# On Simple Groups Related to Permutation-Groups of Prime Degree I 

By Osamu Nagai

1. Let © 8 be a group which satisfies the following two conditions:
(*) (S) contains an element $P$ of prime order $p$ which commutes only with its own powers $P^{i}$,
(**) (5s coincides with its own commutator-subgroup ${ }^{(5)}$.
Obviously the transitive permutation-group of degree $p$ satisfies the condition (*).

Using his brilliant theory of modular representations, R. Brauer investigated the structure of (3) and proved the following interesting theorem ([2], Theorem 10) : The order of $\mathbb{( 5 )}$ is expressed as $g=p(p-1)$ $(1+n p) / t$ where $1+n p$ is the number of subgroups of order $p$ in (S) and $t$ is the number of classes of conjugate elements of order $p$ in (S). Furthermore, if $n<(p+3) / 2$, then either (1) $\mathbb{G} \cong L F(2, p)$, or (2) $p$ is a Fermat prime $2^{\mu}+1>3$ and $\mathfrak{G} \cong L F\left(2,2^{\mu}\right)$. If $n \geqq(p+3) / 2$, then $n$ has the form

$$
n=F(p, u, h)=\left(u h p+u^{2}+u+h\right) /(u+1)
$$

where $u$ and $h$ are positive integers.
Recently R. Brauer studied (5) for the case $n \leqq p+2^{1)}$ and W. F. Reynolds extended these considerations to the case $p+2<n \leqq 2 p-3^{2)}$. Their results are as follows: If $n \leqq p+2$, then (1) $\mathfrak{F} \cong L F(2, p)$, or (2) $p=2^{\mu} \pm 1$ and $\left(\mathbb{S} \cong L F\left(2,2^{\mu}\right)\right.$, or (3) $\mathbb{S} \cong L F(3,3)$, or (4) $\mathbb{B} \cong \mathfrak{M}_{11}$ (Mathieu group of order 7920). If $p+2<n \leqq 2 p-3$, then $2 p-1$ is a prime power and $\mathbb{G} \cong L F(2,2 p-1)$.

Our purpose is to study the general nature of $\mathbb{\$}$. In the present note we extend Reynolds' enumerations to the case $2 p-3<n \leqq 2 p+3$ as follows:

Theorem. If $2 p-3<n \leqq 2 p+3, t \equiv 0 \quad(\bmod 2)$ and $t>1$, then (1) $2 p+1$ is a prime power: $2 p+1=l^{a} \geqq 23$, where $l=3$ for $a>1$, and (2) $\mathscr{G} \cong L F\left(2, l^{a}\right)$.

[^0]We shall prove Theorem step by step. In Section 2 we examine the case $2 p-3<n<2 p+3$ under the condition $t \equiv 0(\bmod 2)$ and show that such a group does not exist. In Section 3 we treat the case $n=2 p+3$ under conditions $t \neq 0(\bmod 2)$ and $t>1$. By a theorem of Brauer ([2], Theorem 7), we can determine all the degrees of the characters of $\mathbb{E}$ ) belonging to the first $p$-block $B_{1}(p)$. In Section 4 we investigate the structure of ( 5 . By calculating the number of elements whose order is divisible by a prime divisor of $2 p+1$, we show that $2 p+1$ is a prime power $l^{a}$ and the index of the normalizer of an $l$-Sylow subgroup in $\mathbb{E S}$ is equal to $l^{a}+1$. Therefore $(\mathbb{S}$ will be represented as a doubly transitive permutation-group on $l^{a}+1$ symbols in which each element is determined uniquely by the images of three symbols. By a method of Zassenhause [5], we can prove $\mathbb{G} \cong L F\left(2, l^{a}\right)$. In Section 5 we shall show that the assumptions in above Theorem can be replaced by the assumptions $n=2 p+3$ and $t=(p-1) / 2$. In this case $L F(2,7)$ and $L F(2,11)$ may exist besides above $L F\left(2, l^{a}\right)$.

## , 2. The case $2 p-3<n<2 p+3$.

If $n$ has the form $n=F(p, u, 3)$, then $u=1$ and $p \leqq 7$ since $n<2 p+3$. For $p \leqq 7, F(p, x, h)=F(p, 1,3)$ does not have the positive integral solution $x$ for both $h=2$ and $h=1$. By a theorem of Brauer ([2], Theorem 7), the possibilities of the degrees of the characters belonging to the first $p$-block $B_{1}(p)$ are as follows:

$$
1, p+1, \frac{(3 p-1)}{2} p-1, \quad\left(\frac{(3 p-1)}{2} p-1\right) / t .
$$

By the degree-relation in $B_{1}(p)$, the character of degree $p+1$ must exist. Then $(p-1) / t=2^{3}$. Hence the character of degree $p+2$ must exist as an exceptional one. This is impossible because $\frac{3 p-1}{2} p-1 \neq(p+2)(p-1) / 2$.
2.1. $t \equiv 0(\bmod 2)$ and $t>1$.

