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On Compact Galois Groups of Division Rings

By Nobuo NOBUSAWA

On the subject of general non-commutative Galois theory, the
present author has proved the existence of a fundamental correspondence
between topologically closed regular subgroups and subrings for Galois
division ring extensions with locally finite Galois groups,—in this case
the groups are compact.0 The main object of this paper is to give a
necessary and sufficient condition for such compact Galois groups. In
§ 1 it will be proved that a locally finite regular automorphism group
is essentially outer, that is, can not contain but a finite number of inner
automorphisms. Conversely we shall show in § 2 that an essentially
outer regular automorphism group is necessarily locally finite when the
division ring extension is algebraic. At the same time, an extension
theorem and a normality theorem will be proved for the Galois exten-
sions in [7]. And lastly in § 3 it will be proved that in the Galois
extensions under the same assumptions any finite extensions are simply
generated.

§ 1. Locally finite automorphism groups.

Let © be a group of automorphisms of a division ring P. All the
©-invariant elements of P form a subring Φ of P in this situation
we say that © is an automorphism group of P/Φ.

DEFINITION. © is said to be locally finite when each element of P
is mapped by © to at most a finite number of elements.

It is clear that, if there exists an automorphism group of P/Φ
which is locally finite, then P is locally (left) finite over Φ, that is, any
subring generated by Φ and a finite number of elements of P has a
finite (left) rank over Φ. For, such a subring is always considered to
be contained in a ring which has a finite automorphism group over Φ
and the ring with a finite automorphism group over Φ has a finite
rank over Φ.2)

1) See [7].
2) Its rank is not greater than the number of elements of the automorphism group.

See [3].
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The regularization ©* of a given automorphism group © is defined
thus: if © is an automorphism group of P/Φ, we consider all the
inner automorphisms of P leaving each element of Φ invariant, that is,
the inner automorphisms induced by all the elements of V(Φ)3) ©* is
the group generated by these inner automorphisms and @. We say ©
is a regular group if ©* = ©.

The main idea of the proof of the next Lemma is due to D. Zelinsky
who kindly permitted me to cite it here.

Lemma 1. Let © be a regular group of P/Φ which consists only of
inner automorphisms (hence of all the inner automorphisms induced by
the element of V(Φ)). If there exists an element of P that is moved
really by © but to at most a finite number of elements, then V(Φ) is a
finite field, that is, © is a finite abelian group.

Proof. Let σ be the element as mentioned in the Lemma. Then
there exists such an element p(Φθ) in V(Φ) that pσ/o^Φσ by the
assumption.

1°. First we shall show that V(σ> Φ) is a finite field where V(σ, Φ) is
the centralizer of the ring generated by σ and Φ. For any element T
of V(σ, Φ) we denote by 7T the inner automorphism induced by 1-f /oτ.
Since 1-hjθτe V(Φ), Ir is contained in ©. Now it will be shown that,
if rφr' (T, r'e V(σ, Φ)), then σ/τΦσ//.° For, assume σ/τ==σ/τ/. Then

(l f/oτ)- 1 =(l + /o r
/)σ(l4 /oτ/)-1 and hence (1 +pτ'Γl(l +pτ)σ((\ +

-i(l + /or))-ι==σ.) that is, (l-t-/o r')-1(l + /oτ)=r"e V(σ, Φ). This implies
that p(τ—r'τ")=τ"—le V(σ, Φ). Since p is not contained in V(σ, Φ),
we have T — τV = r"—1 = 0, that is, τ = r', which is a contradiction.
Considering then that {σ / τ | τe V(σ, Φ)} must be finite by assumption,
we get the result that V(σ, Φ) is a finite set. Since it is a division
ring, it is a finite field.

2°. Next we shall show that [F(Φ) : V(σ, Φ)]/<°o. Let αr1σαl(=σ),
a^σoi2, ••• , α^1σαlf be all the different images of σ by © where «f are
elements of F(Φ). Now for any element ξ of F(Φ), we have |~1σf=αr1σαf

for some element αf that is, fα^e F(σ, Φ) and hence ^G V(cr, Φ)Λ f .
This implies that o^, <^2, , ΛW form a (not necessarily independent)
V(σ, Φ)-basis of V(Φ). Thus we have [F(Φ) : W, Φ)]/<oo.

