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On the Estimation of the Quality of a Group of Lots
by the Single Sampling Inspection in

Destructive Case

By Sadao IKEDA

Summary. A. Kolmogorov [1] considered the estimation of the
quality of a group of lots by the single sampling inspection in destruc-
tive case. The sampling inspection must be used to improve the quality
of the group of lots through the inspection, and the detailed plan must
be devised in each practical case, but it may be useful in many cases
to estimate the qualities of the group of lots before and after the
inspection. In this paper we will try to construct the estimates to
evaluate the improvement in the quality through the sampling inspection
adopted.

For this purpose, in Section 1 we extend the results of M. A.
Girshick, F. Mosteller and L. J. Savage [2] from binomial case to
hypergeometric case only for the finite regions. Some properties of the
operating characteristic curve are stated in Section 2, and we investigate
in Section 3 the estimates of three important qualities of the group of
lots inspected.

1. Unbiased estimates in hypergeometric sampling

In this section we show that the unbiased estimates obtained in
hypergeometric case analogously to those of M. A. Girshick, F. Mosteller,
and L. J. Savage [2] are unique for the simple regions. The contents
of this section are the direct extension of the results in the papers,
[2], L. J. Savage [3] and J. Wolfowitz [4] for the finite regions. The
estimates obtained here are useful for the unbiased estimation in the
sampling where the binomial approximation is impossible.

We start with the following definitions.

DEFINITION 1. A region R is a subset of all two dimensional non-
negative integer points which contains the origin, i. e.,

R = {α — (x, y) I x, y : non-negative integers, (0, 0) 8 R}.

DEFINITION 2. The path φ(a, β) is a set of points {cφ / = 0, 1,
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2, ... , n} satisfying the following conditions :

a - £#, β - <#, K°, rtf1, ... , c&H} C #,

oί' = (*, ,Λ), f, = 0 or £,. = 1,

6. = 0 implies xi+1 = *,. + !, yi+1=yf,

Si = 1 implies #ί+1 = *,., Λ+i =Λ + 1 (i = 0, 1, ... , «-l).

The set of all φ(a, β) is denoted by K(ay β).

DEFINITION 3. The probability of path φ(a, β) is defined as follows :

8 = 0

where for i = 0, 1, ... , n— 1,

Briefly we denote it by ff p(oc*)q(a*).
Φ

DEFINITION 4. If there exists a path φ(0, a) for a point <x in Ry

then α: is called an accessible point y and R is the totality of the accessible
points in R.

If there exists a path φ(0, a) for a point a not in ./?, then a is
called a boundary point of 7?, and the totality of boundary points of R
is denoted by B.

DEFINITION 5. For any point a = (x, y), I(a)~x+y is called the
index of ay and

is called the index of R.
We say a region R is finite if the index of R is finite.

DEFINITION 6. If the equality

Σ Σ P{Φ}==ι
(*£B φζ/CCO,*)

holds, then R is called a closed region.

DEFINITION 7. For any two paths φ(a, β) and φ'(/3, 7), the path
φ"(tf, 7) which coincides with φ(a, β) between a and β and with φx(/3, 7)
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between β and γ is denoted by

Φ"(<*,γ) = φ(<*,β) φ'(β,7),

or briefly by φ φ'.
Under these definitions we prove the following theorems.

Theorem 1. // R is a finite region, then R is closed.

PROOF. For any non-negative integer ny we define :

E(n)= {a\I(a) = n}9

R*+1 = {a* α* = (#*, j;*) : x* = x + 1, y* = y or x* = x,

y* = jn-l for a= (x,

then the boundary of index n + \ is clearly

**n+l == J^n+i -^n+i *

In general, the boundary of R is as follows :

and in particular if the region is finite, there exists a positive integer
N such that

(1) B = ±BH+l.
n=Q

The probability (with regard to R) of the point a is denoted by

P{«}= Σ P{Φ}>
φ£l£(0, βO

and for any set A we define

then the following equalities hold :

(2)

( 3 ) P{Rn} = P{Λ*+1}, (n - 0, 1, 2, ...),

( 4 ) P{Bn+1} = P{R*+1} -P{Rn+1}, (n = 0, 1, 2, ...) .

