemma, we have

$$D_{D_{I}-D_{I}'}(N(z,p)) = \lim_{n \to \infty} D_{(D_{I}-D_{I}') \cap (R_{n}-R_{0})}(U_{n}(z)) = (m'-m)\lim_{n \to \infty} \int_{\partial D_{I} \cap (R_{n}-R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds$$

Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, II 167

$$= (m'-m) \lim_{n \to \infty} \int_{\partial D_{i} \cap (R_{n}-R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds \ge (m'-m) \int_{\partial D_{i}} \lim_{n \to \infty} \frac{\partial U_{n}(z)}{\partial n} ds$$
$$= (m'-m) \int_{\partial D_{i}} \frac{\partial N(z, p)}{\partial n} ds. \qquad (6)$$

$$D_{D_l-D_{l'}}(N(z,p)) \ge (m'-m) \int_{\partial D_l} \lim_{n \to \infty} \frac{\partial N(z,p)}{\partial n} ds = (m'-m) \int_{\partial D_{i'}} \frac{\partial N(z,p)}{\partial n} ds.$$

On the other hand, by 1) and by the regularity of $V_m(p)$ and $V_{m'}(p)$

$$\sum_{i} D_{D_{I}-D_{I'}}(N(z, p)) = D_{V_{m}(p)-V_{m'}(p)}(N(z, p)) = 2\pi(m'-m)$$

$$= (m'-m) \int_{\partial R_{0}} \frac{\partial N(z, p)}{\partial n} ds = (m'-m) \int_{\partial V_{m'}(p)} \frac{\partial N(z, p)}{\partial n} ds$$

$$= (m'-m) \int_{\partial V_{m'}(p)} \frac{\partial N(z, p)}{\partial n} ds = (m-m') \sum_{i} \int_{\partial D_{I}} \frac{\partial N(z, p)}{\partial n} ds$$

$$= (m'-m) \sum_{i} \int_{\partial D_{I'}} \frac{\partial N(z, p)}{\partial n} ds. \qquad (7)$$

If $D_{D_l-D_l'}(N(z, p)) > (m'-m) \int_{\partial D_l} \frac{\partial N(z, p)}{\partial n} ds$ or $(m'-m) \int_{\partial D_{l'}} \frac{\partial N(z, p)}{\partial n} ds$ for at least one D_l or D_l' respectively, (6) will be a contradiction. Hence

$$D_{D_{I}-D_{I'}}(N(z, p)) = (m'-m) \int_{\partial D_{I}} \frac{\partial N(z, p)}{\partial n} ds = (m'-m) \int_{\partial D_{I'}} \frac{\partial N(z, p)}{\partial n} ds$$

for every D_l and D'_l . Therefore

$$D_{D_{l}-D_{l}'}(N(z, p)) = \lim_{n \to \infty} D_{D_{l}-D_{l}'}(U_{n}(z)) = (m'-m) \lim_{n \to \infty} \int_{\partial D_{l} \cap (R_{n}-R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds$$

= $(m'-m) \lim_{n \to \infty} \int_{\partial D_{l}' \cap (R_{n}-R_{0})} \frac{\partial U_{n}(z)}{\partial n} ds = (m'-m) \int_{\partial D_{l}} \frac{\partial N(z, p)}{\partial n} ds$
= $(m'-m) \int_{\partial D_{l}} \lim_{n \to \infty} \frac{\partial U_{n}(z)}{\partial n} ds = (m'-m) \int_{\partial D_{l}'} \lim_{n \to \infty} \frac{\partial U_{n}(z)}{\partial n} ds$.

Thus we have 3).

Lemma. 3. Suppose $p \in B_1$ and $q \in \overline{R}$. Let $V_m(p)$ and $V_{m'}(p)$ be regular domains with m and m' such that $\sup_{z \in R} N(z, p) > m' > m$, i.e. $V_m(p) > V_{m'}(p)$. Then

$$2\pi N^{V_{m'}(p)}(p, q) = \int_{\mathfrak{d}V_{m'}(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds \ge \int_{\mathfrak{d}V_m(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds$$
$$= 2\pi N^{V_m(p)}(p, q) .$$

Proof. Let D be one of D_i which is a component of $V_m(p)$ and D' be the set of $V_{m'}(p)$ contained in D. Let $N_n^D(\zeta, z)$ be the *-Green's func-

tion of $D \cap (R_n - R)$, that is, $N_n^D(\zeta, z) = 0$ on $\partial D \cap (R_n - R_0)$, $\frac{\partial N_n^D(\zeta, z)}{\partial n} ds = 0$ on $\partial R_n - D$ and $N_n^D(\zeta, z)$ is harmonic in $D \cap (R_n - R_0)$ except a logarithmic singularity at z. Then for given n_0 there exist constants L and n_1 such that $N_n^D(\zeta, z) \leq L$ in $D \cap (R_{n_0} - R_0)$ for $n \geq n_1$.

Let $U_n(\zeta)$ be the function defined in 3) of lemma e, i.e. $U_n(z) = m$ on ∂D , $U_n(\zeta) = m'$ on $\partial D'$ and $\frac{\partial U_n(\zeta)}{\partial n} = 0$ on $\partial R_n \cap (D - D')$. Then, since $U_n(\zeta) - m = m' - m$ on $\partial D'$ and $\frac{\partial N_n^D(\zeta, z)}{\partial n} ds = \frac{\partial U_n(\zeta)}{\partial n} = 0$ on $\partial R_n \cap (D - D')$, there exist suitable constants δ , and n_1' by the maximum principle such that

$$N_n^D(\zeta, z) < \frac{L}{\delta}(U_n(\zeta) - m)$$
 in $D < (R_{n_0} - R_0)$ for $n \ge n_1'$.

Hence

$$0 \leq \frac{\partial N_n^D(\zeta, z)}{\partial n} < \frac{L}{\delta} \frac{\partial U_n(\zeta)}{\partial n} \quad \text{on} \quad \partial D \cap (R_{n_0} - R_0) \quad \text{for } n \geq n_1'.$$

Therefore by 3) of lemma 2

$$\lim_{n \to \infty} \int_{\partial D \cap (R_n - R_0)} \frac{\partial N_n^D(\zeta, z)}{\partial n} ds = \int_{\partial D} \lim_{n \to \infty} \frac{\partial N_n^D(\zeta, z)}{\partial n} ds.$$
 (8)

Suppose $q \in R$ and let $N_{D,n}(z, q)$ be a harmonic function in $D \cap (R_n - R_0)$ such that $N_{D,n}(z, q) = N(z, q)$ $\partial D \cap (R_n - R_0) + \partial R_0$ and $\frac{\partial N_{D,n}(z, q)}{\partial n} = 0$ on $\partial R_n \cap D$. Then $N_{D,n}(z, q)$ converges (converges in mean) to a function $N_D(z, q)$ which is called the solution of the *-Dirichlet problem with boundary value N(z, q) on ∂D .

Since N(z, q) is uniformly bounded on $\partial D \cap (R - R_{n''})$, where n'' is a suitable number, it can be proved in the same manner as Theorem 2, by (8) that

$$\lim_{n \to \infty} N_{D.n}(z, q) = \lim_{n \to \infty} \frac{1}{2\pi} \int_{\partial D^{(1)}(R_n - R_0)} N(\zeta, q) \frac{\partial N_n^D(\zeta, z)}{\partial n} ds$$
$$= \frac{1}{2\pi} \int_{\partial D} N(\zeta, q) \frac{\partial N^D(\zeta, z)}{\partial n} ds = N_D(z, q) .$$

where $N^{D}(\zeta, z) = \lim_{n \to \infty} N^{D}_{n}(\zeta, z)$.

Now, since N(z, q) has M.D.I or minimal *-Dirichlet integral over D according as $q \notin D$ or $q \in D$, $N(z, q) = \lim_{n \to \infty} N'_n(z, q)$, where $N'_n(z, q)$ is a harmonic function in $D \cap (R_n - R_0)$ or harmonic except a logarithmic singularity at q such that $N'_n(z, q) = N(z, q)$ on $\partial D \cap (R_n - R_0)$ and $\frac{\partial N'_n(z, q)}{\partial n}$

=0 on $\partial R_n \cap D$. Hence $N_D(z, q) = \lim_{n \to \infty} N_{D,n}(z, q) = \lim_{n \to \infty} N'_n(z, q) = N(z, q)$ or $\langle N(z, q) = \lim_{n \to \infty} N'_n(z, q)$ according as $q \notin D$ or not. Thus

$$N(z, q) \ge N_D(z, q) = \frac{1}{2\pi} \int_{\partial D} N(\zeta, q) \frac{\partial N^D(\zeta, z)}{\partial n} ds. \qquad (9)$$

Let $\{q_i\}$ be a fundamental sequence determining a point $q \in B$. Then, since $N(\zeta, q_i)$ tends to $N(\zeta, q)$ as $i \to \infty$, by Fatou's lemma and by (9)

$$N(z, q) \ge N_D(z, q) = \frac{1}{2\pi} \int_{\partial D} N(\zeta, q) \frac{\partial N^D(\zeta, z)}{\partial n} ds, \qquad (9')$$

where $N_D(z, q)$ is the solution of *-Dirichlet problem in D with boundary value N(z, q) on ∂D .