By 1° and 2°, F(Φ) is a finite field.

3) V(0) implies the centralizer of Φ in P.
4) All our operators will be written on the right. As a result of this convention, a

product $t of operators means the composite obtained by performing first 5, then t.
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The proof of the next Theorem on a necessary condition for locally
finiteness is now quite easy by Lemma 1.

Theorem 1.5) Let © be a regular automorphism group of P/Φ. //
© is locally finite, then ® contains at most a finite number of inner
automorphisms of P.

Proof. If ξ> is the set of all the inner automorphisms contained in
©, then Φ is a locally finite regular automorphism group of P/Ψ where
Ψ is the subring of all the ^-invariant elements of P. If PΦΨ, then
ξ> is a finite group by Lemma 1. And if P = Ψ, then § consists only
of the identity automorphism.

We insert here an example of finite regular automorphism groups
which consist only of inner automorphisms.

Let F be a finite field consisting of p elements (p is a prime number)
and K an infinite algebraic extension of F. We construct a non-
commutative polynomial ring K\_x~\ where x is an indeterminate and
the multiplication of x with an element k of K is defined so that
xk = kpx (βe/Q Now we can make the quotient division ring K(x) of
K\_x~]. The center of K(x) is F. Let L be any finite extension of F
contained in K. All the inner automorphisms induced by the elements
of L make a finite regular automorphism group which consists only of
inner automorphisms.

REMARK. From Lemma 1, it is clear that if the characteristic of P
is 0 then © is an outer automorphism group, that is, © contains no
inner automorphism except the identity automorphism.

§ 2. Essentially outer automorphism groups and Galois theory.

It has been shown in § 1 that a locally finite regular automorphism
group contains only a finite number of inner automorphisms, but it will
be proved that conversely a regular automorphism group of P/Φ which
contains only a finite number of inner automorphisms is necessarily
locally finite if P is (left) algebraic over Φ.

Let 2 be a subring of P containing Φ. 2 is considered as a
Φ7-module where Φ/ signifies the ring of operators induced by left
multiplications of the elements of Φ. The most important role is
played by 2Jί(Σ) which we define as the set of all the Φ/-homomor-
phisms of Φ^module Σ into P. 2Ji(Σ) is then a Σr (left)-Pr (right)
two-sided module.

5) The same result has been first given by T. Nagahara and H. Tominaga. See [5],
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Lemma 2. // [2 : Φ]/ = »<oo, then [3JΪ(Σ) : Pr~]r = n.

Proof. Let ξly ξ 2 y ••• , ξn be an independent Φ/-basis of 2. Any
element of 2JΪ(2) is then uniquely determined by its restriction to f, .
If e{ are the elements of 9JΪ(Σ) such that f/β f = l and 1̂  = 0 O'Φl),
then 0i, 02, ••• , en form an independent Pr-right basis of SDΪ(2).

Let © be an automorphism group of P/Φ. We denote by ©s the
restrictions of © to 2 and by Ss (S G ®) the restriction of S to 2. It is
clear that ©^P, is a 2r—Pr two-sided submodule of 2Ji(Σ) and SsPr is
an irreducible Σr—Pr two-sided submodule of 3Ji(2).

Lemma 3. Let 5JΪ be an irreducible Σr—P,. two-sided submodule of
SJJΪ(Σ) which is isomorphίc to S2Pr. // an element s of %l corresponds to
Ss in this isomorphism, then s = S2(l s)/.

Proof. For any element σ of 2, σrs corresponds to σrS2 in this
isomorphism, but <rrS2 = S2(σ S2). On the other hand s(σ Ss) corres-
ponds to Ss(σ S2), and hence σrs = s(σ S2). Then, σ 5 = l σr5 = l 5(σ Sϊ)
= σ Ss(l s)/. Hences 5 = SS(1 5)/.