Let us assume that $n$ does not have the form $n=F(p, u, 3)$. If $n$ has the form $F(p, u, 1)$, then $u-4+\frac{6}{u+2}<p<u+2$ since $2 p-3<n<2 p+3$. For those $p, n$ can not be integers. Therefore $n$ must have the form $F(p, u, 2)$ only. Then, since $2 p-2 \leqq n \leqq 2 p+2, u^{2}-u \leqq 2 p \leqq u^{2}+3 u+4$. By a theorem of Brauer [2], the possibilities of the degrees of the characters belonging to $B_{1}(p)$ are as follows:

$$
1, u p+1, \frac{n-2}{u} p-1, \quad(u p+1) / t,\left(\frac{n-2}{u} p-1\right) / t
$$

For the sake of simplicity we denote the character of degree $z$ by " $z$ ".
If " $u p+1$ " does not exist, then $B_{1}(p)$ must consist of one " 1 ", $\frac{(p-1)}{t}-1$ characters " $\frac{(n-2)}{u} p-1 "$ and $t "(u p+1) / t "$. Then by a degreerelation in $B_{1}(p), \frac{u+1}{t}=\left(\frac{p-1}{t}-1\right) \frac{n-2}{u}$. Since $(p-1) / t>1$ and $n=$ $F(p, u, 2)<2 p+3$,

$$
\frac{u+1}{t} \geqq \frac{2 p+u-1}{n+1} \geqq \frac{u^{2}-1}{u+1}+1=u-1 .
$$

This contradicts $t \geq 3$.
If " $\frac{n-2}{u} p-1$ " does not exist, then $B_{1}(p)$ must consist of one " 1 ", $\frac{p-1}{t}-1 " u p+1$ " and $t$ " $\left(\frac{n-2}{u} p-1\right) / t$ ". Again by a theorem of Brauer,
$u\left(\frac{p-1}{t}-1\right)=\left(\frac{n-2}{u}-1\right) / t . \quad \frac{p-1}{t}-1=\frac{2(p-1)}{t u(u+1)}$.
Let $2 p-2=a u t(u+1)$. Then, since $2 p \leqq u^{2}+3 u+4, \quad$ atu $(u+1) \leqq u^{2}+3 u+2$. $a t u(u+1) \leqq u^{2}+3 u+2$. $\quad a t u \leqq u+2$. $3 u \leqq u+2$. This means $n=F(p, u, 2)$ $=p+2$. This is a contradiction.

Therefore $B_{1}(p)$ must contain " $u p+1$ " and " $\frac{n-2}{u} p-1$ ". Since $\frac{n-2}{u} p-1$ divides $g, u+1 \equiv 0(\bmod t)$. We consider the following five cases:

1) $n=2 p-2$. This means $2 p=u^{2}+3 u+4$. Since $u p+1$ divides $g,(p-1)(2 p+u+1) \equiv 0 \quad(t(u+1)) . \quad\left(u^{2}+4 u+5\right)(u+2) \equiv 0 \quad(\bmod t) . \quad$ Since $u+1 \equiv 0(t),(1-4+5) \cdot 1 \equiv 0(t)$. This contradicts our assumption $t>2$.
2) $n=2 p-1$. This means $2 p=u^{2}+2 u+3$. Let $B_{1}(p)$ consist of one " 1 ", $x$ " $\frac{n-2}{u} p-1$ ", $\frac{(p-1)}{t}-x-1 " u p+1$ " and $t "(u p+1) / t$ ". Then

$$
\begin{aligned}
& u\left(\frac{p-1}{t}-x-1\right)+\frac{u+1}{t}=(u+2) x \\
& 2(u+1) x=\frac{u+1}{2 t} \cdot\left(u^{2}+u+2\right)-u
\end{aligned}
$$

Since $u+1 \equiv 0 \quad(2 t)$ and $u^{2}+u+2 \equiv 0 \quad(2), u \equiv 0 \quad(2)$. This contradicts $2 p=u^{2}+2 u+3$.