 $N_{D,n}^{M}(z, q)$ be a harmonic function in $D \cap (R_n - R_0)$ such that $N_{D,n}^{M}(z, q) = N^{M}(z, q)$ on $\partial R_0 + \partial D \cap (R_n - R_0)$ and $\frac{\partial N_{D,n}^{M}(z, q)}{\partial n} = 0 \quad \partial R_n \cap D$. Then $N_{D,n}^{M}(z, q)$ converges to a function $N_D^{M}(z, q)$ as $n \to \infty$. Clearly, as in case of $N_D(z, q)$, $N_D^{M}(z, q)$ is given by

$$N_D^M(z, q) = rac{1}{2\pi} \int\limits_{\partial D} N^M(\zeta, z) \, rac{\partial N^D(\zeta, z)}{\partial n} \, ds \, ,$$

i.e. $N_D^M(z, q)$ is the solution of *-Dirichlet problem in D with boundary value $N^M(z, q)$, whence $\lim_{M \to \infty} N_D^M(z, q) = N_D(z, q)$.

The Dirichlet integral $\sum_{l} D_{D_{l}}(N_{D_{l}}^{M}(z,q)) \leq \sum_{l} D_{D_{l}}(N^{M}(z,q)) \leq 2\pi M$. Hence by letting $n \to \infty \sum_{l} D_{D_{l}}(N_{D}^{M}(z,q)) \leq 2\pi M$. For simplicity, we denote by $N_{V_{m}(\mathcal{P})}^{M}(z,q)$ the function being equal to $N_{D_{l}}^{M}(z,q)$ (solution of *-Dirichlet problem in D_{l}) in every domain D_{l} with boundary value $N^{M}(z,q)$.

Next, as in 3) of Lemma 2, it is proved that $N(z, p) = \lim_{n \to \infty} U_n(z)$ in $V_m(p) - V_{m'}(p), \quad \frac{\partial U_n(z)}{\partial n} \to \frac{\partial N(z, p)}{\partial n}$ on $\partial V_m(p) + \partial V_{m'}(p)$

$$\int_{\partial V_{m'}(p)} \frac{\partial N(z, p)}{\partial n} ds = \lim_{n \to \infty} \int_{\partial V_{m'}(p)} \frac{\partial U_n(z)}{\partial n} ds \quad \text{and}$$

$$\int_{\partial V_{m'}(p)} \frac{\partial N(z, p)}{\partial n} ds = \lim_{n \to \infty} \int_{\partial V_{m'}(p)} \frac{\partial U_n(z)}{\partial n} ds, \quad (10)$$

where $U_n(z)$ is a harmonic function in $(V_m(p) - V_{m'}(p)) \cap (R_n - R_0)$ such that $U_n(z) = m$ on $\partial V_m(p)$, $U_n(z) = m'$ on $\partial V_{m'}(p)$ and $\frac{\partial U_n(z)}{\partial n} = 0$ on $\partial R_n \cap (V_m(p) - V_{m'}(p))$.

Let $N_{V_m(p),n}^M(z,q) = N_{D_I,n}^M(z,q)$ in every domain $D_I \cap (R_n - R_0)$. Then we have by Green's formula

$$\int_{\partial V_m(p) \cap (R_n - R_0)} N^M_{V_m(p), n}(z, q) \frac{\partial U_n(z)}{\partial n} ds = \int_{\partial V_m(p) \cap (R_n - R_0)} N^M_{V_m(p), n}(z, q) \frac{\partial U_n(z)}{\partial n} ds,$$

because $U_n(z) = m$ and m' on $\partial V_m(p)$ and $\partial V'_m(p)$ respectively and $\int_{\partial V_m(p) \cap (R_n - R_0)} \frac{\partial N_{V_m(p), n}(z, q)}{\partial n} ds = \int_{\partial R_n \cap V_m(p)} \frac{\partial N^M_{V_m(p), n}(z, q)}{\partial n} ds = 0 \text{ and}$ $\int_{\partial V_{m'}(p) \cap (R_n - R_0)} \frac{\partial N^M_{V_m(p), n}(z, q)}{\partial n} ds = \int_{\partial R_n V_{m'}(p)} \frac{\partial N^M_{V_m(p), n}(z, q)}{\partial n} ds = 0. \text{ Let } n \to \infty.$ Then by (10)

$$\int_{\partial V_m(p)} N^M_{V_m(p)}(z, q) \frac{\partial N(z, p)}{\partial n} ds = \int_{\partial V_m(p)} N^M_{V_m(p)}(z, q) \frac{\partial N(z, p)}{\partial n} ds.$$
(11)

Therefore by letting $M \rightarrow M^*$, by (9') and (11) we have

$$2\pi N^{V_{m'}(p)}(p, q) = \int_{\partial V_{m'}(p)} N(z, p) \frac{\partial N(z, p)}{\partial n} ds$$
$$\geq \int_{\partial V_{m}(p)} N(z, p) \frac{\partial N(z, p)}{\partial n} ds = 2\pi N^{V_{m}(p)}(p, q) .$$

Definition of N(p, q) in Case 2: for $p \in R+B_1$ and $q \in \overline{R}$. Since $N^{V_m(p)}(p, q)$ is increasing with respect to $m, N^{V_m(p)}(p, q)$ has a limit denoted by N(p, q) as $m \uparrow M^* = \sup_{z \in \overline{R}} N(z, p)$. We define the value of N(z, q) at $p \in B_1$ by this limit. It is easily proved that, in case 1) this definition of N(p, q) coincides with what has been given previously. In fact, it is evident that $N(p, q) = \frac{1}{2\pi} \int_{\partial V_m(p)} N(z, p) \frac{\partial N(z, p)}{\partial n} ds$ for $p \in R$ and $V_m(p) \ni q$ and that, by (5) $N^{V_m(p)}(p, q) = \frac{1}{2\pi} \int_{\partial V_m(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds$ $= N(q, p) = \lim_{i \to \infty} N(q, p_i) = \lim_{i \to \infty} N(p_i, q) = N(p, q)$ for $p \in B$ and $q \in R$, where $\{p_i\}$ is a fundamental sequence determining p.

Remark. Let $V_m(p)$ be a regular domain and let $\{V_{m_i}(p)\}$ be a sequence of regular domain with $m_i \uparrow m$. Then $N^{V_m(p)}(p, q) = \lim_{i \to \infty} N^{V_{m_i}(p)}(p, q)$.

In fact, there exists a number n, for any given positive number ε , such that

$$\int_{\partial V_m(p) \cap (R_n - R_0)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds \ge \int_{\partial V_m(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds - \varepsilon.$$

On the other hand, suppose $z_i \in \partial V_{m_i}(p)$, $z_0 \in \partial V_m(p)$ and $z_i \rightarrow z$. Then

$$\frac{\partial N(z_i, p)}{\partial n} ds \to \frac{\partial N(z_0, p)}{\partial n} ds \text{ and } N(z_i, q) \to N(z_0, q), \text{ hence}$$

$$\lim_{i \to \infty} \int_{\partial V_{m_i}(p)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds \ge \lim_{i \to \infty} \int_{\partial V_{m_i}(p) \cap (R_n - R_0)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds$$

$$= \int_{\partial V_m(p) \cap (R_n - R_0)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds \ge \int_{\partial V_m} N(z, p) \frac{\partial N(z, p)}{\partial n} ds - \mathcal{E}.$$

By letting $\mathcal{E} \to 0$, $\lim_{i \to \infty} N^{V_{m_i}(p)}(p, q) \ge N^{V_m(p)}(p, q)$. Next, $m_i < m$ implies $N^{V_{m_i}(p)}(p, q) \le N^{V_m(p)}(p, q)$ and $\overline{\lim_{i \to \infty}} N^{V_{m_i}(p)}(p, q) \le N^{V_m(p)}(p, q)$. Thus we have $N^{V_m(p)}(p, q) = \lim_{i \to \infty} N^{V_{m_i}(p)}(p, q)$.

