Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces. I¹⁾

By Zenjiro KURAMOCHI

We shall extend some theorems of potential theory in space to abstract Riemann surfaces. In the present article we shall be concerned with Evans-Selberg's theorem on Riemann surfaces with null-boundary.

G.C. Evans and H. Selberg²⁾ proved the following theorem. Given a closed set F of capacity zero in space, then there exists a positive mass distribution on F whose potential is positively infinite at every point of F. We shall extend this theorem to abstract Riemann surfaces with null-boundary.

Let R^* be a Riemann surface with null-boundary and $\{R_n\}$ $(n=0,1,2,\cdots)$ be its exhaustion with compact relative boundaries $\{\partial R_n\}$. Put $R=R^*-R_0$. Let $G_n(z,p)$ be the Green's function of R_n-R_0 with pole at p. Clearly, $G_n(z,p) \uparrow G(z,p)$ as $n\to\infty$. Since $\int_{\partial R_0} \frac{\partial G_n(z,p)}{\partial n} ds \leq 2\pi$ for every n, G(z,p) is not constant infinity and harmonic in R except at p where G(z,p) has a logarithmic singularity.

Take M large so that the set $V_M(p) = E[z \in R : G(z, p) \ge M]$ is compact in R. Let $\omega_n(z)$ be a harmonic function in $R_n - R_0 - V_M(p)$ such that $\omega_n(z) = 0$ on $\partial R_0 + \partial V_M(p)$ and $\omega_n(z) = M$ on ∂R_n . Then since R^* is a Riemann surface with null-boundary, $\lim_{n = \infty} \omega_n(z) = 0$. Let $\overline{G}_n(z, p)$, $G_n'(z, p)$ and $\underline{G}_n(z, p)$ be harmonic functions in $R_n - R_0 - V_M(p)$ such that $\overline{G}_n(z, p) = G_n'(z, p) = G_n(z, p) = M$ on $\partial V_M(p)$, $\overline{G}_n(z, p) = G_n'(z, p) = G_n(z, p) = 0$ on ∂R_0 and $\overline{G}_n(z, p) = M$, $\frac{\partial G_n'(z, p)}{\partial n} = 0$ and $\underline{G}_n(z, p) = 0$ on ∂R_n respectively. Since $0 < G_n'(z, p) < M$ on ∂R_n , we have by the maximum principle

$$\underline{G}_n(z, p) < \underline{G}_n'(z, p) < \overline{G}_n(z, p), \quad \underline{G}_n(z, p) < \underline{G}(z, p) < \overline{G}_n(z, p)$$

and

$$0 < \overline{G}_n(z, p) - \underline{G}_n(z, p) = M\omega_n(z)$$
.

¹⁾ Resumé of this part is reported in Proc. Japan Acad. 32, 1956.

²⁾ G. C. Evans: Potential and positively infinite singularities of harmonic functions. Monatsch. f. Math. u. Phys. 43, 1936, 419-424.

H. Selberg: Über die ebenen Punktmengen von der Kapazität Null. Avh. Norske Vid-akad, Oslo, 1, Nr. 10, 1937, 1-10.

Hence

$$\lim_{n \to \infty} \bar{G}(z, p) = \lim_{n \to \infty} G'_n(z, p) = \lim_{n \to \infty} \underline{G}_n(z, p) = G(z, p).$$

Then by Green's formula and by the compactness of $V_M(p)$

$$\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial R_0} \lim_{n \to \infty} \frac{\partial G_n'(z, p)}{\partial n} ds = -\int_{\partial V_M(p)} \lim_{n \to \infty} \frac{\partial G_n'(z, p)}{\partial n} ds = -\int_{\partial V_M(p)} \int_{n \to \infty} \frac{\partial G_n'(z, p)}{\partial n} ds = 2\pi.$$

G(z, p) is called the Green's function of R with pole at p.

After R.S. Martin³⁾ we shall define the ideal boundary points as follows: let G(z, p) be the Green's function of R with pole at p. Then by definition, the flux of G(z, p) along ∂R_0 is 2π and G(z, p) is positive. Consider now a sequence of points $\{p_i\}$ of R having no point of accumulation in $R+\partial R_0$. In any compact part of R, the corresponding functions $G(z, p_i)$ $(i = 1, 2, \cdots)$ form, from some i on, a bounded sequence of harmonic functions—thus a normal family. A sequence of these functions, therefore, is convergent in every compact part of R to a positive harmonic function. A sequence $\{p_i\}$ of R having no point of accumulation in $R + \partial R_0$, for which the corresponding $G(z, p_i)_s$ have the property just mentioned, that is, converges to a harmonic function-will be called Two fundamental sequences are called equivalent if their corresponding $G(z, p_i)_s$, have the same limit. The class of all fundamental sequences equivalent to a given one determines an ideal boundary point of R. The set of all the ideal boundary points of R will be denoted by B and the set R+B, by \overline{R} . The domain of definition of G(z, p) may now be extended by writing $G(z, p) = \lim_{x \to \infty} G(z, p_i) (z \in R, p \in B)$, where $\{p_i\}$ is any fundamental sequence determining p. For p in B, G(z, p) is positive, harmonic and $\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds = 2\pi$ and further G(z, p)is unbounded in R, because if G(z, p) is bounded in R, $G(z, p) \equiv 0$ by the maximum principle. This contradicts $\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds = 2\pi$. Evidently, the function G(z, p) is characteristic of the point p in the sense that the identity of two points of \overline{R} is equivalent to the equality of their corresponding $G(z, p)_s$ as a function of z. The function $\delta(p_1, p_2)$ of two points p_1 and p_2 in \overline{R} is defined by

$$\delta(p_1, p_2) = \sup_{z \in R_1 - R_0} \left| \frac{G(z, p_1)}{1 + G(z, p_1)} - \frac{G(z, p_2)}{1 + G(z, p_2)} \right|.$$

³⁾ R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.

Evidently, $\delta(p_1, p_2) = 0$ is equivalent to $G(z, p_1) = G(z, p_2)$ for all points z in $R_1 - R_0$. Therefore we have $G(z, p_1) = G(z, p_2)$ for all points in R, that is $\delta(p_1, p_2) = 0$ implies $p_1 = p_2$ and it is clear that $\delta(p_1, p_2)$ satisfies the axioms of distance. Therefore $\delta(p_1, p_2)$ can be considered as the distance between two points p_1 and p_2 of \overline{R} . The topology induced by this metric is homeomorphic to the original topology when it is restricted in R. Since $G(z, p_i)(p_i \in \overline{R})$ is also a normal family, both $(R - R_1) + \partial R_1 + B$ and B are closed and compact. For fixed z, G(z, p) is continuous with respect to this metric (we denote shortly it by δ -continuous) as a function of p in \overline{R} except at z = p.

First we shall prove the following

Lemma 1. Let G_i be a compact or non-compact domain with an analytic relative boundary ∂G_i $(i=1,2,\cdots,k)$. Let $U_i(z)$ $(i=1,2,\cdots,k)$ be a function which is harmonic in $R-G_i$ and on ∂G_i , such that the Dirichlet integral of $U_i(z)$ taken over $R-G_i$ is finite. Then there exists a sequence of compact curves $\{\gamma_n\}$ such that γ_n separates B from ∂R_0 , $\{\gamma_n\}$ clusters at B and that $\int_{\gamma_n-G_i} \left|\frac{\partial U_i(z)}{\partial n}\right| ds$ tends to zero as $n\to\infty$, for every i.