From (1), (2), (3) and (4), we have
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= P{R0} = P{R*} = 1 .

Thus R is closed and the proof of our theorem is complete.

Lemma 1. // R is a closed region and a region Rr is included in R,
then R' is also closed.

PROOF.

= l-limP{Rn},
W->oo

and thus the closedness of R is equivalent to the equality

Let Rή be the totality of accessible points of index n in R ', then clearly
we have :

and if we denote the probability with regard to R' by Px{ },

Thus, we can conclude that

and this implies the closedness of R'.

Theorem 2. // R is a closed region, and reJ?, then the equality

Σ .._£„ ..Σ ./{φ' Ψl = .._Σ _P{Φ'}

holds.
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PROOF. If we define

= P{Φ}>~7 L̂-J Jx.^-J.

then we have

Σ Σ Σ P{φ'φ}=Q(r) Σ P{Φ'}
<*£B φ'ζκίo,τ) φζκζr,a ) Φ'e*co,Ό

Let R' = R-{r}, then τ6£', where B' is the boundary of R'. Then

(5) Σ Σ P{φ}
<*£B φΞ*CO fΛ)

= Σ Σ Pίfhl -*- ̂  ^

-Σ Σ

Σ

where K'(ΰy a) is the set of all paths φ(0, a) in I?7. On the other hand,
we have

(6) Σ Σ ^{φ}=Σ Σ m+ Σ

R' is closed by Lemma 1, and the left hand members of the equal-
ities (5) and (6) are both unity, i. e.,

(7) Σ Ί1ΛP{Φ} = Έ1/ ^Σoα

(5), (6) and (7) implies the equality

G(τ) = 1,

and this completes the proof of our theorem.
The proof of above theorem shows only that

so that we can replace the equality in the theorem by the equality:

gφfiΣ>/{Φ/ Φ}=ί>{Φ/}

for any <// in K(0, r).

Theorem 3. Let R be closed, and reR. //, for any aeB, the
function of a:

*>(«) =φ,6Σ τ) φ^aP{Φ' Φ}/φζ Σα/{Φ}

is independent of any p(as), then φ(a) is an unbiased estimate of /(/>(«*),

/(/>(«'),
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PROOF. By the result of Theorem 2, it is easy to show that

This means that φ(a) is an unbiased estimate of f(p(of), q(of)).

Theorem 4. // the probability of any path φ 6 K(Q, a) depends only on
a, i. e.,

P{φ] =

is constant for any path in K(Q, a), then φ(a) does not depend on any

PROOF. We can easily conclude the result of the theorem from the
fact that

φ' φ€K(Q, a)

and the condition of our theorem.
If the condition of Theorem 4 is fulfilled, then

φ(a) = &(0, r)k(r, a)/k(Q, a),

and

f(P(<*9), Q(a*)} = &(0, τ)P(τ) ,

where k(a, β) is the number of paths contained in K(a, β), and for φx

in /f(0, T)

P(r) = Π P(<**

This occurs for example in the binomial case.
Now we show that the simplicity of R is the necessary and sufficient

condition for the uniqueness of φ(<x) under suitable conditions. The
definition of simplicity is as follows :