We define $N^{V_m(p)}(p, q)$ for any domain $V_m(p)$ by $\lim_{i \to \infty} N^{V_{m_i}(p)}(z, p)$ as above. This definition coincides with what has been defined previousely for regular domain $V_n(p)$. Hence $N^{V_m(p)}(p, q)$ is defined for every $m < \sup_{z \in \mathbb{R}} N(z, p)$.

Definition of Superharmonicity at a point $p \in R+B_1$. Suppose a function U(z) in \overline{R} . If $U(p) \geq \frac{1}{2\pi} \int_{\partial V_m(p)} U(z) \frac{\partial N(z, p)}{\partial n} ds$ holds for regular $V_m(p)$ of N(z, p), we say that U(z) is superharmonic in the weak sense at a point p. Thus we shall have the following

Theorem 11.

- 1). $N(p, p) = \sup_{z \in R} N(z, p) \text{ for } p \in R + B_1$.
- 2). $N(z, q)(q \in \overline{R})$ is δ -lower semicontinuous in $R+B_1$.
- 3). N(z, q) is superharmonic in the weak sense at every point of $R+B_1$.
- 4). N(p, q) = N(q, p) for two points p and q belonging to $R+B_1$.

Proof. 1) and 3) are clear by definition.

Proof of 2). Let $\{p_i\}$ be a sequence of points of $R+B_1$ tending to p. Since by the above remark $N^{V_m(p)}(p, q) = \lim_{m \to m'} N^{V_{m'}(p)}(p, q)(m' \uparrow m)$, there exists a number m', for any given positive number \mathcal{E} , such that $V_{m'}(p)$ is regular and $N^{V_m(p)}(p, q) \leq N^{V_{m'}(p)}(p, q) + \mathcal{E}$. Hence there exists a number n_0 such that

$$N^{V_{m}(p)}(p, q) \leq \frac{1}{2\pi} \int_{\partial V_{m'}(p) \cap (R_n - R_0)} N(z, q) \frac{\partial N(z, p)}{\partial n} ds + 2\varepsilon \quad \text{for} \quad n \geq n_0.$$

Let $V_{m''}(p_i)$ be a sequence of regular domains such that $p_i \rightarrow p$ and $m'' \uparrow m$. Replace $G_{V_m(p)}(p, q)$ by $N^{V_m(p)}(p, q)$ in 3) of Theorem 1 of Part I.

Then $N(\alpha_i, q)$ on $\partial V_{m''}(p_i)$ tends to $N(\alpha, q)$ on $\partial V_m(p)$ and $\frac{\partial N(\alpha_i, p)}{\partial n} ds$ tends to $\frac{\partial N(\alpha, p)}{\partial n} ds$, whence $\lim_{i \to \infty} N^{V_m(p)}(p_i, q) \ge \lim_{i \to \infty} N^{V_{m''}(p_i)}(p_i, q)$ $\ge N^{V_m(p)}(p, q) - 2\varepsilon$ and $\lim_{i \to \infty} N(p_i, q) \ge N(p, q)$. Hence we have 2).

Proof of 4). Replace $G_{V_m(q)}(p, q)$ and $G_{V_n(p)}(q, p)$ by $N^{V_m(p)}(p, q)$ and $N^{V_n(q)}(q, p)$ respectively and consider that $\{V_m(p)\}$ clusters at B as $m \uparrow M^* = \sup_{z \in R} N(z, p)$. Then we at once 4), where $V_m(p)$ and $V_n(q)$ are regular. Now we define N(z, q) not only in $R+B_1$ but also in B_0 .

Definition of N(z, q) in Case 3: for $p \in B_0$ and $q \in \overline{R}$. At first, if $p \in B_0$, N(z, p) is represented by $\int_{B_1} N(z, p_{\alpha}) d\mu(p_{\alpha})(p_{\alpha} \in B_1)$ by Theorem 8 for $z \in R$, where $\mu(p_{\alpha})$ is an weak limit and its uniqueness cannot be proved by the present author.

Let $p_{\alpha_i} \in \overline{R}$ $(i=1, 2, \cdots)$ tend to p_{α} with respect to δ -metric. Then, since $N(z, p_{\alpha_i}) \rightarrow N(z, p_{\alpha})$ on $\partial V_m(q)$ for $q \in R+B_1$. Hence, by Fatou's lemma

$$N^{V_{m}(q)}(q, p_{\alpha}) = \frac{1}{2\pi} \int_{\partial V_{m}(q)} N(z, p_{\alpha}) \frac{\partial N(z, q)}{\partial n} ds$$
$$\leq \lim_{i = \infty} \int_{\partial V_{m}(q)} N(z, p_{\alpha_{i}}) \frac{\partial N(z, q)}{\partial n} ds = \lim_{i = \infty} N^{V_{m}(q)}(q, p_{\alpha_{i}}).$$

Hence $N^{V_m(q)}(q, p_{\alpha})$ is lower semicontinuous with respect to p_{α} for fixed $q \in R+B_1$. Since $N^{V_m(q)}(q, p) \uparrow N(q, p)$ at every point p, $\lim_{m \to M^*} \int N^{V_m(q)}(q, p_{\alpha}) d\mu(p_{\alpha}) = \int N(q, p_{\alpha}) d\mu(p_{\alpha}) (M^* = \sup_{z \in R} (z, q))$, whence

$$N(q, p) = \lim_{m \to M^*} N^{V_m(q)}(q, p) = \lim_{m \to M^*} \frac{1}{2\pi} \int_{\partial V_m(q)} \int_{B_1} N(z, p) \frac{\partial N(z, q)}{\partial n} d\mu(p_{\alpha}) ds$$
$$= \frac{1}{2\pi} \int_{B_1} \lim_{m \to M^*} \int_{\partial V_m(q)} N(z, p_{\alpha}) \frac{\partial N(z, q)}{\partial n} ds d\mu(p_{\alpha}) = \int_{B_1} N(q, p_{\alpha}) d\mu(p_{\alpha}) .$$
(13)

Hence the representation

$$N(z, p) = \int_{B_1} N(z, p_{\alpha}) d\mu(p_{\alpha})$$
(14)

is valid not only in R but also in B_1 .

The value of N(q, p) $(q \in R+B_1 \text{ and } p \in B_0)$ does not depend on a particular choice of distribution $\mu(p_{\alpha})$, because the left hand side of (13) is given by $\lim_{m \to M^*} N^{V_m(q)}(q, p)$, that is N(q, p) depends only on the value of N(z, p) in R. Now (14) means that the potential of a unit mass on $p \in B_0$ has the same behaviour in $R+B_1$ as the potential of mass distribution $\int_{B_1} d\mu(p_{\alpha})$. From this point of view, we may consider that a

point $p \in B_0$ is spanned by points $p_{\alpha} \in B_1$ with weight $\mu(p_{\alpha})$. Hence it is natural to define the value of $N(z, q)(q \in \overline{R})$ at $z = p \in B_0$ by

$$\int_{B_1} N(p_{\alpha}, q) \, d\mu(p_{\alpha}) \, . \tag{15}$$

we shall prove the following

Theorem 12.

1). N(p, q) = N(q, p) for $p \in \overline{R}$ and $q \in R + B_1$. Hence N(q, p) and N(p, q) does not depend on a particular choice of distribution $\mu(p_{\alpha})$.

- 2). $N(q, z)(q \in R + B_i)$ is δ -lower semicontinuous in \overline{R} .
- 1'). N(p, q) = N(q, p) for p and q belonging to \overline{R} .
- 2') $N(z, q) (q \in \overline{R})$ is δ -lower semicontinuous in \overline{R} .

Proof of 1). For $p \in R+B_1$ our assertion is evident by 4) of Theorem 11. We show for $p \in B_0$. In this case, since $N(p_{\alpha}, q) = N(q, p_{\alpha})$ by 4) of Theorem 11, we have by (14) and (15)

$$N(q, p) = \int_{B_1} N(q, p_0) d\mu(p_a) = \int_{B_1} N(p_a, q) d\mu(p_a) = N(p, q) .$$

Since N(q, p) does not depend on a particular distribution, N(p, q) also does not depend on it.