Let $B_{1}(p)$ consist of one " 1 ", $x \frac{n-2}{u} p-1 ", \frac{p-1}{t}-x-1$ " $u p+1$ " and $t$ " $\left(\frac{n-2}{u} p-1\right) / t "$. Then

$$
\begin{aligned}
& u\left(\frac{p-1}{t}-x-1\right)=(u+2) x+\frac{u+1}{t} . \\
& 2(u+) x=\frac{u(u+1)^{2}}{2 t}-\frac{u+1}{t}-u .
\end{aligned}
$$

Since $u+1 \equiv 0(2 t), u \equiv 2$ (2). This also contradicts $2 p=u^{2}+2 u+3$.
3) $n=2 p$. This means $2 p=u^{2}+u+2$. Since $u p+1$ divides $g$, $(2 p+u+1)(p-1) \equiv 0(\bmod t(u+1)) . \quad\left(u^{2}+2 u+3\right) u \equiv 0(t)$. Since $u+1 \equiv 0$ $(t),(1-2+3) \cdot(-1) \equiv 0(t)$. This contradicts $t>2$.
4) $n=2 p+1$. This means $2 p=u^{2}+1$. Since $u p+1$ divides $g$, $(p-1)(2 p+u+1) \equiv 0 \quad(\bmod t(u+1)) . \quad(u-1)\left(u^{2}+u+2\right) \equiv 0 \quad(2 t) . \quad$ Since $u+1 \equiv 0(t),(-2) \cdot(1-1+2) \equiv 0(t)$. This contradicts $t>2$.
5) $n=2 p+2$. This means $2 p=u^{2}-u$. Since $u p+1$ divides $g$, $(u-1)\left(u^{2}+1\right) \equiv 0 \quad(\bmod 2 t)$. Since $u+1 \equiv 0 \quad(t), \quad(-2) \cdot(1+1) \equiv 0 \quad(2 t)$. This contradicts $t>2$.

## 2.2. $t=1$.

As above $n$ have the form $F(p, u, 2)$ only. Therefore the possibilities of degrees of the characters belonging to $B_{1}(p)$ are as follows:

$$
1, u p+1, \frac{n-2}{u} p-1, \quad \text { where } \quad u^{2}-u \leqq 2 p \leqq u^{2}+3 u+4
$$

Let $B_{1}(p)$ contain $x$ characters of degree $\frac{n-2}{u} p-1$. Then $B_{1}(p)$ contains $p-x-1$ " $u p+1$ " since, for $t=1, B_{1}(p)$ contains just $p$ characters. We examine the following five cases separately:

1) $n=2 p-2$. This means $2 p=u^{2}+3 u+4$. Then $\frac{n-2}{u} p-1=$ $\frac{2 p-4}{u} p-1=(u+3) p-1$. By the degree-relation in $B_{1}(p)$,

$$
\begin{aligned}
& u(p-1-x)+1=(u+3) x \\
& u(p-1)+1=x(2 u+3) \\
& u(2 p-2)+2=2 x(2 u+3) . \\
& u\left(u^{2}+3 u+2\right)+2=2(2 u+3) x . \\
& u^{3}+3 u^{2}+2 u+2=2(2 u+3) x . \\
& 19 \equiv 0 \quad(2 u+3) . \\
& 19=2 u+3 . \quad 2 u=16 . \quad u=8 . \quad 2 p=64+32+4=100 .
\end{aligned}
$$

50 is not a prime.
2) $n=2 p-1$. This means $2 p=u^{2}+2 u+3$. Then $\frac{n-2}{u} p-1=$ $\frac{2 p-3}{u} u p-1=(u-2) p-1$.

By the degree-relation in $B_{1}(p)$, we have

$$
\begin{aligned}
& u(p-1-x)+1=(u+2) x \\
& u(p-1)+1=x(2 u+2) \\
& u(2 p-2)+2=4 x(u+1) . \quad u\left(u^{2}+2 u+1\right)+2=4 x(u+1)
\end{aligned}
$$

$$
\begin{aligned}
u^{3}+2 u^{2}+u+2 & =4 x(u+1) . \\
-1+2-1+2 \equiv 0 \quad(u+1) . & 2 \equiv 0 \quad(u+1) . \quad u=1 . \quad 6=8 x .
\end{aligned}
$$