DEFINITION 8. A region R is simple if all the points of index n
between any two accessible points of index n are also accessible for all
n, i. e., if χ + y = n, and for some positive integer k,

a0 = (x,y)eR, ak = (x-k,

then for all j: (1 <j<^k)y

Theorem 5. Suppose that the conditions (i) to (iv) are satisfied:
( i ) R is finite.
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(ii) The condition of Theorem 4 is fulfilled.
(iii) The class of probabilities is such that we can choose arbitrarily small

values of p(^) and q(oP) uniformly in a.
(iv) // there exists at least one boundary point whose index is greater

than n, then, for any sequence of boundary points of index ny {tf0,
a\ > > at] 9

a,. = (Xj,yj), xj+1 = Xj-l, y.+1 = y; + l, (j = 0, 1, ... , t) ,

there exist two sets of constants which are not all zero {CQ, c19 ... ct},

{έ0, b19 ... , bu} and a sequence of points {β0, βl9 ... , βu} in (R+B)
of which I(βf)^n9 satisfying the equality

(8) ΣίcJP(aJ) = ±biP(βi)
j = 0 ί = 0

identically in p(a*)y where φ G /Γ(0, cc) and

P(oc) =

Then, in order that the estimate <p(a) is the unique proper unbiased
estimate of f(p(a*), q(of)), it is necessary and sufficient that the region R
be simple.

PROOF. (1°) Necessity.
Suppose that <P(OL) is the unique proper unbiased estimate of f(p(oc*)>

q(a*)) and R is not simple. (The notion proper is the same as bounded.}
Then there exists a sequence of boundary points {aoy aly ... , at] such
as

cίj = (Xj, yj), xj+1 = Xj—1, yj+1 =yj + \, /(<*,•) = w, (j = 0, 1, ... , ί) ,

We can choose the minimum value of n which satisfies the above
conditions. Then, clearly the boundary B of R contains at least one
boundary point of index ^>n.

By the condition (iv) of our theorem there exist two sets of con-
stants {c0, c19 ... , ct}, {b0, bl9... ,bu} and a sequence {/30, βί9 ... , βu} in

(R+B) of which 7(/Sf )^«, satisfying the equality (8). Now we define a
new function on B such that

j = 0, 1, ... , ί),

) , (αe β- K, ̂ , ... , αj) .
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Then, m(a) is not identically zero, and

Σ m(a)k(Q, a)P(a)

a; 6 .β— { α j Q i O5χ, ... , O5f }

= Σ CyPK )- Σ Wtfi) = 0

This means that m(a) + φ(a) is another proper unbiased estimate of
f(p(of), q(of)), which contradicts the uniqueness of φ(a).

(2°) Sufficiency.
Suppose that R is simple, and φ(a), φ'(cC) are two not identically

equal proper unbiased estimates of f(p(cf), q(<**)). Then

is not identically zero, and

( 9 ) Σ m(a)k(0y a)P(a) = 0 .
Λ£B

Since R is simple, we can choose the boundary point aQ without
loss of generality such that

(a) m(a0) = 0, aQ = ( x 0 9 y 0 ) , and 7(α0) = w0,

(b) m(α) =0 for any a in B that is /(**) <^ n0 ,

(c) if 7(α) = Λ O , m(α) Φ 0, and α: = (jp, j) is in B, then

(d) if /(<*) = »0, a e R,

That is, #0 is the boundary point of lowest index and lowest jy-coordinate
such as w(α0) = 0.

Now, from (9), we have

Σ m(a)k(Q, a)P(a)
Λζβ

9 a)P(a) + m(a0)k(Q9 ^)P(aQ) = 0 ,

which leads us to

(10) I m(ajk(09 a«)\ = \ Σ m(a)k(09 a)P(a)/P(a0) \

for any value of p(<x*).
Here we consider the value of P(a)/P(a0). If there exists a point

#! in B such as
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^) = HO, m(a1) 4= 0 , ̂  =

then, by the simplicity of Λ, we have

and all the points α: — (#, jy) such as x1<^x<^xQ9 yQ=y or Λ: = Λ:O,
ι are accessible points. Thus, if we define the paths