Proof of 2). If $p \in R+B_1$, is clear by Theorem 11. Let $\{p_i\}$ be a sequence of points tending to $p \in B_0$. They by 1) of this theorem $N(q, p_i) = N(p_i, q)$ and N(p, q) = N(p, q). On the other hand, by Fatou's lemma $\lim_{i \to \infty} N^{V_m(q)}(q, p_i) \ge N^{V_m(q)}(q, p)$, which implies $\lim_{i \to \infty} N(q, p_i) \ge N(q, p)$. Hence

$$\lim_{i \to \infty} N(p_i, q) = \lim_{i \to \infty} N(q, p_i) \ge N(q, p) = N(p, q) .$$

This completes the proof of 2).

Proof of 1'). If at least one of p and q belongs to $R+B_1$, our assertion is 1). Suppose that both p and q belong to B_0 . In this case

 $N(z, p) = \int_{B_1} N(z, p) \ d\mu(p_{\alpha}) \quad \text{and} \quad N(z, q) = \int_{B_1} N(z, q_{\beta}) \ d\mu(q_{\beta}) \ (p_{\alpha} \text{ and } q_{\beta} \in B_1).$

Hence by (14) and by 1) of the this theorem

$$\begin{split} N(q, p) &= \int N(q_{\beta}, p) \, d\mu(q_{\beta}) \\ &= \int \left(\int \left(N(p_{\alpha}, q_{\beta}) \right) \, d\mu(p_{\alpha}) \right) \, d\mu(q_{\beta}) = \int N(p, q_{\beta}) \, d\mu(q_{\beta}) = N(p, q) \, . \end{split}$$

It is proved as in 1) that N(p, q) does not depend on particular distributions

$$\mu(p_{\alpha})$$
 and $\mu(q_{\beta})$.

Z. KURAMOCHI

Proof of 2'). Let $\{p_i\}$ be a sequence tending to p. Then for every point q_{β} , $\lim_{i \to \infty} N(p_i, q_{\beta}) \ge N(p, q_{\beta})$, which yields at once by Fatou's lemma

$$\lim_{i=\infty} N(p_i, q) = \lim_{i=\infty} \int N(p_i, q_\beta) \ d\mu(q_\beta) \ge \int N(p, q_\beta) \ d\mu(q_\beta) = N(p, q) \ .$$

Remark. Let U(z) be a function given by $\int N(z, p) d\mu(p)(\mu > 0)$. Then U(z) is lower semicontinuous in \overline{R} .

12. Mass Distributions on R.

We have seen that N(z, p) has the essential properties of the logarithmic potential: lower semicontinuity on \overline{R} , symmetry and superharmonicity in the weak sense on $R+B_1$. But there exists a fatal difference between our space and the euclidean space, that is, in our space there may exist points of B_0 where we cannot distribute any *true mass.* A distribution μ on B_0 may be called a *pseudo distribution* in the sense that $U_{B_0}(z) = 0$ and μ can be replaced, by Theorem 8, by a distribution on B_1 , where $U(z) = \int_{B_0} N(z, p) d\mu(p)$. In other words, even when B_0 is not empty, B_0 behaves as an empty set for mass distributions.

Mass Distributions on $R+B_1$ **.** Since N(z, p) has the above properties, it is easy to construct the potential theory on $R+B_1$.

The energy integral $I(\mu)$ of a mass distribution μ on a closed subset F of $R+B_1$ is defined as

$$I(\mu) = \int_{r} \int N(q, p) d\mu(p) d\mu(q)$$
.

The *-Capacity *Cap (F) and the transfinite diameter D_F of F are defined as follows: $\frac{*Cap(F)}{2\pi}$ is defined as the least upper bound of total mass of μ on F whose potential is not greater than 1 on F. $D_F = \lim_{n \to \infty} {}_{n \to \infty} D_F$, where

$$\frac{1}{{}_{n}D_{F}} = \frac{1}{2\pi_{n}C_{2}} \left(\inf_{\substack{p_{i},p_{j}\in F \\ i=1}} \sum_{\substack{i < j \\ i=1}}^{n,n} N(p_{i}, p_{j}) \right).$$

We see easily the following

Lemma. Cap (F) > 0 implies *Cap (F) > 0 for a closed subset F of $R+B_1$.

In fact, if Cap (F) > 0, $\omega_F(z) = {}_F\omega_F(z) > 0$ and $\omega_F(z) = \int_F N(z, p) d\mu(p)$. Now the total mass of μ is given by $\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds$ and $\omega_F(z) \leq 1$,

174

whence *Cap(F) > 0.

Then we have as in space the following

Theorem 13. Let F be a closed subset of positive *Capacity of $R+B_1$. Then there exists a unit mass distribution μ on F whose energy integral is minimal and its potential U(z) satisfies the following conditions:

1). U(z) is a constant C on the kernel of the distribution, whence $I(\mu) = D(U(z)) = 2\pi C$.

- 2). $U(z) = U_F(z)$.
- 3). U(z) = C on F except possibly a subset of *-Capacity zero of F. 4). $U(z) = C\omega_F(z)$.

Proof. 1) and 3) can be proved as in space.

Proof of 2). Since $p \in R+B_1$, $N(z,p) = N_{v_m(p)}(z, p)$ for every point of $R+B_1$, where $v_m(p) = E[z \in \overline{R} : \delta(z, p) \leq \frac{1}{m}]$. This implies $N_{F_m}(z, p) = N(z, p)$, where $F_m = E[z \in \overline{R} : \delta(z, F) \leq \frac{1}{m}]$, because $F_n \supset v_m(p)$. Hence we have $U_F(z) = U(z)$.

Proof of 4). Put $U(z) = C\omega^*(z)$. Then by 2) $_F(\omega^*(z)) = \omega^*(z)$ and not greater than 1 on F. Hence $\omega^*(z) = \lim_{m \to \infty} \lim_{n \to \infty} \omega_{m,n}^*(z)$, where $\omega_{m,n}^*(z)$ is a harmonic function in $R_n - R_0 - F_m$ such that $\omega_{m,n}^*(z) = \omega^*(z)$ on $\partial F_m \cap (R_n - R_0)$, $\omega_{m,n}^*(z) = 0$ on ∂R_0 and $\frac{\partial \omega_{m,n}^*(z)}{\partial \mu} = 0$ on $\partial R_n - F_m$. On the other hand, $\omega_F(z) = \lim_{m \to \infty} \lim_{n \to \infty} \omega_{m,n}(z)$, where $\omega_{m,n}(z)$ is a harmonic function in $R_n - R_0 - F_m$ such that $\omega_{m,n}(z) = 1$ on $\partial F_m \cap (R_n - R_0)$, $\omega_{m,n}(z) = 0$ on ∂R_0 and $\frac{\partial \omega_{m,n}(z)}{\partial \mu} = 0$ on $\partial R_n - F_n$. Hence $\omega_{m,n}(z) \ge \omega_{m,n}^*(z)$, whence by letting $n \to \infty$ and then $m \to \infty$, $\omega_F(z) \ge \omega^*(z)$. Next, the set $A_{\lambda} = E[z \in \overline{R} : \omega^*(z)]$ $\le 1 - \lambda] \cap F$ is clearly closed by the lower semicontinuity of $\omega^*(z)$. *Cap $(A_{\lambda}) = 0$ implies Cap $(A_{\lambda}) = 0$ by Lemma. Hence $0 = \omega_{A_{\lambda}}(z)$ $= \lim_{m \to \infty} \lim_{n \to \infty} \omega_{A_{\lambda}, m, n}(z)$, where $A_{\lambda, m} = E[z \in \overline{R} : \delta(z, A_{\lambda}) \le \frac{1}{m}]$ and $\omega_{A_{\lambda}, m, n}(z)$ is a harmonic function in $R_n - R_0 - A_{\lambda, m}$ such that $\omega_{A_{\lambda, m, n}}(z) = 1$ on $\partial A_{\lambda, m}$, $\omega_{A_{\lambda}, m, n}(z) = 0$ on ∂R_0 and $\frac{\partial \omega_{A_{\lambda}, m, n}(z)}{\partial n} = 0$ on $\partial R_n - A_{\lambda, m}$. Let $\{\lambda_i\}$ be a sequence such that $\lambda_i \downarrow 0$. Then

$$\omega_{m,n}^*(z) + \sum_{\lambda_i} \omega_{A_{\lambda_i},m,n}(z) \ge \omega_{m,n}(z)$$
.

Hence by letting $n \to \infty$ and then $m \to \infty$, $\omega^*(z) \ge \omega_F(z)$. Then $\omega^*(z) = \omega_F(z)$.