Proof. Let $\omega_n'(z)$ be a harmonic function in R_n-R_0 such that $\omega_n'(z)=1$ on ∂R_n and $\omega_n'(z)=0$ on ∂R_0 . Then $\lim_{n=\infty}^n \omega_n'(z)=0$, since R^* is a Riemann surface with null-boundary. Hence, for any given number n' there exists a number n_0 such that $\omega_n'(z)<\frac{1}{2}$ in $R_{n'}-R_0$, for any $n\geq n_0$. We denote by $\omega_n(z)$ a harmonic function in R_n-R_0 which vanishes on ∂R_0 and assumes a constant value M_n on ∂R_n and whose flux along ∂R_0 is 2π . It is evident that $\omega_n(z)=M_n\omega_n'(z)$ and $\lim_{n=\infty}^n M_n=\infty$. Then for a number n' chosen in the manner above stated, the niveau curve with height $\geq \frac{M_n}{2}$ is contained in $R_n-R_{n'}$.

Put
$$e^{\omega_{n}(z)+i\bar{\omega}_{n}(z)}=re^{i\theta},$$

where $\bar{\omega}_n(z)$ is the conjugate harmonic function of $\omega_n(z)$.

Let U(z) be one of $U_i(z)$ and put

$$L(r) = \int_{C_r} \left| \frac{\partial U(z)}{\partial r} \right| r d\theta = \int_{C_r} \left| \frac{\partial U(z)}{\partial n} \right| ds,$$

where \underline{C}_r is the part of the niveau curve C_r of $\omega_n(z)$ with height r contained in R-G.

Suppose that there exist two positive constants η and δ and infinitely many numbers n with the property as follows: there exists a

closed set F_n in the interval $(e^{M_n}, e^{M_n/2})$ such that $\frac{\operatorname{mes} F_n}{(e^{M_n} - e^{M_n/2})} \ge \eta$ and that $L(r) \ge \delta$ for any $r \in F_n$. Since $\int\limits_{C_r} d\theta = 2\pi$, $\int\limits_{C_r} d\theta \le 2\pi$. Then by Schwarz's inequality, we have

$$\begin{split} D_{R-G}(U(z)) &= \int\limits_{R-G} \left\{ \left(\frac{\partial U(z)}{\partial r} \right)^2 + \frac{1}{r^2} \left(\frac{\partial U(z)}{\partial \theta} \right)^2 \right\} r dr d\theta \geq \frac{1}{2\pi} \int\limits_{1}^{e^{M_n}} \frac{L^2(r)}{r} dr \\ &> \frac{1}{2\pi} \int\limits_{e^{M_n/2}}^{e^{M_n}} \frac{L^2(r)}{r} dr > \frac{1}{2\pi} \int\limits_{e^{M_n-\eta(M_n-M_n/2)}}^{e^{M_n}} \frac{\delta^2}{r} dr = \frac{M_n}{4\pi} \eta \delta^2. \end{split}$$

Let $n \to \infty$. Then the right hand side diverges. This contradicts the finiteness of D(U(z)). Hence there exists a sequence of exceptional sets $\{E_n\}$ in the intervals $\{(e^{M_n},\ e^{M_n/2})\}$ such that $\lim_{n \to \infty} \frac{\operatorname{mes} E_n}{(e^{M_n} - e^{M_n/2})} = 0$ and that $r \notin E_n$ implies $L(r) < \delta_n$, where $\lim \delta_n = 0$.

Returning to case of $U_i(z)$, let $\{E_{i,n}\}$ be a sequence of exceptional sets corresponding to $U_i(z)$ and $\{\delta_{i,n}\}$ be the corresponding quantities

of $\{E_{i,\,n}\}$. Then we see that $\frac{\sum\limits_{i=1}^k \operatorname{mes} E_{i,\,n}}{(e^{M_n}-e^{M_n/2})}$ and $\max\limits_i \delta_{i,\,n}$ tend to zero as $n\to\infty$. On the other hand, the niveau curves with height $\geq \frac{M_n}{2}$ are are contained in $R-R_{i'}$, since $\omega_n(z) < \frac{M_n}{2}$ in $R_{n'}-R_0$. It follows that every C_r with $r \in (e^{M_n},\ e^{M_n/2}) - \sum\limits_{i=1}^k E_{i,\,n}$ clusters at B as $n\to\infty$ and that $\int\limits_{C_r\cap (R-G_i)}\left|\frac{\partial U_i(z)}{\partial n}\right|ds \leq \max\limits_i \delta_{i,\,n}$. Consider a niveau curve C_r above mentioned as γ_n . Then we have the lemma.

Next, we shall consider the behaviour of G(z, p) $(p \in \overline{R})$.

Lemma 2. Put $V_m(p) = E[z \in R: G(z, p) \ge m]$. Then $\int_{\mathfrak{d}V_m(p)} \frac{\partial G(z, p)}{\partial n} ds^{\epsilon_0} = 2\pi$ and the Dirichlet integral $D_{R-V_m(p)}(G(z, p)) \le 2\pi m$, where $p \in \overline{R}$ and $m \ge 0$.

Proof. We shall prove the lemma in three cases:

Case 1. $p \in R$ and $V_m(p)$ is compact.

Case 2. $p \in R$ and $V_m(p)$ is non-compact.

Case 3. $p \in B$.

Case 1. $p \in R$ and $V_m(p)$ is compact. Let $\omega_n(z)$ be a harmonic function in $R_n - R_0 - V_m(p)$ such that $\omega_n(z) = 1$ on ∂R_n and $\omega_n(z) = 0$ on

⁴⁾ In the sequel, $\frac{\partial}{\partial n}$ means derivative with respect to inner normal with the exception that $\frac{\partial G(z,p)}{\partial n}$ on the niveau curves of G(z,p) means derivative with respect to inner or outer normal so that $\frac{\partial G(z,p)}{\partial n} \ge 0$.

 $\partial R_0 + \partial V_m(p)$. Since R^* is a Riemann surface with null-boundary, $\lim_{n \to \infty} \omega_n(z) = 0$. Let $\overline{G}_n(z, p)$ and $\underline{G}_n(z, p)$ be harmonic functions in $R_n - R_0 - V_m(p)$ such that $\overline{G}_n(z, p) = \underline{G}_n(z, p) = m$ on $\partial V_m(p)$, $\overline{G}(z, p) = \underline{G}_n(z, p) = 0$ on ∂R_0 and $\overline{G}_n(z, p) = m$ on ∂R_n and $\underline{G}_n(z, p) = 0$ an ∂R_n respectively.

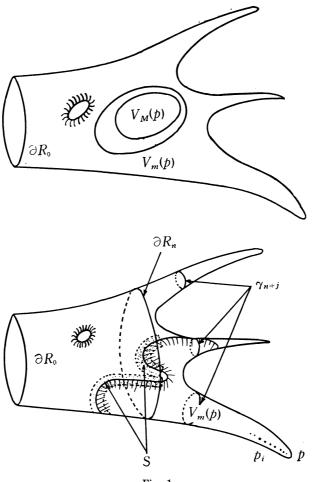


Fig. 1.

Then

 $\bar{G}_n(z, p) > G(z, p) > \underline{G}_n(z, p)$ and $0 < \bar{G}_n(z, p) - \underline{G}_n(z, p) = m\omega_n(z)$.

Hence $\lim_{n\to\infty} \overline{G}_n(z, p) = G(z, p) = \lim_{n\to\infty} \underline{G}_n(z, p)$.

The Dirichlet integral of $G_n(z, p)$ taken over $R_n - R_0 - V_m(p)$ is $m \int_{\partial V_m(p)} \frac{\partial G_n(z, p)}{\partial n} ds$. Therefore, we have by Fatou's lemma

$$\begin{split} D_{R^-V_{\boldsymbol{m}^{(p)}}}(G(\boldsymbol{z},\,\boldsymbol{p})) &\leq \lim_{n \to \infty} D_{R_n^-R_0^-V_{\boldsymbol{m}^{(p)}}}(G(\boldsymbol{z},\,\boldsymbol{p})) = \lim_{n \to \infty} m \int\limits_{\mathfrak{d}\,V_{\boldsymbol{m}^{(p)}}} \frac{\partial G_n(\boldsymbol{z},\,\boldsymbol{p})}{\partial n} \,ds \\ &= m \int\limits_{\mathfrak{d}\,V_{\boldsymbol{m}^{(p)}}} \frac{\partial G(\boldsymbol{z},\,\boldsymbol{p})}{\partial n} \,ds = 2\pi m \,, \end{split}$$

because $\int_{\partial V_m(p)} \frac{\partial G(z, p)}{\partial n} ds = 2\pi$ is clear by the compactness of $V_m(p)$.