Such an $x$ can not be an integer.
3) $n=2 p . \quad$ This means $2 p=u^{2}+u+2 . \quad$ Then $\frac{n-2}{u} p-1=(u+1) p-1$. By the degree-relation,

$$
\begin{aligned}
& u(p-1-x)+1=(u+1) x \\
& u(p-1)+1=(2 u+1) x \\
& u(2 p-2)+2=2 x(2 u+1) . \\
& u\left(u^{2}+u\right)+2=2 x(2 u+1) \\
& u^{3}+u+2=2 x(2 u+1) \\
& 17 \equiv 0(2 u+1) . \\
& 17=2 u+1 . \quad u=8 . \quad p=37 \quad \text { and } \quad x=17 .
\end{aligned}
$$

Therefore $B_{1}(p)$ must consist of one " 1 ", 19 " $8 \cdot 37+1$ " and 17 " $9 \cdot 37-1$ ". But $8 \cdot 37+1$ does not divide $g=2739$.
4) $n=2 p+1$. This means $2 p=u^{2}+1$. Then $\frac{n-2}{u} p-1=u p-1$. By the degree-relation,

$$
\begin{aligned}
& u(p-1-x)+1=u x \\
& u(p-1)+1=2 u x . \\
& u(2 p-2)+2=4 u x . \\
& u\left(u^{2}-1\right)+2=4 u x . \\
& u^{3}-u+2=4 u x . \\
& 2 \equiv 0 \quad(u) . \quad u=2 . \quad 2 p=5 .
\end{aligned}
$$

5) $n=2 p+2$. This means $2 p=u^{2}-u$. Then $\frac{n-2}{u} p-1=(u-1) p-1$. By the degree-relation,

$$
\begin{aligned}
& u(p-1-x)+1=x(u-1) \\
& u(p-1)+1=x(2 u-1) \\
& u(2 p-2)+2=2 x(2 u-1) \\
& u\left(u^{2}-u-2\right)+2=2 x(2 u-1) \\
& u^{3}-u^{2}-2 u+2=2 x(2 u-1) \\
& 7 \equiv 0(2 u-1) . \quad u=4 . \quad 2 p=12 .
\end{aligned}
$$

Consequently, we obtain the following
Proposition. If $t$ is odd, then such group (5) does not exist for $2 p-3<n<2 p+3$.
3. The case $n=2 p+3, t \equiv 0(\bmod 2)$ and $t>1$.

In this case $n$ may have the forms $n=F(p, 1,4)=F(p, 2,3)$ $=F(p, u, 2)$. Then $2 p=u^{2}-2 u-1$. Therefore the possibilities of degrees of characters belonging to $B_{1}(p)$ are as follows: $1, p+1,2 p+1, u p+1$, $p^{2}-1, \frac{n-2}{u} p-1=(u-2) p-1,(u p+1) / t,(2 p+1) / t,\left(p^{2}-1\right) / t,((u-2) p-1) / t$.

We shall sieve these one by one.
If " $p+1$ " exists, then $(p-1) / t=2$. Hence the exceptional character must be of degree $p+2$. This is impossible. If " $p^{2}-1$ " exists, then $t p^{2} \leqq n p-n+1=2 p^{2}+p-2$. $p^{2}-p+2 \leqq 0$. So we can omit " $p^{2}-1$ ". Since $B_{1}(p)$ contains only one exceptional family, it is sufficient to be considered the following four cases:

1) " $((u-2) p-1) / t$ " exists. If " $(u-2) p-1$ " exists, then its degree must divide $g$. So $(u+1)(u-1)(u-2) \equiv 0(2 t)$. This contradicts $u \equiv 3(t)$. Thus $B_{1}(p)$ consists of one " 1 ", $\frac{p-1}{t}-x-1$ " $2 p-1$ ", $x " u p+1$ " and $t$ " $((u-2) p-1) / t "$. Then

$$
\begin{aligned}
& u x+2\left(\frac{p-1}{t}-x-1\right)=\frac{u-3}{t} \\
& x(u-2) t=(u-1-2 p)+2 t \\
& x(u-2) t=-u(u-3)+2 t
\end{aligned}
$$

This is a contradiction.
2) " $\left(p^{2}-1\right) / t$ " exists. If " $(u-2) p-1$ " exists, then $(u+1)(u-1)(u-2)$ $\equiv 0(2 t)$. Since $p-1=(u+1)(u-3) / 2$ is divisible by $t$, we can set $t=t_{1} \cdot t_{2}$ such that $u+1 \equiv 0\left(t_{1}\right), u-3 \equiv 0\left(t_{2}\right) .4 \cdot 2 \cdot 1 \equiv 0\left(t_{2}\right)$. This means $t_{2}=1$ and $u+1 \equiv 0(t)$. In this case " $u p+1$ " does not exist since $(u-3) u(u-1) \equiv 0(2 t)$. Hence we can assume that $B_{1}(p)$ consists of one " $1 ", \frac{(p-1)}{t}-x-1 " 2 p+1 ", x "(u-2) p-1 "$ and $t "(p-1) / t "$. Then

$$
\begin{aligned}
& 2((p-1) / t-x-1=(u-2) x+(p-1) / t \\
& (p-1) / t-2=u x \\
& p-1=t(u x+2) \\
& (u+1)(u-3)=2 t(u x+2) \\
& -3 \equiv 4 t(u)
\end{aligned}
$$