Corollary. Cap (F) = *Cap (F) for a closed subset of $R+B_1$.

In fact, since $\omega_F(z) = \frac{U(z)}{C}$, $*\operatorname{Cap}(F) = 2\pi \frac{1}{2\pi C} \int_{\partial F_0} \frac{\partial U(z)}{\partial n} ds = \frac{2\pi}{C}$ = $\frac{4\pi^2}{I(\mu)} = \int_{\partial F_0} \frac{\partial \omega_F(z)}{\partial n} ds$. Hence $*\operatorname{Cap}(F) = \operatorname{Cap}(F)$ and $\operatorname{Cap}(F) = 1/I(\mu)$, where μ is the equilibrium distribution of total mass unity on F.

Theorem 14. (Extension of Evans-Selberg's Theorem). Let F be a closed subset of $R+B_1$. Then Cap (F) = 0, if and only if there exists a unit mass distribution on F whose potential U(z) satisfies the following conditions:

1). U(z) = 0 on ∂R_0 .

2). $U(z) = \infty$ at every point of F.

3). $U(z) = U_F(z)$ and $\frac{U(z)}{m}$ is the equilibrium potential of the set $G_n = E[z \in R: U(z) \ge m]$ for every m.

Proof. If such U(z) exists, clearly Cap (F) = 0. Next Cap (F) = *Cap (F) = 0 implies by 1) of Theorem 12 $D_F = 0$. Replace $G(p_i, p_j)$ by $N(p_i, p_j)$ in Part I. Then we have 1) and 2). Since every point mass of $V^m(z) = \frac{1}{2\pi m} \left(\sum_{i=1}^m N(z, p_i)\right)$ is contained in F, $V_F^m(z) = V^m(z)$. This implies $U(z) = \left(\sum_{i=1}^m \frac{V^i(z)}{2^i}\right) = U_F(z)$. Hence $\frac{U(z)}{m}$ is the equilibrium potential of $G_m = E[z \in R: U(z) \ge m]$.

Remark 1. Let p be a point in B_0 . Then $N(z, p) = \int_{B_1} N(z, p_{\alpha}) du(p_{\alpha})$ and $U(p) = \int U(p_{\alpha}) d\mu(p_{\alpha})$. Hence U(z) may be infinite on a larger set F' containing F.

Remark 2. Theorem 14 holds for an F_{σ} of $R+B_1$ of capacity zero.

Remark 3. We cannot omit the condition that $F \in R+B_1$, (See an example).

Mass Distribution on R. Definition of $*\operatorname{Cap}(F)$ and D_F for closed subset F of \overline{R} . Let F be a closed set of \overline{R} . Then $F \cap (R+B_1)$ is a G_{δ} , since B_0 is an F_{σ} . We define *Capacity and the transfinite diameter of F as follows: Put $F_m = E[z \in \overline{R} : \delta(z, F) \leq \frac{1}{m}]$ and put *Cap (F_m) $= \sup_{\sigma} *\operatorname{Cap}(F_{\sigma})$ and $D_{F_m} = \sup_{\sigma} D_{F_{\sigma}}$, where F_{σ} is a closed subset of $R+B_1$ contained in F_m . Since clearly *Cap (F_m) and D_{F_m} are decreasing with respect to m. Put *Cap $(F) = \lim_{m \to \infty} *\operatorname{Cap}(F_m)$ and $D_F = \lim_{m \to \infty} D_{F_m}$. Then we have the following **Theorem 15.** *Cap $(F) = \text{Cap}(F) = 4\pi^2 D_F$ for a closed set F of R.

In fact, let $\omega_{\alpha}(z)$ be the equilibrium potential of F_{α} . Since $F_{\alpha} \leq F \cap (R+B_1)$, $F_m \omega_{\alpha}(z) = \omega_{\alpha}(z)$ for every F_{α} . We assume $F_{\alpha} \uparrow$. Then $\omega_{F_{\alpha}}(z)$ converges to a function $\hat{\omega}(z)$. Then $F_m(\hat{\omega}(z)) \geq F_m \omega_{F_{\alpha}}(z) = \omega_{F_{\alpha}}(z)$ for every α . On the other hand, clearly $F_m(\hat{\omega}(z)) \leq \hat{\omega}(z)$, because $\hat{\omega}(z)$ is superharmonic in \overline{R} . Therefore $F_m(\hat{\omega}(z)) \leq \omega(z)$. This implies that $\hat{\omega}(z)$ has has M.D.I. over R-F. Hence $\hat{\omega}(z) = \omega_{F_m}(z)$, since $\hat{\omega}(z) = 1$ on $F_m \cap R$. Hence Cap $(F_m) = \text{*Cap}(F_m)$, whence $4\pi^2 D_F = \text{*Cap}(F) = \text{Cap}(F)$. Particularly Cap $(B_0) = \text{*Cap}(B_0) = 0$. Thus two capacities coincide each other. We call them capacity. Since $\omega_F(z) = F\omega_F(z)$ and $\omega_F(z)$ is lower semicontinuous, we can prove as 3) of Theorem 13 the following

Corollary. If $\omega_F(z) \neq 0$, $\omega_F(z) = 1$ except possibly a subset of capacity zero of F.

Hence $\omega_F(z)$ has the characteristic property of the equilibrium potential in space. The capacity of Borel sets of \overline{R} is defined as usual.

An Example

We shall construct a Riemann surface with singular ideal boundary points and points of B_0 and further we show that the condition of theorem 13 is necessary.

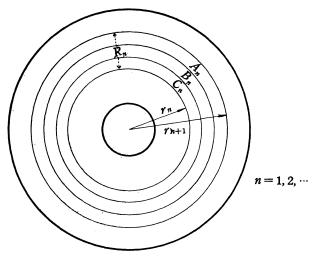
Let r_n be a circle: $|z| = r_n$ (n = 1, 2, ...), where $r_1 < r_2 < r_3, ..., r_1 = 1$ and $\lim_{n \to \infty} r_n = 2$. Denote by R_n a ring domain: $r_n < |z| < r_{n+1}$ and let A_n, B_n, C_n ring domains such that $A_n: r_{n+1} > |z| > r_{n,\alpha}, B_n: r_{n,\alpha} > |z| >$ $r_{n,\beta}, C_n: r_{n,\beta} > |z| > r_n$ with $r_n < r_{n,\beta} < r_{n,\alpha} < r_{n+1}$. $\{A_n\}$. Let $\Gamma_{A,n}$ be a circle: $|z| = \sqrt{r_{n+1}, r_{n,\alpha}}$. Then there exists a constant Q_n depending only on the modulus of A_n , i.e. $\log \frac{r_{n+1}}{r_{n,\alpha}}$ such that $\max_{z \in \Gamma_{A,n}} U(z) \leq Q_n \min_{z \in \Gamma_{A,n}} U(z)$ for any positive harmonic function U(z) in A_n . Choose a sequence P_n such that $\lim_{n \to \infty} \frac{P_n}{Q_n} = \infty$, (Fig. 1).

 $\{B_n^*\}$. In B_n we make so many radial slits and connect them so that every harmonic function $|U(z)| \leq P_n$ in B_n satisfies the condition that the oscillation of U(z) on $\Gamma_{B,n}$ is less than $\frac{1}{n}$, where $\Gamma_{B,n}$ is a circle in B_n such that $\Gamma_{B,n}: |z| = \sqrt{r_{n,\alpha}, r_{n,\beta}}$. We make the above slits as follows.

Put $B_n = B$, $\alpha = \log r_{n,\alpha}$ and $B = \log r_{n,\beta}$. Let $J(\supset \Gamma_{B,n})$ be a ring domain such that

$$J: \beta + \frac{\alpha - \beta}{3} < \log |z| < \beta + \frac{2(\alpha - \beta)}{3}.$$

Z. KURAMOCHI



Let U(z) be a harmonic function in J such that $|U(z)| \leq P_n$. Then $U(z) = \frac{1}{2\pi} \int_{\partial J} U(\zeta) \frac{\partial G(\zeta, z)}{\partial n} ds$, where $G(\zeta, z)$ is the Green's function of J with pole at z. Since $\frac{\partial G(\zeta, z)}{\partial n}$ is a continuous function of z in J for fixed ζ and since $U(z_1) - U(z_2) = \frac{1}{2\pi} \int_{\partial r} U(\zeta) \left(\frac{\partial G(\zeta, z_1)}{\partial n} - \frac{\partial G(\zeta, z_2)}{\partial n} \right) ds$, there exists a number m depending only on the modulus of J but on U(z) such that $|\arg z_1 - \arg z_2| \leq \frac{2\pi}{2^m}$ implies $|U(z_1) - U(z_2)| < \frac{1}{2n}$ for every pair of points z_1 and z_2 on the circle $\Gamma_{B,n}$.