φ =

then the equality

(11) Pto)/P(αg = flP(a*)q(a*)/ ff p(<*9

Φ Φi Φ Φθ

Φi Φo

holds.
For any point tf in β such as w(tf)Φθ and 7(α)4=«0, the inequality

holds. Then there exists a point c^ in R such as /(^J — w0,

Λ) and

From the simplicity of 7?, (ΛΓj , ,y0) is in R, and if we define the paths

Φi = φι((#ι , y0),<X), φ0 = Φo((^ι > JΌ)^o) >

then the equality

(12)
Φi Φ

holds. By the condition (d) stated above, //" p(a*)q(cf) contains at least
φl

one
From the condition (i), (iii) and the equalities (11), (12), it is clear

that the equality (10) can not hold. Thus, φ(a) must be unique.
This completes the proof of our theorem.
In the case of binomial sampling the conditions of Theorem 5 are

satisfied, and also in the case of hypergeometric sampling they are all
fulfilled. In the latter case the probability at the point ct = (x, y) of
index n is as follows :
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Since

P(<*) = Π P(<*')4(<*')Φ
Nn v-1/ a;~1

the condition of Theorem 4 is satisfied.
The condition (iv) of Theorem 5 is satisfied as follows :

N . m\ N

- -
NJ&V N

yt \ίn+ίί 1\m m-i/ j\n-m/ j
. VΊ /v I — 1; 77 f /, __ L \ 17 I n__^L
£i0N(N-l)...(N-n)JA\p NjfAV N

7Vn+1(-lp // /, f \ n'^ („ j
N(N-l)...(N-n)&\p~NJ /A V^

thus, if we put

aj = (Xj9 yj), I(aj) = Λ, cy = (-1) ,̂ (j == 0, 1, 2, ... , f),

then the equality (8) is satisfied.
Now we construct the unbiased estimates of /> and pq in the

following example.
Unbiased estimates in multiple sampling inspection are obtained by

the same principle.

EXAMPLE. Unbiased estimates in the single hyper geometric sampling
inspection

In this case we have

R = {a= (χy y

B= {a= (x, y
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Clearly R is simple and R = R.

Unbiased estimate of p is φ(a)=^-9 since τ = (0, 1), &(0, τ)=l and

Unbiased estimate o f ̂  i s ̂ >(α) = = 1 . , since τ=(l, 1) , *(0, T) =2

and

Σ
φ'6«CΌ,Ό φ'

For large W, these estimates coincide with those in binomial sampling.

2. Some properties of operating characteristic curve

In this section we remark two properties of the operating charac-
teristic curve. Property 1 is mentioned by A. Kolmogorov [1], which
is useful together with Property 2 when we determine the detailed
sampling inspection plan specifying the lot tolerance fraction-defective.

First we define our inspection plan and operating characteristic
curve.

DEFINITION 1. We use the single sampling inspection plan (N, n,
c, d), where JV, n, cy and d are respectively size of lot, size of sample,
acceptance number in inspection, and rejection number in inspection.
Here d = c+ l, and

DEFINITION 2. Conditional probability that the number of defectives
inspected is m when the fraction-defective in lot is qy is denoted by

Pm(4),

n)!AT7yV i Yjf-1/! ~ A
Wl {ίoV N) //o \ Q N) ,

V 0 , (otherwise).

For the inspection plan (N, ny cy d), the function of q:

is called the operating characteristic function.
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PROPERTY 1. L(q) is monotone decreasing, and if we put q'~q + —,

then the function

F(q)=L(q)-L(<f)

is uni-modal, and takes its maximum value at the points

c

This means that L(q) decreases most rapidly in the neighborhood of the

point tf0 = ̂ £-j-.

PROPERTY 2. //, qQ=-^-^ = -^-^ and c^c29 then

holds, where Fλ(q) and F2(q) correspond to (N, nίy clf d^ and (N, w2, c2J d2)
respectively. That is, when the sample size n increases under the condition

that _^ι is constant, the operating characteristic curve decreases more

rapidly in the neighborhood of q0 = — ̂ r .
n — j-

3. Estimation of the quality of a group of lots by the

single sampling inspection

Suppose there are 5 lots of size Λf each, whose fraction-defective
are

ft, ft, ••• > <ls>

and we adopt the single sampling inspection (N, n, c, d) for each lot,
where the unit is destroyed by the inspection.