Let $4 t+3=a u$ and $u+1=2 k t$. Then we have $4 t+3=2 a k t-a . \quad 2 t(a k-2)$ $=a+3$. $\quad 6(a k-2) \geqq a+3$. $\quad a(6 k-1) \leqq 15$. Hence we have $k=2, a=1$ or $k=1, a=3$. Neither of them gives an integral solution $x$.

If " $(u-2) p-1$ " does not exist, then $B_{1}(p)$ consists of one " 1 ",
$\frac{p-1}{t}-x-1 " 2 p+1 ", x " u p+1$ " and $t "(p-1) / t$ ". We have $u x+2\left(\frac{p-1}{t}\right.$ $-x-1)=\frac{p-1}{t} . \quad x(u-2)=2-(p-1) / t . \quad$ This means $x=0$ and $p-1=2 t$. Hence in this case $B_{1}(p)$ consists of one " 1 ", one " $2 p+1$ " and ( $p-1$ )/2 " $2(p+1)$ ". We shall discuss this case in 4.
3) " $(2 p+1) / t$ " exists. This means $t=3$.

If " $(u-2) p-1$ " does not exist, then $B_{1}(p)$ must consist of one " 1 ", $\frac{p-1}{3}-x-1$ " $2 p+1$ ", $x$ " $u p+1$ " and 3 " $(2 p+1) / 3$ ". Then we have

$$
\begin{aligned}
& 2\left(\frac{p-1}{3}-x-1\right)+u x=1 \\
& 3 x(u-2)+2 p-11=0
\end{aligned}
$$

This can not hold since $2 p=u^{2}-2 u-1$.
If " $(u-2) p-1$ " exists, then we can assume $B_{1}(p)$ consists of one " 1 " $\frac{p-1}{3} \cdot x-1 " 2 p-1 " x$ " $(u-2) p-1$ " and 3 " $(2 p+1) / t$ ". Then we have

$$
\begin{aligned}
& 2\left(\frac{p-1}{3}-x-1\right)=u x-2 x+1 \\
& 2 p-2=3(u x+3) \\
& u^{2}-2 u-3=3 u x+9 \\
& 12 \equiv 0 \quad(u)
\end{aligned}
$$

Since $u$ is odd, $u$ must be equal to 3 . This contradicts $2 p=u^{2}-2 u-1$.
4) $c=(u p+1) / t$. In this case " $u p+1$ " does not exist, as in 2.1.1), since $u+1 \equiv 0(t) . \quad B_{1}(p)$ consists of one " $1 ", \frac{p-1}{t}-x-1$ " $2 p+1$ ", $x$ " $(u-2) p-1$ " and $t$ " $(u p+1) / t$ ". Then

$$
\begin{aligned}
& 2\left(\frac{p-1}{t}-x-1\right)=u x-2 x+\frac{u+1}{t} \\
& 2 p-3-2 t=u x t \\
& (u+1)(u-4)=(u x+2) t
\end{aligned}
$$

As $u$ is odd, we can put $t+2=a u$ and $u+1=2 k t$. Then $t+2=2 a k t-a$. $(2 a k-1) t=a+2,3(2 a k-1) \leqq a+2 . \quad a(6 k-1) \leqq 5$. Hence we have $u=1$, $k=1$. This does not give an integral solution $x$.
4. Continuation: The case $n=2 p+3$ and $B_{1}(p)$ consists of one character $A_{1}$ of degree 1 , one character $A_{2}$ of degree $2 p+1$ and
$t(=(p-1) / 2) p$-conjugate characters $C^{(\lambda)}$ of degree $(p-1) / t(=2(p+1))$. In this case the order of $\mathbb{E}$ s is expressed as $g=p(p-1)(1+n p) / t$ $=2 p(2 p+1)(p+1)$. Since $(2 p+1,2 p+2)=1$, the character $A_{2}$ is of highest kind for any prime $l$ dividing $2 p+1$. Hence $A_{2}(L)=0$ for elements $L$ of $\mathbb{E}$ S whose order divisible by $l$. For the prime $m$ dividing $2 p+2$, the character $C^{(\lambda)}$ is of highest kind. Hence $C^{(\lambda)}(M)=0$ for elements $M$ of $\mathbb{G}$ whose order divisible by $m$. Of course such elements $L$ and $M$ are $p$-regular by the condition (*). Therefore $A_{1}(G)+A_{2}(G)$ $=C^{(\lambda)}(G)$ holds for $G=L$ and $G=M$. Thus $A_{2}(M)=-1, C^{(\lambda)}(L)=1$. From above relation, there is no such element $G$ which is $L$ and $M$ at the same time. Therefore the elements of (5) are distributed into four disjoint sets: (I) The unit element, (II) the elements of order $p$, (III) the elements of type $L$ whose order is divisible by at least one prime factor $l$ of $2 p+1$, (IV) the elements of type $M$ whose order is divisible by at least one prime factor $m$ of $2 p+2$.