Let H_i and H'_i $(i=1, 2, 3, \dots, m)$ be ring domains as follows:

$$\begin{split} H_i &: \alpha - (2i - 1) \ s \ge \log |z| \ge \alpha - 2is \ , \\ H'_i &: \beta + (2i - 1) \ s < \log |z| < \beta + 2is, \quad \text{where} \quad s = \frac{(\alpha - \beta)}{3 \cdot 2m} \ . \end{split}$$

Let S_i^j and S_i^j $(j=1, 2, 3, \dots, 2^{m_l})$ slits in H_i and H_i' respectively as follows:

$$S_{i}^{j}: \alpha - (2i-1) |z| > -2is, \arg z = \frac{2\pi j}{2^{m_{l}}}.$$

$$S_{i}^{j}: \beta + (2i-1) |z| < \beta + 2is, \arg z = \frac{2\pi j}{2^{m_{l}}}.$$

where l is a large integer so that $|U(z)| \leq P_n$ and U(z) = 0 on $\sum_j S_i^j$ imply $|U(z)| < \frac{1}{2n \cdot m!}$ on a circle Γ_i for every harmonic function in $H_i - \sum_j S_i^j$.

Clearly $H_i - \sum_j S_i^j$ and $H_i' - \sum_j S_i^j$ $(i = 1, 2, \dots, m)$ are conformally equivalent. Hence $|U(z)| \leq P_n$ in H_i or H_i' and U(z) = 0 on $\sum_i S_i^j$ or $\sum_j S_i^j$ imply $|U(z)| < \frac{1}{2nm!}$ on Γ_i and Γ_i' respectively, where Γ_i and Γ_i' are circles as follows:

$$\Gamma_{i} : \log |z| = \alpha - (2i-1) s - \frac{s}{2},$$

$$\Gamma_{i}' : \log |z| = \beta + (2i-1) s + \frac{s}{2}.$$

In H_1 and H_1' identify the two edges of the slits S_1^i and S_1^i $(j=1, 2, 3, \dots, 2^{m_l})$ lying symmetrically with respect to the real axis. Next, in H_2 and H_2' identify the two edges of S_2^i and S_2^i lying symmetrically with respect to the imaginary axis. In H_3 and H_3' , in every sector A_3^i : $\frac{(t-1)\pi}{2} < \arg z < \frac{t\pi}{2}$ identify two edges of slits S_3^i and S_3^i lying symmetrically with respect to the radius: $\arg z = \frac{(t-1)\pi}{2} + \frac{\pi}{4}$ (t=1, 2, 3, 4). Generally speaking, let A_i^i be a sector as follows:

$$A_i^t: \frac{(t-1)\pi}{2^{i-2}} < \arg z < \frac{t\pi}{2^{i-2}}, \quad t=1, 2, 3, \cdots, 2^{i-1}.$$

In every A_i^t identify the two edgds of S_i^j and S_i^j lying symmetrically with respect to the radius: $\arg z = \frac{(t-1)\pi}{2^{i-2}} + \frac{\pi}{2^{i-1}}$. Then we have a Riemann surface $\{B_n^*\}$ with only two boundary components lying on $\log|z| = \alpha$ and $\log|z| = \beta$.

We shall show that $\{B_n^*\}$ has the property above stated. (Fig. 2). Suppose a positive harmonic function $|U(z)| \leq P_n$. Let $T_1(z)$ be a transformation such that $T_1(z)$ is the symmetric point of z with respect to the real axis. Then $U(z) - U(T_1(z))$ is harmonic in B_n^* and vanishes on $\sum_{j} (S_j' + S_1^{j})$, whence $|U(z) - U(T_1(z))| < \frac{1}{2n \cdot m!}$ on circles Γ_1 and Γ_1' . Hence by the maximum principle $|U(z) - U(T_1(z))| < \frac{1}{2n \cdot m!}$ in the ring domain bounded by Γ_1 and Γ_1' . Let $T_2(z)$ be a transformation such that $T_2(z)$ is the symmetric point of z with respect to the imaginary axis. Then as above $|U(z) - U(T_2(z))| < \frac{1}{2n \cdot m!}$ in the domain bounded by Γ_2 and Γ_2' . Next, consider U(z) in a ring domain $\Gamma_3: \beta + 5s < \log |z| < \alpha - 5s$. Let T_3 be a transformation such that $T_3(z)$ is the symmetric point of z with respect to the radius: $\arg z = \frac{\pi}{4}$. Then $U(z) - U(T_3(z))$ is har-

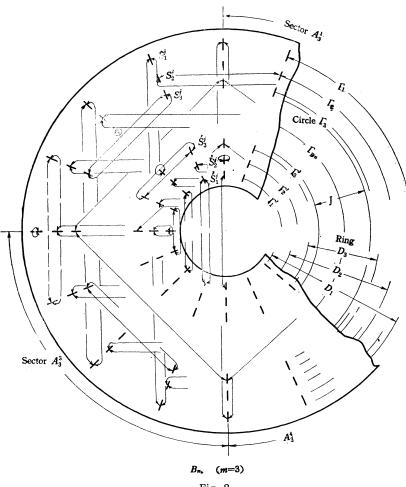


Fig. 2

monic in D_3 and $U(z) - U(T_3^1(z)) = 0$ on $\sum_j (S_3^j + S_3^j) \cap (A_3^1 + A_3^3)$. Hence $|U(z) - U(T_3^1(z))| < \frac{1}{2n \cdot m!}$ for $z \in (A_3^1 + A_3^3) \cap (\Gamma_3 + \Gamma_3')$, similarly $|U(z) - U(T_3^2(z))| < \frac{1}{2n \cdot m!}$ for $z \in (A_3^2 + A_3^4) \cap (\Gamma_3 + \Gamma_3')$, where T_3^2 is a transformation with respect to $\arg z = \frac{3\pi}{4}$. Let z_1 and z_2 be two points in A_3^2 and A_3^4 such that $z_2 = T_3^1(z_1)$. Then $z_2 = T_3^2 \cdot T_1 \cdot T_2(z_1)$, where $T_3^2 \cdot T_1 \cdot T_2(z_1)$ and z_2 are contained in A_3^3 . Hence by the property of T_1 , T_2 and $T_3^2 |U((z_1) - U(z_2)| < \frac{3}{2n \cdot m!}$ on $\Gamma_3 + \Gamma_3'$, whence by the maximum principle

$$|U(z) - U(T_{3}^{1}(z))| < \frac{3}{2n \cdot m!} < \frac{3!}{2n \cdot m!}$$

in the domain bounded by Γ_3 and Γ'_3 . In the sequel, we say that T_3^1 has the deviation $< \frac{3!}{2n \cdot m!}$.

For every *i*, consider U(z) in a ring domain D_i :

$$D_i: \beta + (2i-1) \le \log |z| \le \alpha - (2i-1) \le .$$

Let $T_i^t(z)$ $(t=1, 2, \dots, 2)$ be a transformation such that $T_i^t(z)$ is the symmetric point of z with respect to the radius: $\arg z = \frac{2\pi(t-1)}{2^{i-1}} + \frac{\pi}{2^{i-1}}$. Then $U(z) - U(T_i^t(z))$ is harmonic in D_i . On the other hand, we have as above cases $|U(z) - U(T_i^t(z))| < \frac{1}{2n \cdot m!}$ on $A_i^t \cap (\Gamma_i + \Gamma_i')$ for every t. Now let z_1 and z_2 be two points not contained in A_i^t such that $T_i^t(z_1) = z_2$. Then there exists a system S_{z_1, z_2} of transformations satisfying the following conditions:

1°. S_{z_1, z_2} is composed of at most i-1 transformations contained in $T_1, T_2, \{T_3^t\}, \dots, \{T_i^t\}$.