DEFINITION. P is said to be (left) algebraic over Φ if any subring
generated by Φ and an element of P has a finite (left) rank over Φ.

Theorem 2. Let ® be a regular automorphism group of P/Φ where
P is algebraic over Φ. // © contains only a finite number of inner
automorphisms, then © is locally finite.

Proof. It will suffice to show that, for any subring 2 of P which
contains Φ and has a finite rank over Φ, ©2 is a finite set, because P
is algebraic over Φ and each element of P is contained in such a
subring 2.

By Lemma 2 we have [®sPr: Pr]r<[3Ή(2) : Prl = [2: Φ]/O and
hence there do not exist infinitely many irreducible 2r— Pr two-sided
modules which are not isomorphic with each other. On the other hand,
let T and S be two elements of © such that T2Pr is isomorphic to
S2Pr. If T^Pr G°£P) corresponds in this isomorphism to S2, then by
Lemma 3 Tspr = Sa(l Γs/or)/ = Sa/o/, that is, T2 = S27 where I=Plp~le®.
But the inner automorphisms in © are finite in number, and this
implies that ©s is finite.

Lemma 4. If ® is a locally finite regular automorphism group of
P/Φ, then 2JΪ(Σ) = ®sPr for any subring 2 which has a finite rank
over Φ.
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Proof. 2 is imbedded in a subring A of P on which © induces a
finite regular automorphism group ©Λ over Φ. Each element of 2Ji(2)
can be then extended to an element of 9Jϊ(Λ), in other words, 2JΪ(2) is
considered to be the restriction of $ΐ(Λ) to 2. But 2JΪ(Λ)=®APr since
the elements of Pr-basis of SOΐίΛ) in the sens of Lemma 2 are contained
already in ©ΛΛ r. Hence 5K(S)=©aPr.

Theorem 3. (EXTENSION THEOREM) Let the maximal automorphism
group © of P/Φ be locally finite For any subring 2 of P containing Φ,
#wy isomorphism T of 2 ι«f 0 P w/K£/t is the identity on Φ can be extended
to an automorphism T of P.

Proof. 1°. First assume that [2 : Φ]/< °o. Then T e sJϊί(2) = © 2Pr

by Lemma 4. Since T'Pr is an irreducible 2r—Pr two-sided module, it
is isomorphic to S^Pr for some element S of @. As in the proof of
Theorem 2y we can show that T^ = S^I=(SI)^ for some inner automor-
phism / of ©. If we put S/=T, T is an extension of T.

2°. Generally let 2 be the join of the subrings ΣΛ which are finite
over Φ: 2 = \J2Λ. Let TΛ' be the restriction of T to 2*. T* is always

Λ

extendable to an automorphism of P by 1° we denote the set of all
these extensions of TΛ

f by F,a. Then EΛ is a topologically closed set.
If f\EΛ = φ, then there exist a finite number of a{ (ί = l, •••, m) such

Λ
m

that f\Eai = φ, for © is a compact group. If we consider 2« which is
ί = l

generated by 2*f. (ί = l, ••• , w), then Eβ= f\Eai = φ. This is a contra-
^i

diction by 1°. Now any element T of (~\EΛ is the required extension

of T.

If © is a locally finite automorphism group, then P is locally finite
over Φ and it is possible to introduce a Haussdorf topology in ®.6) In
[7] the present author showed the fundamental correspondence between
topologically closed regular subgroups and subrings when the maximal
automorphism group © of P/Φ is locally finite. But it will be shown
that, if © is a locally finite regular automorphism group of P/Φ, its

topological closure © is the maximal automorphism group of P/Φ which
is naturally locally finite.

Theorem 4. // © is a locally finite regular automorphism group of

P/Φ, then its topological closure © is the maximal automorphism group
of P/Φ.

6) See [7],
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Proof. Let T be any automorphism of P leaving each element of
Φ invariant and 2 any subring containing Φ which has a finite rank
over Φ. Then Γ seaW(2)=®aP r by Lemma 4 and, as in the proof of
Theorem 2y T2 = (S7)2 where S/G © since & is regular. This implies
Te®.