Let the number of defectives before inspection be

at every lot, and the number of defectives in inspection be

respectively.
Total number of units contained in the group of s lots is

and the number of defectives in the group is
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r = l

Then the quality of the group before inspection is of fraction-defective

Y 1 s

( 1 ) Qcp == ΊnΓ = Σ Q-r

If s7 lots are accepted through the sampling inspection adopted,
then the total number of defectives accepted is

where zr are the chance variables defined by

1 if xr <: c,

0 if xr :> rf, (

The ratio of Yx to Ry i. e.,

must be considered when we discuss the decrease of the defectives in
the group by the inspection.

Now, if we put

R' = s'(N-ri) ,

then the fraction-defective after inspection in the group is

yv r>

(3) qCp
 == jD7 == T>7 ^cp

In the following, we construct the estimates of qcp, q*p and q'cp.
In general, we cannot evaluate the value of q'cp by the value of qfp>

R'since ^ is a chance variable depending on the state of control in the

production and on the sampling inspection plan adopted.
Estimates of qcp in the binomial approximation case and of qfp in

Poisson approximation case were already obtained by A. Kolmogorov [1],
but they are stated here again together with the estimates in other
cases.

I. ESTIMATION OF qcp

la. Binomial approximation case
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When Nyny the approximation

is applicable, and we call this case the binomial approximation case.

Unbiased estimate of q is φ(χ)=—, and from the independence

of xl , x2 , . . . , xs , we obtain the estimation

(4) ^ = vΣ0r~9>* = vΣ>(*r)>
o r=l S r=l

where the R. H. S. of « is an estimate of the L. H. S. .
The variance of φ(x) is

and from the result obtained by M. A. Girshick, F. Mosteller and L. J.
Savage [2], the unbiased estimate of this variance is

MIX) _ x(n-x)
ψ (X) ~ n*(n~l) '

hence we have

If we can expect a positive a-priori probability that qr falls in the
interval [β, 1 —£] for some £^>0, then the Liapounov's condition is
fulfilled, and for sufficiently large s,

(6) p(\Qcp-<Pcp <t}~ 2 ('e-^-dt(b) Ml""*:- =Ί v^πl

holds. This shows us the precision of the estimate φcp.

Ib. Hyper geometric sampling case
When binomial approximation is not applicable, the unbiased

estimate of qcp is as follows. From the result obtained in Section 1,

unbiased estimate of q is φ(x) =— , and

( 7 ) Qcp = —iZQr** Φcp = —Σ <P(*r)
S r=1 S r — ~L
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The variance of the estimate φ(x) is

and by the result obtained in Section 1, the unbiased estimate of this
variance is

~~ ~N~ n2(n-l) '

Thus, the unbiased estimate of D2φep is

( 8 ) D*φcp = -J- Σ &φ(Xr} « Δ2 - 1 Σ ψ2(*,) .
o r=l o r=l

Since Liapounov's theorem holds in this case too, we have

( 9 )
V2:

for sufficiently large s.

II. ESTIMATION OF q*p

If we put

y* = (y—χ)zy z = 1 if x <l c, = 0 if Λ:

then

and the expectation of #*,

is a polynomial of degree
Thus, in general we can not get the unbiased estimate of q* from

the sample of size ny but when Poisson approximation is possible, we
can obtain the unbiased estimate of the approximated value for q*.