2°. S_{z_1, z_2} has the form $z_2 = T_{n_1}^{s_1} T_{n_2}^{s_2}, \dots, T_{n_k}^{s_k} (T_i^{s_i}) T_{n_{k+1}}^{s_{k+2}}, \dots, T_{n_L}^{s_L},$ $L \leq i-1$ and $n_b \neq i$ for $p = 1, 2, \dots, k, k+2, \dots, L$

3. $T_{n_{k+2}}^{s_{k+2}}T_{n_{k+3}}^{s_{k+3}}, \dots, T_{n_{L}}^{s_{L}}(z_{1})$ is contained in $A_{i}^{s_{i}}$ with the same index s_{i} as that of $T_{i}^{s_{i}}$. Now suppose that the deviation of T_{j}^{t} is less than $\frac{j!}{2n \cdot m!}$ for every $j \leq i-1$ (this is clear for j=1, 2, 3). But the deviation of of $S_{z_{1}, z_{2}}$ is less than the sum of deviations of $\{T_{j}\}$ contained in $S_{z_{1}, z_{2}}$. Hence the deviation of T_{i}^{t} is less than $\frac{i!}{2n \cdot m!}$, that is $|U(z) - U(T_{i}^{t}(z)| < \frac{i!}{2n \cdot m!}$ on $\Gamma_{i} + \Gamma_{i}'$ for every t. This implies $|U(z) - U(T_{i}^{t}(z))| < \frac{i!}{2n \cdot m!}$ in the ring domain bounded by $\Gamma_{i} + \Gamma_{i}'$. Hence the deviation of T_{i}^{t} is less than $\frac{i!}{2n \cdot m!}$ in the ring domain bounded by $\Gamma_{i} - \Gamma_{i}'$. Hence the deviation of T_{i}^{t} is less than $\frac{i!}{2n \cdot m!}$ in J for every i and t. On the other hand, $|U(z_{1}) - U(z_{2})| < \frac{1}{2n}$ for z_{1} and z_{2} on $\Gamma_{B,n}$ with $|\arg z_{1} - \arg z_{2}| < \frac{2\pi}{2^{m}}$. Therefore the oscillation of U(z) on $\Gamma_{B,n}$ is less than $\frac{1}{n}$.

Let R_n be a domain bounded by $\Gamma(|z|=1)$ and $\Gamma_{B.n}$. Then $\bigcap_{n\geq 1} R_n$ is a Riemann surface with one compact boundary component Γ and one ideal boundary camponent.

Let $\{k_n\}$ be slits on the radius: $\arg z = 0$ in C_n and let $w_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-k_n$ such that $w_{n,n+i}(z) = 0$ on $\Gamma + \partial R_{n+i}$ $(=\Gamma_{B,n+i}), w_{n,n+i}(z) = 1$ on k_n . Put $w_n(z) = \lim_{i \to \infty} w_{n,n+i}(z)$. Let $w_{n,n+i}^*(z)$ be a harmonic function in $R_{n+i}-k_n$ such that $w_{n,n+i}^*(z) = 0$ on Γ , $w_{n,n+i}^*(z) = 1$ on k_n and $\frac{\partial \omega_{n+i}^*(z)}{\partial n} = 0$ on ∂R_{n+i} . Put $\lim_{i \to \infty} w_{n,n+i}^*(z) = w_n^*(z)$. If we make every k_n sufficiently small, we have

$$\lim_{n \to \infty} \left(\max_{z \in \Gamma_{B,n}} \sum_{n}^{\infty} w_n(z) \right) = 0, \qquad (1)$$

$$\overline{\lim_{n \to \infty}} \left(\max_{z \in \Gamma_{B,n}} \sum_{n}^{\infty} w_n^*(z) \right) \leq \frac{1}{4}.$$
 (2)

Therefore we can suppose that $\{k_n\}$ have been chosen small so that the above conditions are satisfied.

Riemann surface \tilde{R} . Let R' be one more Riemann surface which is identical to R. From now, we denote by $V'(z), k', \cdots$ the function, figure, \cdots , on R' which corresponds to the function V(z), figure k, \cdots on R respectively. Identify k_n and k'_n for every n. Put $R + \tilde{R}' = \tilde{R}$. Then \tilde{R} is a Riemann surface with two compact boundary compenent Γ and Γ' and has only one ideal boundary component. In what follows, we show that \tilde{R} has the following properties, (Fig. 3).

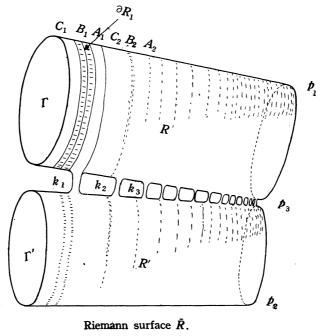


Fig. 3

1). \tilde{R} has no unbounded positive harmonic functions.

Let R_n^A be the compact surface of R bounded by Γ and $\Gamma_{A.n}$. Clearly $\bigvee_n R_n^A = R$. Let $\widehat{V}_n^A(z)$ be a harmonic function in $R_n^A + \widehat{R}_n^A$ such that $\widehat{V}_n^A(z) = 0$ on $\Gamma + \Gamma'$ and $V_n^A(z) = 1$ on $\Gamma_{A.n} + \Gamma'_{A.n}$. Then $\lim_{n \to \infty} \widehat{V}_n^A(z) = \widehat{V}(z) = \frac{\log |z|}{\log 2}$ in the ring domain: 1 < |z| < 2. Hence V(z) tends to 1 as z converges to the ideal boundary of R. Let $V_{n,n+i}^A(z) = 0$ on $\Gamma + \Gamma' + \sum_{n+1}^{n+i} k_j$ such that $V_{n,n+i}^A(z) = 0$ on $\Gamma + \Gamma' + \sum_{n+1}^{n+i} k_j + \Gamma_{A.n+i}$ and $V_{n,n+i}^A(z) = 1$ on $\Gamma_{A.n}$. Consider $V_{n,n+i}^A(z)$ in $R - \sum_{j=1}^{\infty} k_j$. Then $V_{n,n+i}^A(z) \ge \widehat{V}_n^A(z) - \sum_{j=1}^{\infty} w_j(z)$. Hence by letting $i \to \infty$ and then $n \to \infty$ we have $\lim_{n \to \infty} \lim_{n \to \infty} \widehat{V}_{n,n+i}^A(z) \ge V^A(z) \ge \widehat{V}(z) - \sum_{j=1}^{\infty} w_j(z)$ in $R - \sum_{j=1}^{\infty} k_j$. Therefore by (1) $V^A(z) > 0$. (Fig. 4)

Consider a positive harmonic function U(z) in \tilde{R} vanishing on $\Gamma + \Gamma'$. Assume $\max_{z \in \Gamma_{A,n}} U(z) \ge P_n$ for infinitely many numbers *n*. Then $\min U(z) \ge \frac{P_n}{Q_n}$. Hence by the maximum principle $U(z) \ge \frac{P_n}{Q_n} (V_{n,n+i}^A(z))$ in $R - \sum k_i$. Thus we have by letting $i \to \infty$ and then $n \to \infty$, $U(z) = \infty$. This is absurd. Hence by the maximum principle $U(z) \le \max_{z \in B_n + B_n'} U(z) \le \max_{z \in \Gamma_{A,n} + \Gamma_{A,n}} U(z) \ge P_n$ except for finitely many numbers. This implies by the property of B_n^* and $B_n'^*$ the oscillations of U(z) on $\Gamma_{B,n}$ and $\Gamma_{B,n}$

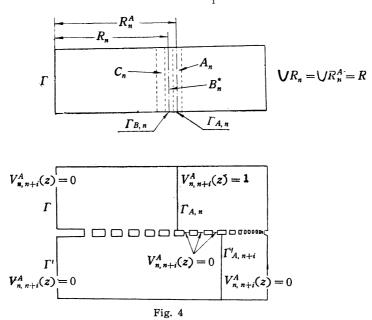
Let $\hat{V}_n(z)$ be a harmonic function in $R_n + R'_n$ such that $\hat{V}_n(z) = 0$ on $\Gamma + \Gamma'$ and $\hat{V}_n(z) = 1$ on $\partial R_n + \partial R'_n$. Then $\lim_{n \to \infty} \hat{V}_n(z) = \hat{V}(z) = \lim_{n \to \infty} \hat{V}_n^A(z)$. Let $V_{n,n+i}(z)$ be a harmonic function in $R_n + R'_{n+i} - \sum_{n+1}^{n+i} k'_j$ such that $V_{n,n+i}(z) = 0$ on $\Gamma + \Gamma' + \partial R'_{n+i} + \sum_{n+1}^{n+i} k_j$ and $V_{n,n+i}(z) = 1$ on ∂R_n . Consider $V_{n,n+i}(z)$ in $R - \sum_{1}^{\infty} k_j$. Then as above, we have $V(z) = \lim_{n \to \infty} \lim_{i \to \infty} V_{n,n+i}(z) \ge \hat{V}(z) - \sum_{n \to \infty}^{\infty} w_j(z)$ in $R - \sum_{1}^{\infty} k_j$. Therefore by (1)

$$\lim_{n \to \infty} (\min_{z \in \Gamma_{B,n}} V(z)) = 1.$$
(3)

Next, consider V(z) in $R' - \sum_{1}^{\infty} k_j$. Then also we have $V(z) = \lim_{n} \lim_{i} V_{n+i}(z)$ $\leq \sum_{1}^{\infty} w_j'(z)$ in $R' - \sum_{1}^{\infty} k_j'$. Hence by (1)

$$\overline{\lim_{n \to \infty}} \left(\max_{z \in \Gamma_{B,n}} V(z) \right) = 0.$$
 (4)

We call such V(z) the harmonic measure of the ideal boundary determined by a non-compact domain $G = R - \sum_{j=1}^{\infty} k_j$, (Fig. 5).