Case 2. $p \in R$ and $V_m(p)$ is non-compact. Take M large enough so that $V_M(p)$ is compact. Then by the results of the case 1, $2\pi M \geq D_{R-V_M(p)}(G(z,p)) > D_{R-V_M(p)}(G(z,p))$. Consider G(z,p) as U(z) in lemma 1. Then there exists a sequence of compact curves $\{\gamma_n\}$ clustering at B such that γ_n separates B from ∂R_0 and $\lim_{n=\infty}\int\limits_{\gamma_n-V_M(p)}\left|\frac{\partial G(z,p)}{\partial n}\right|ds=0$. Denote by R_n' the compact component of R bounded by γ_n and ∂R_0 . On the other hand, it is obvious that

$$\int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds - \int_{\partial V_m(p) \cap R'_n} \frac{\partial G(z, p)}{\partial n} ds + \int_{\gamma_n - V_m(p)} \frac{\partial G(z, p)}{\partial n} ds = 0.$$

Since $\{\gamma_n\}$ clusters at B and $\frac{\partial G(z, p)}{\partial n} \ge 0$ on $\partial V_m(p)$, by mentioning to the above equality, we have

$$\int_{\partial V_m(p)} \frac{\partial G(z, p)}{\partial n} ds = 2\pi.$$

The Dirichlet integral of G(z, p) is

$$D_{R'_n-V_m(p)}(G(z, p)) = \int_{\partial V_m(p) \cap R'_n} G(z, p) \frac{\partial G(z, p)}{\partial n} ds + \int_{\gamma_n-V_m(p)} G(z, p) \frac{\partial G(z, p)}{\partial n} ds.$$

Since $\{\gamma_n\}$ clusters at B and the second term on the right hand side tends to zero as $n \to \infty$, we have

$$D_{R^-V_{m}((b))}(G(z, p)) = 2\pi m.$$

Case 3. $p \in B$. Let $\{p_i\}$ be a fundamental sequence determining p. Consider the Dirichlet integral $D_{R_n-R_0-V_m(p)}(G(z,p))$. For any given positive number \mathcal{E} , we can find a narrow strip S such that the interior of S contains $\partial V_m(p) \cap (R_n-R_0)$, $D_{R_n-R_0-S-V_m(p)}(G(z,p)) \geq D_{R_n-R_0-V_m(p)}(G(z,p)) - \mathcal{E}$ and that $R-V_m(p_i) \supset R_n-R_0-S-V_m(p)$ for any $i \geq i_0(S,\mathcal{E})$, where $i.(S,\mathcal{E})$ is a suitable number depending on S and \mathcal{E} , because $G(z,p_i)$ converges to G(z,p) uniformly in R_n-R_0 and hence the niveau curves $\partial V_m(p_i)$ tend to $\partial V_m(p)$ as $i \to \infty$, (Fig. 1). Since the derivatives of $G(z,p_i)$ converge uniformly to those of G(z,p) as $i \to \infty$, we have

$$D_{R_{n}-R_{0}-S-V_{m}(p)}(G(z, p)) \leq \lim_{\substack{i = \infty \\ i = \infty}} D_{R-V_{m}(p_{i})}(G(z, p_{i})) \leq 2\pi m.$$

By letting $\varepsilon \to 0$ and then $n \to \infty$.

$$D_{R^-V_{\bullet\bullet\bullet}(p)}(G(z, p)) \leq 2\pi m$$
.

Hence, by lemma 1, we can prove the existence of a sequence of compact curves $\{\gamma_n\}$ such that γ_n separates B from ∂R_0 and $\{\gamma_n\}$ clusters at B and that $\lim_{n\to\infty}\int_{n-1}\int_{n-1}\left|\frac{\partial G(z,p)}{\partial n}\right|ds=0$. Therefore we have

$$\int_{\partial V_{m}(p)} \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial R_0} \frac{\partial G(z, p)}{\partial n} ds = 2\pi.$$

Thus we have the lemma.

Lemma 3. (Extension of Green's formula). Let q be a point in $R-V_m(p)$. Then for every point $p \in \overline{R}$,

$$\frac{1}{2\pi} \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = G(q, p). \tag{1}$$

Proof. Since $q \in R$, there exists a number n' such that $R_{n'}-R_0 \ni q$, whence there exists a constant L such that $G(z,q) \leq L$ in $R-R_{n'}$. Hence by lemma 2, $D_{R-R_{n'}}(G(z,q)) \leq D_{R-V_L(p)}(G(z,q)) \leq 2\pi L$ and $D_{R-V_m(p)}(G(z,p)) \leq 2\pi m$. Therefore by lemma 1, there exists a sequence of compact curves $\{\gamma_n\}$ such that γ_n separates B from ∂R_0 , $\{\gamma_n\}$ clusters at B and that both $\int_{\gamma_n} \left| \frac{\partial G(z,q)}{\partial n} \right| ds$ and $\int_{\gamma_n-V_m(p)} \left| \frac{\partial G(z,p)}{\partial n} \right| ds$ tend to zero as $n \to \infty$. Denote by R'_n the component bounded by γ_n and ∂R_0 . Suppose $R'_n \subset R_{n'}$. Apply the Green's formula to G(z,p) and G(z,q) in $R'_n-V_m(p)$. Then

$$\int_{\partial V_{m}(p) \cap R'_{n}} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = 2\pi G(q, p) + \int_{\partial V_{m}(p) \cap R'_{n}} G(z, p) \frac{\partial G(z, q)}{\partial n} ds + \int_{\gamma_{n} - V_{m}(p)} G(z, p) \frac{\partial G(z, q)}{\partial n} ds - \int_{\gamma_{n} - V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds.$$

We shall see that every term, except the first, on the right hand side tends to zero as $n \to \infty$. In fact, $\left| \int\limits_{\partial V_m(p) \cap R_n'} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds \right|$ $\leq G(z, p) \left| \int\limits_{\partial V_m(p) \cap R_n'} G(z, q) \, ds \right| \leq m \int\limits_{\gamma_n \cap V_m(p)} \left| \frac{\partial G(z, q)}{\partial n} \, ds \leq m \int\limits_{\gamma_n} \left| \frac{\partial G(z, q)}{\partial n} \, ds \right| ds$, $\left| \int\limits_{\gamma_n - V_m(p)} G(z, p) \frac{\partial G(z, q)}{\partial n} \, ds \right| \leq m \int\limits_{\gamma_n - V_m(p)} \left| \frac{\partial G(z, q)}{\partial n} \, ds \right| ds$ and $\left| \int\limits_{\gamma_n - V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds \right| ds$. On the other hand, $G(z, q) \frac{\partial G(z, p)}{\partial n} \geq 0$ on

 $\partial V_m(p)$. Therefore we have the lemma.

We shall consider the behaviour of the topology induced by δ -metric.

Corollary. Let $v_n(p)$ be a δ -neighbourhood of $p \in \overline{R}$, that is $v_n(p) = E\left[z \in R : \delta(z, p) < \frac{1}{n}\right]$. Then for any given $V_m(p)$, there exists a neighbourhood $v_n(p)$ such that

$$V_m(p) \supset (v_n(p) \cap R)$$
.