Let Σ be a subring of P containing Φ, and ξ> the subgroup of @
consisting of all the automorphisms of © which leave 2 setwise invariant.

Theorem 5. (NORMALITY THEOREM) Let the maximal automorphism
group © of P/Φ be locally finite. Then 2 is a Galois extension of Φ
(that is, there exists an automorphism group of 2/Φ) // and only if the

topologίcal closure §* of the regularization ξ>* of £> is equal to ®.

Proof. First assume that 2 is a Galois extension of Φ. Since any
automorphism of 2 which is the identity of Φ is extendable to an
automorphism of P, that is, to an automorphism contained in φ, and
since Φ(©(2))=2,7) Φ is the same as the ring of all the ^-invariant
elements of P. This implies that ξ>* is a regular automorphism group

of P/Φ. Then ξ>* = © by Theorem 4.

Next assume that §* = ©. Let Ψ be the ring of all the ^-invariant

elements. Then, as before, ξ>* is the maximal automorphism group of
P/Ψ and hence Ψ — Φ. Of course £> is an automorphism group of 2/Φ,
this is, 2 is a Galois extension of Φ.

§ 3. Structure of the Galois extensions.

Using a result due to Kasch, it will be proved that, if P is a
Galois extension of Φ with the locally finite maximal automorphism
group ®, then any subring which is finite over Φ is simply generated
over Φ. We always assume that Φ is not a finite field, for, if Φ is a
finite field, P becomes a field and the assertion is clear.

Lemma 5. (KASCH) Let 2 be a subring of P containing Φ. For any
finite number of element s19 s2y ••• , sn of 2Jt(2), non of which is the
identity mapping, there exists an element σ of 2 such that σs. φσ

(ί = l, -,*).

Proof. We shall prove the lemma by induction. Since it is clear
when « = 1, assume that the lemma is true for sί9 s29 ••• , 5M_ l β Then
there exists an element σ of 2 such that σ '̂  φσ-' (/ = !, ••• , n—ϊ). On

7) ®(Σ) implies the subgroup of @ consisting of all the automorphisms in (§ which leave
each element of Σ invariant, and Φ(Q) implies the subring of all the ξ)-invariant elements.
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the other hand let σ" be such an element of 2 that σ"sn=t=σ". Now we
consider the element σf + φσ" where φ is any element of Φ. We have
(σ' + φσf')Si-(σ' + φσ") = (σ'si-σ/)+φ(σ/fSi-σf/). Since σ's{-σ' φ 0 for

f = l, •••,«—!, and cr"sf —σ"Φθ for / = n, there exist only a finite
number of elements φ in Φ such that they satisfy the equality:
(σ'si—σ/) + φ(σ/'si—σ") = Q for some i. But Φ is assumed to contain in-
finitely many elements and hence there exists such an elemeot θ in Φ
that, if we put σ = σ -f θσh', then σsz φ σ f or i = 1, - , n, which completes
the proof of Lemma 5.

Theorem 6. // P is a Galois extension of Φ with a locally finite
regular automorphism group ©, and if 2 is a subring containing Φ which
has a finite rank over Φ, then there exists an element a in 2 such that 2
is generated by a and Φ.

Proof. We have 3JΪ(2)= ©2Pr by Lemma 4 and we apply Lemma 5
to all the elements of ©2 except the identity mapping (®^ is a finite
set.). Then we can find an element a in 2 such that a is really moved
by any element of ©s except the identity mapping. It will be shown
that 2 is then generated by a and Φ. For, if it is not so, there exists
an element of β such that /3SΦ/3 and aS = <x by Galois theory, which
is a contradiction since a is moved by S2.

Corollary. Under the same conditions as in Theorem 6, there exists
an element a in 2 such that a is mapped to all its different images by
the elements of ©s.

Proof. We may choose an element oί such that 2 is generated by
a and Φ. Then each element of ®s is uniquely determined by its
restriction to oί.

REMARK. In the case that © is an outer group, if [2: Φ]/ = », then
the number of different images of a is n.

(Received March 28, 1956)
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