Πa. Poisson approximation case
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When Nynycy and q is sufficiently small, the approximation

is applicable, and we call this case Poisson approximation case.
In this case the approximation

:~ί
q (x <1 c} ,

o (x :> d)

is possible, so that we have

= Σ <
771=0

Thus the unbiased estimate of q* is

φ*(x) = n
0

and hence we obtain the unbiased estimate of q*p as follows

(10)

By the equality

* —
o r= 1

the variance of φ*(x) is calculated as follows: since

1-4- (x ̂  c) ,

we have

1.0

= E(q*-φ*(x})2

=4{ί:
W twι=l
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The unbiased estimate of this variance is given by

(\ (x£ d)

.0 (x

and, for the variance of φfp it is given by

(11)
S r = L

Liapounov's theorem leads us to

(12)

=

2
\727lo

for sufficiently large 5.

lib. The case when Poisson approximation is not applicable
In this case the expectation of 0*,

is a polynomial of degree n + 1. Now we consider the following sam-
pling inspection plan (N, n, c, dy w4 l, w + 2), i.e., we inspect a sample
of size Λ + 2, and suppose the first w units in the sample contains x
defectives, the first n +1 units xr defectives and all the n + 2 units x"
defectives, where if x <c then the lot is accepted and if x>d then
it is rejected. We will call this inspection plan an over-sampling inspec-
tion plan.

Put

then we have the following lemma, whose proof is easy and omitted.

Lemma 1. For any function of the form,

n n+i n+2

(13) f(q) --= Σ <Po(m)Pm(q) + Σ ί
m=o m=θ

the function of x, x' and x",

(14) φ(x, X f , X"} = φ

is the unique unbiased estimate.
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In the following, we construct the estimates exactly in binomial
aproximation case and in the general hypergeometric sampling case.

lib. 1. Binomial approximation case
In this case we have

and, since

the unbiased estimate of q* is given by

(15)

n + l N
d

n+l
0

(x <,c, x' ̂

(otherwise).

Thus the unbiased estimate of qf^ is

(16)

From the equality

q* — φ*(χy x') =

= -Σ Ψ*(*r, *r')

(x <€, x' <: J)n + l

n + l x ~ - ~ "'

N0 (otherwise) ,

we have the variance of φ*(x, x')

D2φ*(X, X') = Σ (q*-φ*(Λ

έ^i (n + l)3

d2(n—d +1) . ,
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so that the unbiased estimate of this variance is given by

Π7\ λ^ίr r' r"\ X" 7T1 r λ\*-' ) T *\Λ'y Λ >•* / — /ΛΛ . - | x 2 ̂  L^J CJ

»(„ + 2)

where

Z'ΓΠ -
0 (xel), Z L/] - 0 (*Ί/), - 0

for any interval /. The unbiased estimate of the variance of φ*p is

(18)

and Liapounov's theorem shows that, for sufficiently large s,

( si* rr\*

(19)

lib. 2. Hyper geometric sampling case
In this case

(N-n-2)lNn+2 n
" R

and, since

we can get the unbiased estimate of q*

(20) φ*(χ'} = \ N
[ 0 (otherwise)

Thus the unbiased estimate of qfp is given by

(21) ί* = -Σ <ff « 9f.= Σ ̂ *(^)
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From the equality

q*—φ*(x') — {

we have

D2φ*(x') r= E(q*-φ*(x'}}2

— —q N

0

-n d
N n + 1

(x < c, xf ^ d) ,

(otherwise) ,

2-m-l) m

m
n + 1P'm(Q)

and the unbiased estimate of this variance is given by

:'— 1)2«(ΛΓ+ 1) (N— n) — (N- w)2— (N+ n)(n+ l)x'(nx' + x'— n— 3)

n + l L ' J

fN-n d Vn-d+1 7,Γ ,Ί

\^Γ^Λ)-^Λ~Z{-d^

Thus the unbiased estimate of D2φ*p is

(23) t, = D*φ* (X'r) r
S r=l S r=l

Liapounov's theorem leads us, for sufficiently large s, to

(24)
' — fflfi

t
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lib. 3. Relation between q*p and q*£' and the estimation of q%f

In the case of over-sampling inspection we must consider q*p" instead
of q*p such as

if," = — Σ &"*
S r = l

where

q*"=
θ (xr^d), (r- 1,2, . . . , < > ) .