Proof. The assertion is evident for $p \in R$, because our topology is homemorphic to the original one in R. Hence it is sufficient to prove the corollary for $p \in B$. Suppose that the assertion is false. Then there exists a number m_0 such that $V_{m_0}(p) \supset (v_{n'}(p) \cap R)$ for infinitely many numbers n'. Hence we can find a sequence of points $\{q_i\}$ in $R - V_{m_0}(p)$, tending to p with respect to δ -metric. Let $m \geq 3m_0$. Then we can find a number n_0 by lemma 2, such that

$$\int\limits_{\mathfrak{d}V_{m}(p)\cap(R_{n_{0}}-R_{0})}\frac{\partial G(\mathbf{z},\,\mathbf{p})}{\partial\mathbf{n}}\,ds{\geq}\pi\,.$$

Since $q_i \in R - V_{m_0}(p)$, we have by (1),

$$\int_{\mathfrak{d}V_m(p) \cap (R_n-R_0)} G(z, q_i) \frac{\partial G(z, p)}{\partial n} ds < \int_{\mathfrak{d}V_m(p)} G(z, q_i) \frac{\partial G(z, p)}{\partial n} ds = 2\pi G(q_i, p) \leq 2\pi m_0.$$

Since $\frac{\partial G(z,p)}{\partial n} \geq 0$ on $\partial V_m(p)$, there exists one point z_i on $\partial V_m(p) \cap (R_{n_0} - R_0)$ such that $G(z_i, q_i) \leq 2m_0$. Let i tend to ∞ . They by the compactness of $\partial V_m(p) \cap (R_{n_0} - R_0)$, we have $G(z_0, p) \leq 2m_0$, where z_0 is one of limiting points of $\{z_i\}$. This contradicts $G(z_0, p) = m \geq 3m_0$. Therefore we have the corollary.

If two points p and q are contained in R, we have, by definition $G_n(p,q)=G_n(q,p)$, where $G_n(z,p)$ and $G_n(z,q)$ are Green's functions of R_n-R_0 with pole p and q respectively. Hence, by letting $n\to\infty$, we have G(p,q)=G(q,p). Next, suppose $p\in B$ and $q\in R$. Let $\{p_i\}$ be one of fundamental sequences determining p. Then, since $G(p_i,q)=G(q,p_i)$ and since $G(z,p_i)$ converges to G(z,p) uniformly in every compact set of R, $G(p_i,q)$ has a limit denoted by G(p,q) as $p_i\to p$. More generally, suppose that a sequence $\{p_i\}$ of \overline{R} tends to p with respect to δ -metric and that q belongs to R. Then we have

$$G(q, p) = \lim_{i=\infty} G(q, p_i) = \lim_{i=\infty} G(p_i, q).$$

Hence $G(z, q)(q \in R)$ has a limit when z tends to $p \in \overline{R}$ with respect to

 δ -metric. In this case we define the value of G(z, q) at p as this limit denoted by G(p, q). Thus we have the following

Lemma 4. If at least one of two points p and q is contained in R, then

$$G(p, q) = G(q, p). \tag{2}$$

G(z, q) is defined in \overline{R} for $q \in R$ but G(z, q) has been defined only in R for $q \in B$. In what follows, we shall define G(z, q) in \overline{R} , even in case $q \in B$. For this purpose, we shall prove the following

Lemma 5. Suppose that p and q are contained in \overline{R} . Let $V_m(p) = E[z \in R : G(z, p) \ge m]$ and $V_{n'}(p) = E[z \in R : G(z, p) \ge m']$, where m < m', i.e. $V_m(p) > V_{m'}(p)$. Then

$$2\pi G_{V_{m'}(p)}(p, q) = \int_{\mathfrak{d}V_{m'}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds \ge \int_{\mathfrak{d}V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds$$
$$= 2\pi G_{V_{m}(p)}(p, q).$$

Proof. At first, if $p \in R$, since G(z,q) is harmonic in \overline{R} for $q \in \overline{R}$, $2\pi G(p,q) = \int\limits_{\mathfrak{d}V_m(p)} G(z,q) \frac{\partial G(z,p)}{\partial n} ds$ for every $V_m(p)$ such that $V_m(p) \not\ni q$. Next, if $p \in B$ and $q \in R$, we have also by (1), $2\pi G(p,q) = 2\pi G(q,p) = \int\limits_{\mathfrak{d}V_m(p)} G(z,q) \frac{\partial G(z,p)}{\partial n} ds$ for $V_m(p) \not\ni q$. Hence our assertion

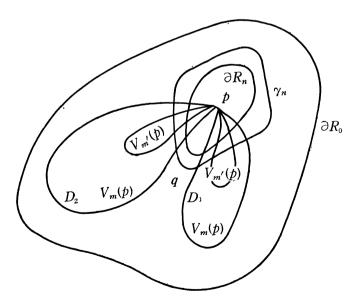


Fig. 2.

is clear if either p or q, at least belongs to R. Therefore it is sufficient to prove the lemma when both p and q belong to B. Let $\{q_j\}$ be a fundamental sequence determining q. $V_m(p)$ may consist of at most a enumerably infinite number of domains D_l $(l=1, 2, \cdots)$, (Fig. 2).

Let D be one of them. Let $G_{D,n}(z,q_j)$ be a harmonic function in $D \cap (R_n - R_0)$ such that $G_{D,n}(z,q_j) = G(z,q_j)$ on $\partial D \cap (R_n - R_0)$ and $G_{D,n}(z,q_j) = 0$ on $\partial R_n \cap D$. Then we have by Green's formula

$$G(z, q_j) > G_{D,n}(z, q_j) = \frac{1}{2\pi} \int_{\partial D \cap (R_n - R_0)} G(\xi, q_j) \frac{\partial G_n^D(\xi, z)}{\partial n} ds,$$

where $G_n^D(\xi, z)$ is the Green's function of $D \cap (R_n - R_0)$ with pole at z. Since $G_n^D(\xi, z)$ is increasing with respect to n, $\frac{\partial G_n^D(\xi, z)}{\partial n} \uparrow \frac{\partial G^D(\xi, z)}{\partial n}$ at every point ξ on ∂D , where $G^D(\xi, z)$ is the Green's function of D. Hence

$$G(z, q_j) \ge G_D(z, q_j) = \lim_{n=\infty} G_{D, n}(z, q_j) = \frac{1}{2\pi} \int_{\partial D} G(\xi, q_j) \frac{\partial G^D(\xi, z)}{\partial n} ds.$$

We call $G_D(z, q_j)$ the solution of Dirichlet problem in D with boundary value $G(z, q_j)$ on ∂D . Let q_j tend to q. Then, since $G(\xi, q_j)$ tends to $G(\xi, q)$ at every point ξ on ∂D , we have by Fatou's lemma

$$G(z, q) = \lim_{j \to \infty} G(z, q_j) \ge \lim_{j \to \infty} G_D(z, q_j) \ge \frac{1}{2\pi} \int_{\partial D} \lim_{j \to \infty} G(\xi, q_j) \frac{\partial G^D(\xi, z)}{\partial n} ds$$

$$= \frac{1}{2\pi} \int_{\partial D} G(\xi, q) \frac{\partial G^D(\xi, z)}{\partial n} ds = G_D(z, q), \qquad (3)$$

where $G_D(z, q)$ is the solution of Dirichlet problem in D with the boundary value G(z, q).