If $\sup_{z\in\widetilde{\mathcal{H}}}(U(z)=\infty, \max_{z\in\Gamma_{B,n}^{+}\Gamma'B,n}U(z)$ tends to ∞ as $n\to\infty$. This implies by property of B_n^* and $B_n^{*\prime}$ that at least one of $M_n = \min_{z\in\Gamma_{B,n}}U(z)$ and $M_n' = \min_{z\in\Gamma'B,n}U(z)$ tends to ∞ as $n\to\infty$. Assume $M_n\uparrow\infty$. Then clearly

$$U(z) \ge M_n(V_{n,n+i}(z)) - \sum_{j=1}^{\infty} w_j(z))$$
 in $R - \sum_{j=1}^{\infty} k_j$,

whence we have by letting $i \to \infty$ and then $n \to \infty$, $U(z) = \infty$. Therefore U(z) is bounded $\leq M$ in \tilde{R} .

2) There exist only two linearly independent positive harmonic functions vanishing on $\Gamma + \Gamma'$. Consider U(z) in $R - \sum_{1}^{\infty} k_j$. Put $L = \overline{\lim_{n \to \infty}} (\max_{z \in \Gamma_{B,n}} U(z))$ $= \overline{\lim_{n \to \infty}} (\min_{z \in \Gamma_{B,n}} U(z))$. Then for any given positive number \mathcal{E} , there exist infinitely many numbers n such that

$$L+\varepsilon \geq \max_{z\in \Gamma_{B,n}} U(z) \geq \min_{z\in \Gamma_{B,n}} U(z) \geq L-\varepsilon$$
.

Since U(z) > 0, $(L + \varepsilon)(V_{n.n+i}(z) + \sum_{1}^{\infty} w_j(z)) \ge U(z) \ge (L - \varepsilon)(V_{n.n+i}(z) - \sum_{1}^{\infty} w_j(z))$ in R. Let $i \to \infty$ and then $n \to \infty$ and further let $\varepsilon \to 0$. Then Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, II 185

$$L(V(z) + \sum_{1}^{\infty} w_j(z)) \geq U(z) \geq L(V(z) - \sum_{1}^{\infty} w_j(z))$$

Hence by (1) and (3) we have $\lim_{n \to \infty} (\max_{z \in \Gamma_{B,n}} U(z)) = \lim_{n \to \infty} (\min_{z \in \Gamma_{B,n}} U(z)) = L$. Similarly we have $\lim_{n \to \infty} (\max_{z \in \Gamma_{B,n}} U(z)) = \lim_{n \to \infty} (\min_{z \in \Gamma_{B,n}} U(z)) = L'$. Consider U(z) in \tilde{R} Then by (1) (3) and (4) we have $z \to 1$.

Consider U(z) in \tilde{R} . Then by (1), (3) and (4) we have as above, for any given positive number ε ,

$$(L+\varepsilon)V(z) + (L'+\varepsilon)V'(z) \ge U(z) \ge (L-\varepsilon)V(z) + (L'-\varepsilon)V'(z)$$
,

where V'(z) is the harmonic measure of the ideal boundary determined by G'. Hence U(z) = LV(z) + L'V'(z). Thus we have

3) There exists no function N(z, p) such that $\sup_{z \in R} N(z, p) = \infty$.

4) There exists at least two singular ideal boundary points $\in B_1$. Let $V_{n,n+i}^*(z)$ be a harmonic function in $R'_{n+i} + R_n - \sum_{n+1}^{n+i} k_j$ such that $V_{n,n+i}^*(z) = 0$ on $\Gamma + \Gamma'$, $V_{n,n+i}^*(z) = 1$ on ∂R_n and $\frac{\partial V_{n,n+i}^*(z)}{\partial n} = 0 \sum_{n+1}^{n+i} k_j + \partial R'_{n+i}$. Put $V^*(z) = \lim_{i \to \infty} \lim_{n \to \infty} V_{n,n+i}^*(z)$. $V^*(z)$ is called the equilibrium potential of the ideal boundary determined by non-compact domain G and it is proved as $\omega_F(z)$ is superharmonic in R ($\tilde{R} + B$). Clearly $V^*(z) \ge V(z)$, whence $\lim_{n \to \infty} (\min_{z \in \Gamma_{B,n}} V(z)) = 1$. On the other hand, since $V^*(z) \le \sum_{n=1}^{\infty} w_n^*(z)$ in $R' - \sum_{i=1}^{\infty} k_i'$, we have by (4) $\lim_{n \to \infty} (\max_{z \in \Gamma_{B,n}} V^*(z)) \le \frac{1}{4}$. Hence $V^*(z) = V'^*(z)$, (Fig. 5). Now $V^*(z)$ and $V^{*'}(z)$ are superharmonic in \tilde{R} , that is $V^*(z)$

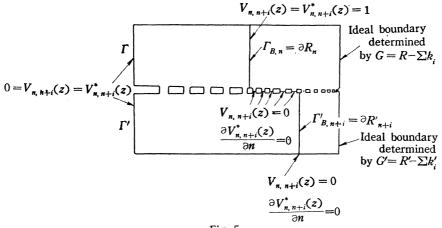


Fig. 5

Z. KURAMOCHI

 $= \int_{B_1} N(z, p_a) d\mu(p_a) \quad V^{**}(z) = \int_{B_1} N(z, p_a') d\mu'(p_a).$ Hence by the symmetric structure of \tilde{R} there must exist at least two singular points p_1 and p_2 in B_1 such that $N(z, p_1) \neq N(z, p_2)$ and $N(z, p_1) = N(T(z), p_2)$, where T(z) is the symmetric point of z with respect to $\sum_{i=1}^{\infty} k_i$. On the other hand, by 2), $N(z, p_1) = N(z, p_1) = \lambda V(z) + \mu V'(z)$ and $N(z, p_2) = \mu V(z) + \lambda V'(z)$ $(\lambda \neq \mu, \mu \geq 0, \lambda \geq 0)$.

5) There exists at least one ideal boundary point belonging to B_0 . Let $\{p_1^i\}$ and $\{p_2^i\}$ be fundamental sequences determining p_1 and p_2 respectively. Then $\{p_1^i\}$ and $\{p_2^i\}$ are not contained in $\sum_{i=1}^{\infty} k_i$, because the symmetric structure of R implies $N(z, p_1) = N(z, p_2)$. Connect p_1^i and p_1^i with a curve C^i . Then there exists a point p_3^i on k_i . Choose a subsequence $\{p_3^i\}$ for which $N(z, p_3^i)$ converges to a function $N(z, p_3)$. Then $N(z, p_3) = \frac{1}{2}(N(z, p_1) + N(z, p_2))$, because $N(z, p_1) = N(T(z), p_2)$, i.e. $N(z, p_3) = K(V(z) + V'(z))$ and $\int_{\partial R_0} \frac{\partial N(z, p_i)}{\partial n} ds = 2\pi$ (i = 1, 2, 3). Then $N(z, p_3)$ and $N(z, p_3) - \frac{1}{2}N(z, p_1) = \frac{1}{2}N(z, p_2)$ are superharmonic and $N(z, p_1)$ is not a multiple of $N(z, p_3)$. Hence $N(z, p_3)$ is not minimal, i.e. $p_3 \in B_0$.

 $0 = \operatorname{Cap}(B_0) = \operatorname{Cap}(p_3)$ and p_3 is a closed set. But there exists no unbounded positive superharmonic function in \tilde{R} . Therefore the condition of Theorem 14 that $F \in R + B_1$ is necessary.

(Received September 19, 1956)