Clearly
1 * r" — r

a* // — /7* _ ^ V' ίί _ ίr ̂ίTcj, — ίfcp — 2^ ^ « r »

and thus

(25) φ%> = φ 9 ro r — 1 /V

is the unbiased estimate of gf/', where φ*p is the unbiased estimate of
#*, given in (16) or (21). Since

it is possible to regard £>*, as an estimate of q%" when N is large.
From (19) or (24), we have for sufficiently large 5,

(26) P "*"
Δ,

where Δ^ is given in (18) or (23).

-
v/2

C* *2

= e-rrfί,
2τrJo

III. ESTIMATION OF q'ep

When the over-sampling inspection is adopted we must consider
the following quantities:

(27) #'c; == -jptf*,", R" = (N-n-2)s'>

instead of the quantities:

q' =-.Kq* R = (N- n) s'.
JK

It is difficult to construct the estimate of qf

cp directly, and so we
shall obtain it from the unbiased estimate of qfp.

in/

First we investigate the behavior of —.
K.
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D/

Ilia. Distribution of —-
ΓL

Since, for r = 1, 2, ... , s,

J •"• \ ̂ r = ^/ >

we have

Then the number of lots accepted :

is a chance variable following the generalized binomial distribution of
Poisson (cf., H. Cramer, Mathematical Methods of Statistics, p. 206 and
p. 217), and its mean and variance are given by

r=L

Now, we suppose that the a-priori distribution of q is normal

N(q, σ2) with density φ(q). Since

-
N-n

Σ

we have

(28)

LN-n

- Σ
jp/

That is, the distribution of ^when a-priori distribution of q exists is
K

a binomial distribution, of which the mean and variance are

<29)

% ) - (T) T ί



On the Estimation of the Quality of a Group of Lots 153

In the binomial approximation case we get, for sufficiently small σ,

Λ dq

_N-n*
~~W~έ

and in Poisson approximation case we have

N— n(

TΪ
\2

(31)
N

fcreveπ
2 /'

The values of E(-

below for §=0.01, q

in Poisson approximation case are given

= — -0.02.
n

(?=0.001)
w=50

w=100
w=150

«=200
w=250

w-300

(? = 0.002)
w=50

w=100

w=150
w=200
w=250

w=300

(?= 0.003)
w=EO

»=100
w=150

w=200

w=250

w=300

(54=0.004)

w=50
w=100
w=150
w=200

w-250

w=300

ΛΓ=1000
0.863959

0.826917

ΛΓ=1000
0.862860

0.824450

ΛΓ=1000

0.860983
0.820470

AΓ=1000
0.858247

0.815180

N=2000
0.886695

0.872857
0.862988
0.851002

.¥=2000
0.885567

0.870253

0.859208
0.846365

ΛΓ-2000

0.883640

0.866052
0.853244

0.839188

ΛΓ=2000
0.880832
0.860468

0.845556
0.830115

ΛΓ=5000
0.900336

0.900421
0.904971
0.907735

0.908070

0.905400

ΛΓ-5000
0.899191

0.897734

0.901007
0.902789
0.902501
0.900363

7V=5000
0.897235

0.893401
0.894754
0.895134

0.893878

0.899414

N=5000

0.894383

0.887640
0.886691
0.885456

0.883002

0.879455

AΓ=8000
0.903747

0.907312
0.915467

0.921919
0.925993
0.928096

ΛΓ-8000
0.902597
0.904605

0.911457
0.916895
0.920314
0.921915

ΛΓ=8000
0.900333
0.900238

0.905131
0.909121

0.911521

0.920943

N=8000

0.897771
0.894434

0.896975

0.899291

0.900429

0.900506

AΓ= 10000
0.904883

0.909609
0.918965
0.926646
0.931967

0.935328

AΓ= 10000
0.903732
0.906895

0.914908
0.921597
0.926251

0.929098

N= 10000
0.901766

0.902517

0.908590

0.913783

0.917401

0.928119

N= 10000

0.898900
0.896698

0.900403
0.903903

0.906239

0.907523
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(? = 0.005)
w-50
«=100
w=150
«=200
w=250
w=300