Put $G^M(z,q) = \min [M, G(z,q)]$. Then $G^M(z,q)$ is superharmonic in R. Let $\overline{G}_n^M(z,q)$, $G_n^M(z,q)$ and $\underline{G}_n^M(z,q)$ be harmonic functions in $D \cap (R_n - R_0)$ such that $\overline{G}_n^M(z,q) = G_n^M(z,q) = \underline{G}_n^M(z,q) = G^M(z,q)$ on $\partial D \cap (R_n - R_0)$ and $\overline{G}_n^M(z,q) = M$, $G_n^M(z,q) = G^M(z,q)$ and $\underline{G}_n^M(z,q) = 0$ on $\partial R_n \cap D$ respectively. Then $\overline{G}_n^M(z,q) > G_n^M(z,q) > \underline{G}_n^M(z,q)$ and $\overline{G}_n^M(z,q) - \underline{G}_n^M(z,q) \leq M\omega_n(z)$, where $\omega_n(z)$ is a harmonic function in $R_n - R_0$ such that $\omega_n(z) = 0$ on ∂R_0 and $\omega_n(z) = 1$ on ∂R_n , whence

$$G_D^M(z, q) = \lim_{n = \infty} \overline{G}_n^M(z, q) = \lim_{n = \infty} G_n^M(z, q) = \lim_{n = \infty} \underline{G}_n^M(z, q).$$

Evidently, $G_D^M(z, q)$ is the solution of Dirichlet problem in D with the boundary value $G^M(z, q)$ on ∂D and $G_D^M(z, q) = \frac{1}{2\pi} \int_{\partial D} G^M(\xi, q) \frac{\partial G^D(\xi, z)}{\partial n} ds$.

Therefore

$$\lim_{M\to\infty} G_D^M(z, q) = G_D(z, q).$$

In the sequel, we denote briefly by $G_{V_{m}(p)}(z,q)$ the function which is equal to $G_{D_{l}}(z,q)$ which is the solution of Dirichlet problem in D_{l} with boundary value G(z,q), in every domain D_{l} $(l=1,2,\cdots)$.

Consider the Dirichlet integral of $G^{M}_{V_{m}(p)}(z, q)$ which is equal to the solution of Dirichlet problem $G^{M}_{D_{l}}(z, q)$ with the boundary value $G^{M}(z, q)$, in every domain D_{l} . Then by Dirichlet principle

$$\sum_{l} D_{D_{l} \cap (R_{n} - R_{0})}(G_{n}^{M}(z, q)) \leq \sum_{l} D_{D_{l} \cap R}(G^{M}(z, q)) = D_{V_{m}(q)}(G^{M}(z, q)) \leq 2\pi M,$$

because the Dirichlet integral of $G^M(z, q)$ over R equals $D_{R^{-V}M^{(q)}}(G(z, q)) \le 2\pi M$. Let $n \to \infty$. Then

$$D_{V_{m(p)}}(G_{V_{m(q)}}^{M}(z, q)) \leq \lim_{n=\infty} \sum_{l} D_{D_{l}}(G_{D_{l}, n}^{M}(z, q)) \leq 2\pi M.$$

Since $D_{V_m(p)}(G^M_{V_m(p)}(z,q))$ and $D_{R-V_{m'}(p)}(G(z,p))(\leq 2\pi m')$ are bounded, there exists, by lemma 1, a sequence of compact curves $\{\gamma_n\}$ separating B from ∂R_0 such that $\{\gamma_n\}$ clusters at B and that both $L_1(\gamma_n) = \int\limits_{\gamma_n-V_{m'}(p)} \left|\frac{\partial G(z,p)}{\partial n}\right| ds$ and $L_2(\gamma_n) = \int\limits_{\gamma_n-V_m(p)} \left|\frac{\partial G^M_{V_m(p)}(z,q)}{\partial n}\right| ds$ tend to zero as $n\to\infty$. Denoting by R'_n the compact component of R bounded by γ_n and ∂R_0 , apply the Green's formula to $G^M_{V_m(p)}(z,q)$ and G(z,p) in $(V_m(p)-V_{m'}(p))\cap R'_n$. Then

$$\begin{split} &\int\limits_{\vartheta V_{m}(p)\cap R_{n}^{\prime}}G_{V_{m}(p)}^{M}(z,\,q)\,\frac{\partial G(z,\,p)}{\partial n}\,ds - \int\limits_{\vartheta V_{m'}(p)\cap R_{n}^{\prime}}G_{V_{m}(p)}^{M}(z,\,q)\,\frac{\partial G(z,\,p)}{\partial n}\,ds \\ &= \int\limits_{\vartheta V_{m}(p)\cap R_{n}^{\prime}}G(z,\,p)\,\frac{\partial G_{V_{m}(p)}^{M}(z,\,q)}{\partial n}\,ds - \int\limits_{\gamma_{n}\cap (V_{m}(p)-V_{m'}(p))}G_{V_{m}(p)}^{M}(z,\,q)\,\frac{\partial G(z,\,p)}{\partial n}\,ds \\ &+ \int\limits_{\vartheta V_{m'}(p)\cap R_{n}^{\prime}}G(z,\,p)\,\frac{\partial G_{V_{m}(p)}^{M}(z,\,q)}{\partial n}\,ds + \int\limits_{\gamma_{n}\cap (V_{m}(p)-V_{m'}(p))}G(z,\,p)\,\frac{\partial G_{V_{m}(p)}^{M}(z,\,q)}{\partial n}\,ds. \end{split}$$

It can be proved, as in lemma 3, that every term on the right hand side tends to zero as $n \to \infty$, by the fact that $L_i(\gamma_n)$ (i=1,2) tends to zero. Now $G^M_{V_m(p)}(z,q) \xrightarrow{\partial G(z,p)} \geq 0$ on $\partial V_m(p) + \partial V_{m'}(p)$. Hence

$$\int_{\partial V_m(p)} G^M_{V_m(p)}(z, q) \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial V_m(p)} G^M_{V_m(p)}(z, q) \frac{\partial G(z, p)}{\partial n} ds.$$

By letting $M \rightarrow \infty$ and by (3)

$$\int_{\partial V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = \int_{\partial V_{m}(p)} G_{V_{m}(p)}(z, q) \frac{\partial G(z, p)}{\partial n} ds$$

$$= \int_{\partial V_{m}(p)} G_{V_{m}(p)}(z, q) \frac{\partial G(z, p)}{\partial n} ds \leq \int_{\partial V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds.$$

Thus we have the lemma.

Definition of G(z, q) for z and q belonging to R.

Since $G_{V_{m}(p)}(p,q) = \frac{1}{2\pi} \int_{\partial V_{m}(p)} G(z,q) \frac{\partial G(z,p)}{\partial n} ds$ is increasing with respect to m, $G_{V_m(p)}(p, q)$ has a limit as $m \to \infty$ which we denote by G(p, q). We define the value of G(z, q) $(q \in \overline{R})$ at $p \in \overline{R}$ by this limit. It is easily seen that this definition of G(p, q) coincides with what was given previously in case either p or q is contained in R. In fact, it is evident that $G_{V_{m}(p)}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds = G(p, q)$ for $p \in R$ and $V_m(p) \not\ni q$ and that, by (1) $G_{V_m(p)}(p, q) = \frac{1}{2\pi} \int_{\partial V_m(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds$ $=G(q, p) = \lim_{i=\infty} G(q, p_i) = \lim_{i=\infty} G(p_i, q) = G(p, q)$ for $p \in B$ and $q \in R$, where $\{p_i\}$ is a fundamental sequence determining p.

Definition of Superharmonicity at a point $p \in \overline{R}$.

Suppose a function U(z) in \overline{R} . If $U(p) \ge \frac{1}{2\pi} \int_{\Im V_m(p)} U(z) \frac{\partial G(z, p)}{\partial n} ds$ holds for the niveau curves of G(z, p), we say that U(z) is superharmonic in the weak sense at a point p.

In what follows, we shall show that G(z, q) (z and $q \in R$) defined as above, has the essential properties of the logarithmic potential in the plane. Now we have the following

The Green's function in \overline{R} has the following properties: Theorem 1.

- 1) $G(p, p) = \infty$.
- 2) G(z, q) is lower semicontinuous in \overline{R} with respect to δ -metric.
- 3) G(z, q) is superharmonic in the weak sense at every point of \overline{R} .
- 4) G(p, q) = G(q, p).

Proof. 1) and 3) are clear by the definition of G(z, q).

