On the Pseudo-Harmonic Functions

By Yukinari Tôki and Kôichi Tarumoto

Introduction. Let F be an orientable surface. Let $u(p)$ be a realvalued function in a neighborhood $N_{p_{0}}$ of p_{0} on F where $N_{p_{0}}$ corresponds to the unit circular disc in the complex plane by the topological mapping $z=T_{p_{0}}(p), z=x+i y$.

Set

$$
u(p)=u\left(T_{p_{0}}(p)\right)=U(z)
$$

Then $u(p)$ is termed pseudo-harmonic at p_{0}, if $U(z)$ is harmonic and not identically constant in $|z|<1$. A real-valued function on F is termed pseudo-harmonic if it is pseudo-harmonic on each point of F. In this paper we will prove that there exist the local parameters such that F is a Riemann surface with respect to them and $u(p)$ is harmonic on F.

1. Terminologies and notations.

Let $u(p)$ be a pseudo-harmonic function on F. By the level-curve of $u(p)$ with the height c, we mean the locus of the equation $u(p)=c$. It is well known that with each point $p_{0} \in F$, there exists a suitably chosen neighborhood $N_{p_{0}}$ of p_{0} and a topological mapping $z=T_{p_{0}}(p)$ of $N_{p_{0}}$ onto $|z|<\mid 1$ under which p_{0} goes into $z=0$ and the level-curves of $u(p)$ in $N_{p_{0}}$ go into the level-curves of $\operatorname{Re} z^{n}$ in $|z|<1^{1)}$. we shall term this $N_{p_{0}}$ a canonical neighborhood of p_{0}. When $n=1$, we shall call p_{0} a regular point and $N_{p_{0}}$ a simple canonical neighborhood. When $n \geqq 2$, we shall call p_{0} a saddle-point of order n. A real-valued function $v(p)$ on F is called "pseudo-conjugate to a pseudo-harmonic function $u(p)$ ", if it satisfies the following condition.

There exists a topological mapping $z=T_{p_{0}}(p)$ by which $N_{p_{0}}$ corresponds to $|z|<1$, and $U(z)=u\left(T_{p_{0}}(p)\right)$ is conjugate-harmonic to $V(z)=$ $v\left(T_{p_{0}}(p)\right)$ in $|z|<1$.

[^0]
2. The triangulation of a surface.

Let F be an orientable surface and $u(p)$ be a pseudo-harmonic function on it. In the first place, we can easily triangulate the surface F such that each saddle-point of $u(p)$ is a vertex of a triangle and each triangle of F is contained in a canonical neighborhood, especially any triangle without the saddle-points is contained in a simple canonical neighborhood. We shall prove the following lemmas on this triangulation.

Lemma 1. We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of $u(p)$ at most at the finite number of points.

Proof. Let Δ be any triangle on F and a, b, c, be the three vertices of it. Let $L_{i}(i=1,2 \cdots n)$ and $M_{j}(j=1,2 \cdots m)$ be the sides of the triangles with the common vertex a and b respectively: especially L_{1} denotes the arc $\widehat{a b}, M_{1}$ denotes the arc $\widehat{b a}$. There exists a canonical neighborhood $N_{\Delta}\left(N_{\Delta}>\Delta\right)$ and a topological mapping $z=T_{\Delta}(p)$ under which Δ is mapped onto a curvilinear triangle Δ^{\prime} in $|z|<1$. Let the points $a^{\prime}, b^{\prime}, c^{\prime}$, be the three vertices of Δ^{\prime} and $L_{i}{ }^{\prime}(i=1,2 \cdots n)$ and $M_{j}^{\prime}(j=1,2 \cdots m)$ the mapped images of the arc $L_{i}(i=1,2 \cdots n)$ and $M_{j}(j=1, \cdots m)$ in N_{4}. Let $C_{a^{\prime}}$ and $C_{b^{\prime}}$ be the sufficiently small circles with the center a^{\prime}, b^{\prime} and contained in $|z|<1$ respectively. Let $a_{i}{ }^{\prime}$ ($i=1,2, \cdots n$) be the points at which the arc $L_{i}{ }^{\prime}$ cut the circle $C_{a^{\prime}}$ for the last time. We can choose the points $b_{j}{ }^{\prime}(j=1,2 \cdots m)$ on $C_{b^{\prime}}$ similarly. We can connect $a_{1}{ }^{\prime}$ and b_{1}^{\prime} by a polygon without intersecting $L_{i}^{\prime} \quad(i=1,2 \cdots n)$ and $M_{j}^{\prime} \quad(j=1,2 \cdots m)$ out side of the circles