Let $r$ denote the number of elements of type $L$ in $(\mathscr{F}$. Then by the well-known character-relations,

$$
\sum_{G} C^{(1)}(G)+\sum C^{(2)}(G)+\cdots+\sum C^{(t)}(G)=0
$$

By the relation $A_{1}(G)+A_{2}(G)=C^{(\lambda)}(G)$ for $p$-regular $G$, we have $C^{(\lambda)}(1)$ $=2(p+1), \quad C^{(\lambda)}(L)=1, \quad C^{(\lambda)}(M)=0$ and $\sum_{\nu} C^{(\lambda)}(G)=-1$. From these, it follows

$$
\begin{aligned}
& (p-1)(p+1)+(-1)(p-1)(2 p+1)(p+1)+r \cdot(p-1) / 2=0 . \\
& r=4 p(p+1) .
\end{aligned}
$$

For any element $L^{*}$ whose order divides $2 p+1$, let us denote the normaliser of $L^{*}$ in $\mathbb{G}$ by $\mathfrak{M}\left(L^{*}\right)$ and its order by $n\left(L^{*}\right)$. If $\mathfrak{M}\left(L^{*}\right)$ contains an element $M^{*}$ of type $M$, then there exists such an element $L^{*} M^{*}$ of type $L$ and of type $M$ at the same time. Of course $n\left(L^{*}\right)$ does not contain the prime $p$. Hence $n\left(L^{*}\right)$ must contain the factors of $2 p+1$ only. If $n\left(L^{*}\right)<2 p+1$, then $n\left(L^{*}\right) \leqq(2 p+1) / 3$. Therefore the number of elements conjugate to $L^{*}$ is greater than $4 p(p+1)$. But $g / n\left(L^{*}\right) \leqq r$. This is a contradiction. Therefore we have $n\left(L^{*}\right)=2 p+1$. This means that the number of elements in the conjugate class containing $L^{*}$ is equal to $2 p(p+1)$. If $2 p+1$ is divisible by a prime $l^{\prime}$ different from $l$, then the element of order $l^{\prime} l$ must exist. Therefore $r \geq 2 p(p+1)+2 p(p+1)$ $+2 p(p+1)$. This is a contradiction.

Therefore $2 p+1$ must be a prime power: $2 p+1=l^{a}$. For $p=7$, $2 p+1$ is not a prime power. For $p<7$, we have $t \equiv 0$ (2) or $t=1$. Therefore we can assume $p \geq 11$, that is, $2 p+1=l^{a} \geqq 23$. For its ex-
ponent $a>1$, such $l$ must be equal to 3 , because $2 p=(l-1)\left(l^{a-1}+\cdots\right.$ $+l+1)$. Denote the normaliser of an $l$-Sylow group $\mathcal{R}$ by $\mathfrak{R}(\mathbb{R})$ and its order by $n(\mathfrak{Q})$. By a theorem of Sylow, $g / n(\Omega) \equiv 1(\bmod l)$. Let $g / n(\mathcal{Z})$ $=1+l x$. Of course ${ }^{(5)}$ is represented as a transitive permutation-group of degree $1+l x$. Denote this character by $\Pi$. We decompose $\Pi$ into the irreducible characters of $\mathbb{E}$. As is well known $\Pi$ contains $A_{1}$ exactly once.

The following three cases must be considered.