Proof of 2). Suppose that $\{p_i\}$ tends to p with respect to δ -metric. Since $G_{V_{m(p)}}(p, q) = \frac{1}{2\pi} \int_{\partial V_{m(p)}} G(z, q) \frac{\partial G(z, p)}{\partial n} ds$, there exists a number n_0 for any given positive number ε such that

$$G_{V_{\boldsymbol{m}}(p)}(p, q) \leq \frac{1}{2\pi} \int_{\partial V_{\boldsymbol{m}}(p) \cap (R_{\boldsymbol{n}} - R_0)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds + \varepsilon, \text{ for } n \geq n_0.$$

Here $(R_{n_0}-R_0) \cap \partial V_m(p)$ is composed of at most a finite number of

analytic curves. We make a narrow strip S in $R_{n_0+1}-R_0$ such that the interior of S containes $\partial V_m(p) \cap (R_{n_0}-R_0)$ and ∂S cuts $\partial V_m(p)$ orthogonally at the end points of $\partial V_m(p) \cap (R_{n_0}-R_0)$. We divide S into a finite number of narrow strips S_l ($l=1,2,\cdots,k$) so that ∂S_l intersects $\partial V_m(p)$ with angles being not equal to 0 or π and map S_l onto a rectangle: $0 \le \operatorname{Im} \zeta \le \delta$ (δ is sufficiently small), $-1 \le Re\zeta \le 1$, on the ζ -plane so that every vertical line: $Re\zeta = s$ ($-1 \le s \le 1$) intersects only once $\partial V_m(p_i)$ for $j \ge j_0$, where j_0 is a suitable number. This is possible, because $G(z, p_i)$ tend to G(z, p) that is, $\partial V_m(p_i)$ tends to $\partial V_m(p)$ and

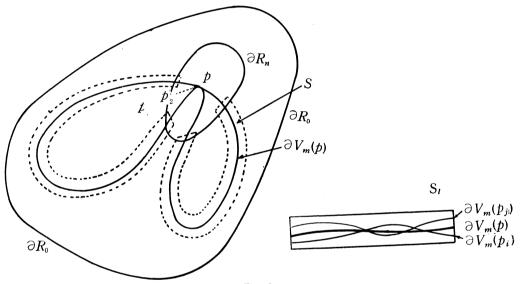


Fig. 3.

the derivatives of $G(z, p_j)$ tend to those of G(z, p) on $R_{n_0} - R_0$. We make a point α_j of $\partial V_m(p_j)$ correspond to a point α of $\partial V_m(p)$ so that $Re\alpha_j = Re\alpha$. Then we have

$$\lim_{j=\infty} \int_{S \cap \partial V_{m}(p_{j})} G(z, q) \frac{\partial G(z, p_{j})}{\partial n} ds = \int_{S \cap \partial V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} ds,$$

because $\frac{\partial G(\alpha_j, p_j)}{\partial n} ds \ge 0$ and uniformly bounded in S, $\frac{\partial G(\alpha_j, p_j)}{\partial n} ds$ $\rightarrow \frac{\partial G(\alpha, p)}{\partial n} ds$ and $G(\alpha_j, p_j) \rightarrow G(\alpha, p)$. Hence

$$\begin{split} &\lim_{j \to \infty} 2\pi G_{V_{m}(p_{j})}(p_{j}, q) = \lim_{j \to \infty} \int\limits_{\partial V_{m}(p_{j})} G(z, q) \frac{\partial G(z, p_{j})}{\partial n} \, ds \\ & \geq \lim_{j \to \infty} \int\limits_{\partial V_{m}(p_{j}) \cap (R_{n_{0}} - R_{0})} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds \geq \int\limits_{\partial V_{m}(p)} G(z, q) \frac{\partial G(z, p)}{\partial n} \, ds \\ & - \varepsilon = 2\pi G_{V_{m}(p)} p, q) - \varepsilon, \end{split}$$

whence by letting $\varepsilon \to 0$,

$$\lim_{j=\infty} G_{V_{m}(p_{j})}(p_{j}, q) \ge G_{V_{m}(p)}(p, q).$$

Hence $G_{V_{m}(p)}(p, q)$ is lower semicontinuous at p for fixed m. Since $G_{V_{m}(p)}(p, q) \uparrow G(p, q)$, G(p, q) is also lower semicontinuous at p. Therefore G(z, q) is lower semicontinuous in \overline{R} .

Proof of 4). If p or q belongs to R, 4) is clear by (2). We suppose that both p and q belong to B. Let ξ and η be points in R. Then by (1) and (2) we have the following

$$G(p, \eta) = G(\eta, p) = \frac{1}{2\pi} \int_{\partial V_{m}(p)} G(z, \eta) \frac{\partial G(z, p)}{\partial n} ds \quad \text{for} \quad \eta \notin V_{m}(p), \quad (4)$$

$$G(p, \eta) = G(\eta, p) \ge \frac{1}{2\pi} \int_{\partial V_{\mathbf{m}}(p)} G(z, \eta) \frac{\partial G(z, p)}{\partial n} ds \quad \text{for} \quad \eta \in V_{\mathbf{m}}(p).$$
 (5)

Since $G_{V_m(p)}(p,q)=\frac{1}{2\pi}\int\limits_{\mathfrak{d}V_m(p)}G(\xi,q)\frac{\partial G(\xi,p)}{\partial n}\,ds$ and since $\{V_m(q)\}$ clusters at B as $n\to\infty$, there exists a number n for any given positive number ε , such that

$$G_{V_{m(p)}}(p,q) - \varepsilon \leq \frac{1}{2\pi} \int_{\partial V_{m(p)}} G(\xi,q) \frac{\partial G(\xi,p)}{\partial n} ds,$$

where $\partial \underline{V}_m(p)$ is the part of $\partial V_m(p)$ outside of $V_n(q)$. Suppose that ξ is on $\partial V_m(p)$, then $\xi \notin V_n(q)$, whence

$$G(\xi, q) = G(q, \xi) = \frac{1}{2\pi} \int_{\partial V_{+}(q)} G(\eta, \xi) \frac{\partial G(\eta, q)}{\partial n} ds.$$

Accordingly we have

$$G_{V_{m}(p)}(p,q) - \varepsilon \leq \frac{1}{4\pi^{2}} \int_{\partial \underline{V}_{m}(p)} \int_{\partial V_{n}(q)} G(\eta,\xi) \frac{\partial G(\eta,q)}{\partial n} ds \frac{\partial G(\xi,p)}{\partial n} ds$$

$$= \frac{1}{4\pi^{2}} \int_{\partial V_{n}(q)} \int_{\partial V_{m}(p)} G(\xi,\eta) \frac{\partial G(\xi,p)}{\partial n} ds \frac{\partial G(\eta,q)}{\partial n} ds.$$

Now by (4) and (5)

$$\begin{split} \frac{1}{2\pi} \int\limits_{\frac{\partial V_m(p)}{\partial n}} G(\xi, \, \eta) \, \frac{\partial G(\xi, \, p)}{\partial n} \, ds & \leq \frac{1}{2\pi} \int\limits_{\frac{\partial V_m(p)}{\partial n}} G(\xi, \, \eta) \, \frac{\partial G(\xi, \, p)}{\partial n} \, ds \\ & = G(\eta, \, p) = G(p, \, \eta) \quad \text{for} \quad \eta \notin V_m(p) \, . \\ \frac{1}{2} \int\limits_{\frac{\partial V_m(p)}{\partial n}} G(\xi, \, \eta) \, \frac{\partial G(\xi, \, p)}{\partial n} \, ds & \leq \frac{1}{2\pi} \int\limits_{\frac{\partial V_m(p)}{\partial n}} G(\xi, \, \eta) \, \frac{\partial G(\xi, \, p)}{\partial n} \, ds \\ & \leq G(\eta, \, p) = G(p, \, \eta) \quad \text{for} \quad \eta \in V_m(p) \, . \end{split}$$

On the other hand,

$$G_{V_n(q)}(q, p) = \frac{1}{2\pi} \int_{\partial V_n(q)} G(p, \eta) \frac{\partial G(\eta, q)}{\partial n} ds.$$

Hence

$$\begin{split} G_{V_{m}(p)}(p, q) - \varepsilon &\leq \frac{1}{4\pi^2} \int\limits_{\vartheta V_{n}(q)} (\int\limits_{\vartheta V_{m}(p)} G(\xi, \eta) \frac{\partial G(\xi, p)}{\partial n} ds) \frac{\partial G(\eta, q)}{\partial n} ds \\ &\leq \frac{1}{2\pi} \int\limits_{\vartheta V_{n}(q)} G(\eta, p) \frac{\partial G(\eta, q)}{\partial n} ds = G_{V_{n}(q)}(q, p) \,. \end{split}$$

Thus by letting $\varepsilon \to 0$,

$$G_{V_{\mathbf{m}}(p)}(p, q) \leq G_{V_{\mathbf{m}}(s)}(q, p)$$
.