ΛΓ=1000
0.828250
0.808968

ΛΓ=2000
0.850046
0.853911
0.837609
0.820001

ΛΓ=5000
0.863124
0.880876
0.878358
0.874668
0.873479
0.869709

ΛΓ=8000
0.866393
0.887618
0.888545
0.888335

0.890719
0.890527

N= 10000
0.867483
0.889865
0.891941
0.892890
0.896465
0.897466

If the number of lots in the group is large, it will be seen from

(29) that the value of W ' is considerably small

IΠb. Estimation of qf

 CΊ>

First we state two lemmas useful to construct the estimates of q'cp.
The proofs are easy and omitted.

Lemma 2. // there are three events A, B, and C, such that

P(A) = a, P(B) = β, and A B C C,

then it holds that

(32) P(C) ̂  max (a, β) + a + /3- 2 .

Lemma 3. Suppose that two sequences of chance variables {ξs} , {ηs}
(s = 1, 2, ...) satisfy the following conditions (i) to (iv),

all (x19 x2y ... ,xs), (s = l,2, ...),

(ii) P{ηs(xl9 x2, ... , xs) <„ 6} -̂ 1 /or ^wjy 6^>0 αwJ sufficiently large s,

(iii) 1^5(^1, xz, ... , A:,) I <1 K with probability 1, (s = 1, 2, ...),

(iv) P\\— <t } ~— iL= (V T rfί /or sufficiently large s.
(\ ηs ) v2τr Jo

(33) ^ ~ 0 (in probability)

for sufficiently large s.
Now we consider the estimation of qf

cιr

Πlb. 1. In Poisson approximation case, if a-prίori distribution of q
is completely specified, then for given a we can take two positive
numbers \ , λ2 such that

(34) P

λ2 —λj : minimum .
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From (12), (34) and Lemma 2 we have, for sufficiently large s,

P ~ * ̂  g < : * :> m a x (a,

155

where φ*p and Δ^ are the unbiased estimates of q*p and the variance
of φ*p respectively given in (10) and (11), while

~ 0.9973.-
\/2π

Thus we can obtain the following confidence interval for sufficiently
large 5 :

(35)
Λ-2

.
Vcv

IΠb. 2. 7w Poisson approximation case, if a-prioή distribution of q
is unknown and s is sufficiently large, we can get the estimate of q'cv

as follows. From (12), we have

(36)

Λ\-_-ns _
r)/

and Lemma 3 leads us to

(37) a — nVcp D/ <ί — -^φ*' — p/ ΨCP '

For sufficiently large sy we have the following confidence interval
by 3σ-method,

(38)

Rwhere Δ^^Δ* for Δ^ given in (11).
K

Πlb. 3. In the case of over-sampling inspection, we must estimate the
ID//

value of q"p given in (27). The distribution function of -̂ - is obtained
R/ R

from that of -̂  replacing n by w-4-2, and we can take two positive
IV

numbers \ , λ2 such that

2—\: minimum,
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and we obtain the confidence interval analogous to (35) : for sufficiently
large s,

(39) /
?

A>2 Xl

whose coefficient of confidence is not less than max (Λ, 0.9973) +
0.9973-2.

From (26) and Lemma 3, we obtain the estimate of q'c'p analogous
to (37) :

where φ*p' is given in (25). From (26), we have the following confidence
interval by 3σ-method,

where Δ" = A Δ* for Δ| given in (18) or (23) .
XV
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