1) II contains $C^{(\lambda)}$. Then all $p$-conjugate $C^{(\lambda)}$ must be contained in $\Pi$, since $\Pi(G)$ is integral. Therefore $1+l x \geqq 1+\left(l^{a}+1\right)\left(l^{a}-3\right) / 4=$ $\left(l^{a}-1\right)^{2} / 4$. Hence $n(\mathfrak{Z}) \leqq 2 l^{a}+4+\frac{4}{l^{a}-1}$. Since $n(\mathfrak{Z}) \equiv 0 \quad\left(l^{a}\right)$ and $l^{a} \geqq 23$, $n(\mathbb{R})$ is either $l^{a}$ or $2 l^{a}$. If $n(\mathbb{R})=l^{a}$, then $\mathbb{S}$ must have an $l$-Sylow complement ${ }^{4}$. Therefore the commutator-subgroup $\mathbb{( S O}^{\prime}$ does not coincide with (8), contrary to $(* *)$. Hence $n(\mathfrak{R})=2 l^{a}$. So $(1+l x) 2 l^{a}=l^{a}\left(l^{a}+1\right)\left(l^{a}-1\right) / 2$. $4(1+l x)=\left(l^{a}-1\right)\left(l^{a}+1\right)$. Thus $5 \equiv 0(\bmod l)$. This is a contradiction.
2) $\Pi$ contains only the characters of highest kind for $p$ besides $A_{1}$. Then we have $1+l x \geqq 1+\left(l^{a}-1\right) / 2=\left(l^{a}+1\right) / 2$. Hence $n(\Omega) \leqq\left(l^{a}-1\right) l^{a}$. Since $1+l x \equiv 0\left(\left(l^{a}-1\right) / 2\right), n(\mathfrak{Z}) \equiv 0\left(\left(l^{a}-1\right) / 2\right)$. Therefore $n(\mathbb{Z})$ is either $\left(l^{a}-1\right) l^{a} / 2$ or $\left(l^{a}-1\right) l^{a}$. If $n(\Omega)=\left(l^{a}-1\right) l^{a} / 2$, then $1+l x=1+l^{a}$ is not congruent modulo $\left(l^{a}-1\right) / 2$. If $n(\mathfrak{Z})=\left(l^{a}-1\right) l^{a}$, then $1+l x=\left(1+l^{a}\right) / 2 \equiv 1$ ( $\mathrm{mol} l$ ).
3) Therefore $\Pi$ must contain character $A_{2}$. Since $\Pi(P) \geqq A_{1}(P)$ $+A_{2}(P)>1$ for $p$-singular element $P$, there exists an element $P^{*}$ belonging to a conjugate of $\mathfrak{R}(\mathfrak{R})$. This means $n(L) \equiv 0\left(\left(l^{a}-1\right) l^{a} / 2\right)$. Hence $1+l x \leqq 1+l^{a}$. Thus we can conclude that index of $\mathfrak{M}(\mathbb{R})$ in $\mathfrak{G S}$ is equal to $1+l^{a}$ and $\Pi(G)=A_{1}(G)+A_{2}(G)$. Therefore $\Pi(1)=1+l^{a}, \Pi\left(P^{i}\right)=2$, $\Pi(L)=1$ and $\Pi(M)=0$. However, $\Pi(G)$ equals the number of letters not altered by the permutation-representation of $\mathbb{C S}$. Since $\Pi(G)=1+l^{a}$ only for $G=1$, we have a $(1-1)$ representation. From the above facts, $\mathbb{C}$ is a doubly transitive permutation group on $1+l^{a}$ letters in which each element is determined uniquely by the images of three letters. Therefore by the method of Zassenhaus we can construct "almost-field" (Fastkörper) $F$ corresponding to $\mathfrak{R}(\mathbb{Z})$ and its multiplier $M$ corresponding to a $p$-Sylow subgroup. Since $M$ is an abelian group of order $\left(l^{a}-1\right) / 2$, $F$ is considered as a "Teilfastköper" of Galois field $G F\left(l^{a}\right)$. In our case the order of $M$ is not even, but it is prime. Therefore we can use the method of Zassenhaus [5]. Thus we have proved $\mathbb{C B} \cong L F\left(2, l^{a}\right)$.

## 5. Remark

The conditions in our Theorem can be replaced by the conditions $n=2 p+3, t=(p-1) / 2$.

Theorem. If $n=2 p+3$ and $t=(p-1) / 2$, then $2 p+1$ is a prime power and $\mathbb{G} \cong L F(2,2 p+1)$ including $L F(2,7)$ and $L F(2,11)$.