Since the inverse inequality holds for the other pair of $V_{m'}(p)$ and $V_{n'}(q)$ and since $G_{V_{m}(p)}(p, q) \uparrow G(p, q)$ and $G_{V_{n}(q)}(q, p) \uparrow G(q, p)$, we have 4).

Transfinite Diameter. Let A be a δ -closed subset of B (closed with respect to δ -metric). We define the transfinite diameter of A of order n as follows:

$$1/{}_{A}D_{n} = \frac{1}{2\pi {}_{n}C_{2}} \left(\inf \sum_{\substack{p_{s}, p_{t} \in A \\ s < t, s = 1, t = 1}}^{n, n} G(p_{s}, p_{t}) \right).$$

Then we have the following:

- a) From the definition, it is clear that $A_1 \supseteq A_2$ implies $A_1 D_n \geq A_2 D_n$.
- b) Put $\bar{\Omega}_m = \overline{R} R_m + \partial \Omega_m$ and let $1/\bar{\Omega}_m D_n = \frac{1}{2\pi_n C_2} (\inf_{p_s, p_t \in \bar{\Omega}_m} G(p_s, p_t))$.

Then every p_t is situated on $\partial \Omega_m$.

In fact,

$$\sum_{s< t}^{n,n} G(p_s, p_t) = \sum_{\substack{i_s, j + s \\ i \neq j}}^{n} G(p_i, p_j) + \sum_{i=s}^{n} G(p_s, p_i).$$

The sum of the first term does not depend on p_s and by 2) of Theorem 1, $\sum_i G(p_s,\ p_s) = U(p_s)$ is superharmonic at every point p_s of \overline{R} for fixed p_i . We make $V_M(p_i)$ correspond to every point p_i $(i \Rightarrow s)$ such that $U(p_s) \geq M$ in $V_M(p_i)$, where $M \geq \min_{p_s \in \partial \Omega_m} U(p_s) + 1$. Since $U(p_s)$ is δ -lower semicontinuous, $U(p_s)$ attains its the minimum m_0 at z_0 on a δ -closed set $\overline{\Omega}_m$ $(\overline{\Omega}_m$ is the closure of Ω_m). We show that $z_0 \in \partial \Omega_m$. $U(p_s)$ does not attain its minimum in $(\overline{\Omega}_m - \sum_i V_M(p_i)) \cap R$ by the minimum principle, because $U(p_s)$ is harmonic and bounded in $(\overline{\Omega}_m - \sum_i V_M(p_i)) \cap R$ and R^* is a Riemann surface with null-boundary. Next, suppose, $U(z_0) \leq m_0 = \min_{p_s \in \partial \Omega_m} U(p_s)$ $(z_0 \in B)$. Then by 3) of Theorem 1, $U(z_0) \geq \frac{1}{2\pi} \int_{\partial V_M(z_0)} U(z)$

 $\times \frac{\partial G(z, z_0)}{\partial n} ds$, where M' is large so that $V_{M'}(z_0) = E[z \in R: G(z, z_0) \ge M']$ is contained in Ω_m , whence there exists at least one point z' in $\Omega_m \cap R$ such that $U(z') \le M_0$. This contradicts the minimum principle. Hence $U(p_s)$ attains its minimum on $\partial \Omega_m$. Therefore every p_t is on $\partial \Omega_m$.

We can discuss mass distributions on \overline{R} by G(z,p), that is, the potential of an unit mass at p is given by G(z,p) and we can define also the energy integral of mass distributions as in space. In our case, since $\partial \Omega_m$ is compact, it is easily proved that there exists the unique unit mass distribution μ on $\overline{\Omega}_m$ called the equilibrium distribution, whose energy $I(\mu)$ is minimal and that whose potential $U(z) = \int G(z,p) \, d\mu(p)$ is a constant on $\partial \Omega_m$, that is, $U(z) = \omega_m(z)$, where $\omega_m(z)$ is a harmonic function in $R_m - R_0$ such that $\omega_m(z) = 0$ on ∂R_0 , $\omega_m(z) = M_m$ on ∂R_m and $\int_{\partial R_0} \frac{\partial \omega_m(z)}{\partial n} \, ds = 2\pi$. Moreover, it is easily proved by (b) as in space that the transfinite diameter $\overline{\omega}_m D = \lim_{n = \infty} \overline{\omega}_m D_n$ is equal to $1/I(\mu) = 1/2\pi M_m$.

Given a system of n points p_1, p_2, \dots, p_n on A, we can choose an $(n+1)_{st}$ point $p(p=p(p_1, p_2, \dots, p_n))$ on A such that

$$V(p) = (\sum_{i=1}^{n} G(p, p_i))/2\pi n$$

is minimal, because the above function is δ -lower semicontinuous on A. Let ${}_{A}V_{n}$ be the least upper bound of the minimum above defined as $p_{1}, p_{2}, \cdots, p_{n}$ vary on A. Then there exists a system $(p_{1}^{*}, p_{2}^{*}, \cdots, p_{n}^{*})$ such that

$$V(p, p_1^*, p_2^*, \dots, p_n^*) \ge_A V_n - \frac{1}{2\pi n}$$
 for p on A .

Denote by V(z) the potential

$$V(z) = \frac{1}{2\pi n} (\sum_{i=1}^{n} G(z, p_i^*)).$$

This is the potential of a certain distribution of equal point mass on A of total mass unity and it is clear that $V(z) \geq_A V_n - \frac{1}{2\pi n}$ for all points of A admitting ∞ as a possible value of either member. Furthermore, since V(z) is δ -lower semicontinuous, $\lim_{z_j \to q \in A} V(z_j) \geq_A V_n - \frac{1}{2\pi n}$ for every sequence $\{z_j\}$ tending to A with respect to δ -metric.

Now, since $G(p_i, p_j) = G(p_j, p_i)$,

$$\binom{n+1}{2}/_A D_{n+1} = \frac{1}{2\pi} \min_{p_{\kappa}, p_i \in A} \left(\sum_{i < \kappa}^{1, 2, \sum_{i < \kappa}^{n+1}} G(p_i, p_{\kappa}) \right) \leq \frac{1}{2} \cdot \frac{1}{2\pi} \sum_{\kappa=1}^{n+1} \left(\sum_{i=1}^{n+1} G(p_i, p_n) \right).$$

Hence ${}_{A}V_{n} \ge 1/{}_{A}D_{n+1}$, whence

$$V(z) \ge 1/AD_{n+1} - \frac{1}{2\pi n}$$
 on A .

Since $A \subset \bar{\Omega}_m$ for every m and $\lim_{m \to \infty} M_m = \infty$.

$$\infty = 1/_A D = \lim_{n=\infty} 1/_A D_n = \lim_{n=\infty} \left(\sum_{p_s, p_t \in A}^{n_s, n} G(p_s, p_t)/_n C_2 \right).$$

Therefore, for any given large number M, we can find a system of n(M) points p_1, p_2, \dots, p_n such that the function

$$V(z) = \frac{1}{2\pi n} \left(\sum_{i=1}^{n} G(z, p_i) \right) \ge M \quad \text{on } A.$$

Theorem 2. Let A be a δ -closed subset of B. Then there exists a potential U(z) such that 1° . U(z) is harmonic in R. 2° . U(z)=0 on ∂R_0 . 3° . The flux of U(z) along ∂R_0 is 2π . 4° . $\lim U(z)=\infty$.