Fig. 2.
$C_{a^{\prime}}$ and $C_{b^{\prime}}$. We also connect a_{j}^{\prime} and a^{\prime} by the radius in the circle $C_{a^{\prime}}$. We connect $b_{j}{ }^{\prime}$ and b^{\prime} similarly. We repeat this deformation with respect to every side of the traingles on F. In this repetition, each side of the triangles are varied in finite times: for instance, side $\widehat{a b}$ varies in ($m+n-1$)-times. When some part of a side of a triangle lies on a levelcurve, then we can deform slightly it such that each one of sides of the deformed triangle cut the level-curves at most once.

Therefore we have after a finite number of time the desired triangulation. A point p on the sides of a triangles is termed a critical point when the side through the point p is on one side of the levelcurve $u(p)$ except to the point p in the neighborhood of p from now.

Lemma 2. We can triangulate the surface F such that each side of any triangle of F intersects every one of the level-curves of $u(p)$ at most at one point.

Proof. Let Δ be any triangle of F such that each side of it intersects every one of the level-curves of $u(p)$ at most at a finite number of points. When Δ have ciritical points or saddle-points on its boundary. Let us subdivide Δ into triangles and polygonal domains by the levelcurves through the critical points and the saddle-point.

Let one of these polygonal domains be Σ. The polygonal domain Σ can be mapped onto a rectangle Σ^{*} by the topological mapping $z=S_{\Sigma}(p)$ under which the level-lines in Σ go into the lines parallel to the y-axies and the vertices of Σ go into points on the boundary of Σ^{*}.

The polygonal domain \sum^{*} can be subdivided into triangles by lines connecting the center of Σ^{*} to the vertices. Let us subdivide Σ into triangles which are the inverse images of the triangles of Σ^{*}.

simple-canonical neighborhood.

Saddle-point of order 2.

Subdivide each polygonal domain of F into triangles similarly. We can easily deform the above triangulation slightly such that each side of the triangles intersect the level-lines at most once.

Theorem. Let $u(p)$ be pseudo-harmonic on F. We can associate the local parameters of F 'such that F is a Riemann surface with respect to them and $u(p)$ is harmonic on it.

Proof. By the lemma 2, we can subdivide the surface F such that each side of any triangle of F intersects every one of the level-curves of $u(p)$ at most at one point. Therefore each triangle of $\{\Delta\}$ can be mapped onto the rectilinear one in the z-plane and at the same time the level-curves of $u(p)$ can be mapped onto the lines parallel to the y-axis.

Let these transformations be $z=\tau_{\Delta}(p)$. It is clear that the function $u\left(\tau_{\Delta}{ }^{-1}(z)\right)$ is harmonic. Let p_{0} be any point on F and $\Delta_{p_{0}}$ be a triangle such that $\Delta_{p_{0}} \ni p_{0}$. The following three cases will arise:
(i) p_{0} is contained in $\Delta_{p_{0}}$.
(ii) p_{0} lies on one of the sides of $\Delta_{p_{0}}$.
(iii) p_{0} is a vertex of $\Delta_{p_{0}}$.