Proof. Since, as in 3, $n=2 p+3$, the possibilities of degrees of of characters belonging to $B_{1}(p)$ are as follows:
$1, p+1,2 p+1, u p+1, p^{2}-1, \frac{n-2}{u} p-1=(u+2) p-1, p-1,(u p+1) / t$, $(2 p+1) / t,(p+1) / t,(p-1) / t,\left(p^{2}-1\right) / t,((u+2) p-1) / t$, where $2 p=u^{2}-2 u-1$.

Let $t=1$, then $p=3$. In this case $n$ does not have the form $n=F(3, u, 2)$. Therefore $B_{1}(3)$ must consist of one " 1 ", one " $2 p+1$ " and one " $p^{2}-1$ ". Since this is a special case in 4 , we have $\mathscr{C} \cong L F(2,7)$. But this group does not appear in former Theorem.

Let $t>1$. If " $(u p+1) / t$ " exists, then $u+1 \equiv 0(\bmod t)$. Since $2 p=u^{2}-2 u-1, \quad 2(p-1)=(u-3)(u+1) . \quad(p-1) / 2=(u-3)(u+1) / 4=$ $\frac{u-3}{4}(u+1)$. This means $\frac{u-3}{4} \leqq 1$. We have $u=5$ and $u=7$. For $u=5$, $p=7$ and $(u p+1) / t=12$. Therefore $B_{1}(7)$ must contain " 13 ". But this can not divide $g=1736$. For $u=7, p=17$ and $(u p+1) / t=15$. Therefore $B_{1}(17)$ must contain " 16 ". But this can not divide $g=17 \cdot 2 \cdot 35 \cdot 18$.

If " $(2 p+1) / t$ " exists, then $3 \equiv 0(\bmod t) . ~ A s t>1, t=3$ and $p=7$. $B_{1}(7)$ must contain the character of degree $x$ satisfying $1+(2 \cdot 7+1) / 3=x$. $x=6=p-1$. This means $t \equiv 0(\bmod 2)$.

If " $(p+1) / t$ " exists, then $2 \equiv 0(\bmod t) . \quad$ As $t>1, t=2$ and $p=5$. Since $(p+1) / t<(2 p+1) / t$, by a theorem of Tuan ([5], Theorem 4) $(\mathcal{G} \cong L F(2, p) . \quad$ This contradicts $n=2 p+3$.

If " $(p-1) / t$ " exists, then $\mathbb{B} \cong L F(2, p)$. This contradicts $n=2 p+3$ too.

If " $((u+2) p-1) / t$ " exists, then $u+1 \equiv 0(\bmod t)$. Since $2 p=$ $u^{2}-2 u-1,2 p-2=(u-3)(u+1) . \quad u+1=\frac{4}{u-3} \frac{p-1}{2} . \quad 4 \geq u-3$. We have $u=5$ and $u=7$. For $u=5, p=7$ and $((u+2) p-1) / t=15$. Therefore $B_{1}(7)$ must contain " 14 ". But this can not be $x p+1$. For $u=7, p=17$. $((u+2) p-1) / t=19$ does not divide $g=17 \cdot 2 \cdot 35 \cdot 18$.

If " $\left(p^{2}-1\right) / t$ " exists, then $B_{1}(p)$ must consist of one " 1 ", one " $2 p+1$ " and $t$ " $\left(p^{2}-1\right) / t$ ". Since $\left(p^{2}-1\right) / t=2 p+2$, the proof in 4 is valid in this case. Thus we can conclude that $2 p+1$ is a prime power and $\mathbb{G} \cong L F(2,2 p+1)$.

This completes the proof of Theorem.

## Bibliography

[1] R. Brauer: On groups whose order contains a prime number to the first power, Amer. J. Math. 54, part I, 401-420, part II, 421-440 (1942).
[2] R. Brauer: On permutation groups of prime degree and related classes of groups, Ann. of Math. 44, 57-79 (1943).
[3] O. Nagai: Supplement to "Note on Brauer's Theorem of Simple Groups", Osaka Math. J. 5, 227-232 (1953).
[4] W. F. Reynolds: On finite groups related to permutation groups of prime degree, Bull. Amer. Math. Soc. 61 (1955).
[5] H. Tuan: On groups whose orders contain a prime number to the first power, Ann. of Math. 45, 110-140 (1944).
[6] H. Wielandt: p-Sylowgruppen und p-Faktorgruppen, Crelle J. 182 (1940).
[7] H. Zassenhaus: Kennzeichnung endlicher linearer Gruppen als Permutations gruppen, Abh. Math. Sem. Univ. Hamburg 11 (1936).


[^0]:    1) This result is not published yet. Cf. Math. Rev. 14, p. 843 (1953).
    2) This was reported in [4] without proof.