Proof. Let N be an integer larger than 3. Then since $\lim_{n=\infty} {}_{A}D_{n} = 0$, there exists, for any positive integer m, n(N, m) number of points $p_{1}, p_{2}, \dots, p_{n}$ such that

$$V^{m}(z) = \frac{1}{2\pi n} \left(\sum_{i=1}^{n} G(z, p_{i}) \right) \ge N^{m}$$
 on A .

Put $\sum_{m=1}^{\infty} V^m(z)/2^m = U(z)$. Then, clearly U(z) is the function required. For an F_{σ} set of R, the capacity of F_{σ} is defined usually. Let A be an F_{σ} subset of \overline{R} of capacity zero. Then both $A \cap R$ (R is open) and $A \cap B$ are F_{σ} sets. Hence we have at once the following

Corollary. Let A be an F_{σ} subset of \overline{R} of capacity zero. Then there exists a potential U(z) satisfying the four conditions of Theorem 2.

Let $\{G_n\}$ be a decreasing sequence of non compact subsurfaces of R with compact relative boundaries $\{\partial G_n\}$ such that $\bigcap_{n>1} G_n = 0$. Two such sequences $\{G_n\}$ and $\{G_n'\}$ are called equivalent if for given m, there exists a number n such that $G_m \supset G_n'$ and $G_m' \supset G_n$. We consider that any equivalent sequences determine an unique ideal boundary component. Denote the set of all the ideal components by \underline{B} . A topology is introduced on $R + \underline{B} + \partial R_0$ by the usual manner and it is easily seen that $R + \underline{B} + \partial R_0$ and \underline{B} are closed and compact. Let \underline{A} be a closed subset of \underline{B} and let A be the set of ideal boundary points on \underline{A} . Then since $\{G(z, p_i)\}$ for $p_i \in A$ is a normal family, A is also a δ -closed set. Hence we have

Theorem 3. Let A be the subset of B on a closed subset A of B.

Then there exists a harmonic function U(z) satisfying the conditions of Theorem 2 and moreover 5° . $\lim_{z \to q \not\in A} U(z) < \infty$.

It is sufficient to prove that the condition 5° is satisfied, since the other four conditions are clearly satisfied. Let q be a point of the complementary set of A. Then there exists a component G(q) of $R-R_m$ (m is a suitable number with a compact relative boundary $\partial G(q)$ such that $G(q) \ni q$ and $G(q) \cap A = 0$. Then $\max_{z \in \partial G(q)} U(z) \leq M$, which implies $\sup_{z \in G(q)} U(z) \leq M$, by the maximum principle, because U(z) is harmonic and bounded in G(q) and R^* is a Riemann surface with a null-boundary.

Corollary. Let A be the subset of \overline{R} on an F_{σ} subset of $R+\underline{B}$ of capacity zero. Then there exists a harmonic function U(z) satisfying the conditions of Theorem 3.

R. S. Martin defined the ideal boundary points by the use of the function $K(z, p) = \frac{G(z, p)}{G(0, p)}$, where 0 is a fixed point of R. However, in case R^* is a Riemann surface with null-boundary, since $G(z, 0) \ge \delta > 0$ in $R - R_{n'}$, K(z, p) is a multiple of G(z, p), where $R_{n'} \in 0$. G(z, p) plays consequently the same role as K(z, p). Hence Martin's assertions hold even in our case.

Let U(z) be a positive harmonic function in R vanishing on ∂R_0 . If $U(z) \ge V(z) > 0$ implies V(z) = KU(z) for any harmonic function V(z) in R, U(z) is called a minimal function. Martin proved that every minimal function is a multiple of some G(z, p) $(p \in B)$ and that every positive harmonic function vanishing on ∂R_0 is represented uniquely by an integral form of minimal functions.

The condition 5° of Theorem 3 is not always satisfied under the assumptions of Theorem 2, that is,a positive harmonic function U(z) such that $U(z) = \infty$ on a δ -closed set A and $U(z) < \infty$ except on A does not always exist.

Example. Suppose that there exist n minimal function $G(z, p_i)$ $(i=1, 2, \cdots, n)$ with pole p_i on a boundary component p. Then every Green's function $G(z, p^*)^{6}$ with pole p^* on p, being not minimal, must be a linear from $G(z, p^*) = \sum_{i=1}^n c_i G(z, p_i)$ $(c_i \ge 0, \sum_{i=1}^n c_i = 1)$. Put $A = \bigvee_{i=1}^n p_i$. Then clearly A is a δ -closed set and $\delta(p^*, A) > 0$. Denote by U(z) a positive harmonic function in Theorem 2, that is, U(z) = 0 on ∂R_0 , $\int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds = 2\pi$ and $U(z) = \infty$ at every point of A. Then

⁵⁾ See 4).

⁶⁾ Clearly, there exists a fundamental sequence $\{p_i^*\}$ determining p^* .

$$U(z) = \int G(z, q_{\alpha}) d\mu(q_{\alpha}) \quad (q_{\alpha} \in B).$$

By the symmetry of the Green's function,

$$U(p^*) = \int G(p^*, q_{\alpha}) \ d\mu(q_{\alpha})^{\tau} = \int G(q_{\alpha}, p^*) \ d\mu(q_{\alpha}) = \int \sum_{i=1}^n c_i G(q_{\alpha}, p_i) \ d\mu(q_{\alpha})$$
$$= \sum_{i=1}^n c_i \int G(p_i, q_{\alpha}) \ d\mu(q_{\alpha}) = \sum_{i=1}^n c_i U(p_i).$$

Hence $U(z) = \infty$ on A implies $U(p^*) = \infty$. Therefore any positive harmonic function that is infinite at every point of A must be infinite at any point of B lying on p. Thus there exists no positive harmonic function infinite only on A.

As an application to classification of types of Riemann surfaces, we have

Theorem 4. R^* is a Riemann surface with null-boundary, if and only if there exists a harmonic function U(z) with one negative logarithmic singularity at a point of R^* such that U(z) has limit ∞ as z tends to B.

Proof. If the function above stated exists, R^* is clearly a Riemann surface with null-boundary and it is easy to construct the function in this theorem from the function in Theorem 3, by putting A=B and by the alternating process of Schwarz.

Many other applications, for instance, to Nevanlinna's first and second fundamental theorems, will be omitted here.

(Received April 30, 1956)

⁷⁾ Since $G_{Vm(p^*)}(p^*, q_\alpha)$ is measurable for fixed p^* and since $G_{Vm(p^*)}(p^*, q_\alpha) \uparrow G(p^*, q_\alpha)$ for $q_\alpha \in B$, $\lim_{m \to \infty} \int G_{Vm(p^*)}(p^*, q_\alpha) d\mu(q_\alpha) = \int \lim_{m \to \infty} G_{Vm(p^*)}(p^*, q_\alpha) d\mu(q_\alpha)$.

Hence $U(p^*) = \lim_{m = \infty} U_{V_m(p^*)}(p^*) = \lim_{m = \infty} \int_{\partial V_m(p^*)} (f G(z, q_\alpha) d\mu(q_\alpha)) \frac{\partial G(z, p^*)}{\partial n} ds = \lim_{m = \infty} \int_{\partial V_m(p^*)} (p^*, q_\alpha) d\mu(q_\alpha) = \int_{\mathbb{R}} (\lim_{m = \infty} G_{V_m(p^*)}(p^*, q_\alpha)) d\mu(q_\alpha) = \int_{\mathbb{R}} G(p^*, q_\alpha) d\mu(q_\alpha).$