We can associate the local parameters as follows, corresponding to the above three cases.
(i) We associate the function $z=\tau \Delta_{P_{0}}(p)$ as a local parameter to p_{0}.
(ii) There exists the two neighboring triangles Δ_{j} and Δ_{k} such that the point p_{0} is contained in the common side of Δ_{j} and Δ_{k}. We can transform Δ_{j} and Δ_{k} onto the rectilinear ones S_{j} and S_{k} by the transformation $z=\tau_{j}(p)$ and $z=\tau_{\Delta_{k}}(p)$ respectively. We can also map S_{j} and S_{k} onto the triangles R_{j} and R_{k} lying on the upper and the lower half-plane with common side of the interval $0 \leqq x \leqq 1$ by two linear transformations resepctively. Any point on the common side of Δ_{j} and Δ_{k} is mapped on the different points on the side of S_{j} and S_{k} respectively. Since these two points lie on the same level-curve parallel to the x-axis, it is clear that these are mapped on the same point on the interval $0 \leqq x \leqq 1$ by the two linear transformations. Thus we can map the curvilinear quadrilateral $\Delta_{j} \cup \Delta_{k}$ onto the rectilinear quadrilateral $R_{j} \cup R_{k}$ topologically and the common side of Δ_{j} and Δ_{k} can be mapped onto the interval $0 \leqq x \leqq 1$. Let this transformation be $z=\tau \Delta_{j}, \Delta_{k}(p)$. We associate this function to p_{0} as a local parameter of p_{0}.
(iii) Let $\Delta_{i_{1}}, \Delta_{i_{2}}, \cdots \Delta_{i_{n}}$ be the triangles with the common vertex p_{0}. Each $\Delta_{i_{k}}(k=1,2 \cdots n)$ is mapped onto a rectilinear one $S_{i_{k}}(k=1$, $2, \cdots, n$) and p_{0} goes into $z_{i_{k}}$ by the transformation $z=T_{\Delta_{i_{k}}}(p)$. Let the vertical angle of $z_{i_{k}}$ of $S_{i_{k}}$ be $\alpha_{i_{k}}$. The triangle $S_{i_{k}}$ is mapped onto $S_{i_{k}}^{\prime}$
and $z_{i_{k}}$ goes into $w_{i_{k}}$ by the transformation $w=z 2 \pi /\left(x_{i_{1}}+\alpha_{i_{2}}+\cdots+\alpha_{i_{n}}\right)$. Let the vertical angle of $w_{i_{k}}$ of $S_{i_{k}}^{\prime}$ be $\beta_{i_{k}}$. Then $\sum_{k=1}^{n} \beta_{i_{k}}=2 \pi$. Accordingly, we can map $S_{i_{k}}^{\prime}$ and $S_{i_{k+1}}^{\prime}$ onto $S_{i_{k}}^{\prime \prime}$ and $S_{i_{k+1}}^{\prime \prime}$ by linear transformations respectively such that $w_{i_{k}}$ and $w_{i_{k+1}}$ go into $\zeta=0$ and the common side of the two neighboring triangles $\Delta_{i_{k}}$ and $\Delta_{i_{k+1}}$ goes into the common side of $S_{i_{k}}^{\prime \prime}$ and $S_{i_{k+1}}^{\prime \prime}$. Thus the polygonal domain composed of $\Delta_{i_{k}}$ ($k=1,2 \cdots n$) is mapped onto the polygonal domain consisting of $S_{i_{k}}^{\prime \prime}$ $(k=1,2 \cdots n)$ in the ζ-plane. Let this mapping be $\zeta=\tau \Delta_{i_{1}}, \Delta_{i_{2}} \cdots \Delta_{i_{n}}(p)$.

the surface F.

ζ-plane $\quad(\zeta=\xi+i \eta)$

Fig. 3.
We associatet he function $\zeta=\tau \Delta_{i_{1}}, \cdots \Delta_{i_{n}}(p)$ to p_{0} as a local parameter. These local parameters $\tau_{\Delta}(p), \tau \Delta_{i}, \Delta_{i}(p)$ and $\tau_{\Delta_{i_{1}}, \ldots \Delta_{i_{n}}}(p)$ satisfy the conformal neighboring relation and $u(p)$ is harmonic on F with respect to them.

Corollary. Let $u(p)$ be a pseudo-harmonic function on F. Then there exists always a conjugate pseudo-harmonic function to $u(p)$ on F.

Proof. We can assume that the function $u(p)$ is harmonic on F with respect to the suitably chosen local parameters by the theorem. Then there exists always a conjugate harmonic function to $u(p)$ on F. The corollary follows at once. This conjugate pseudo-harmonic function $v(p)$ is multiple-valued on F in general.

[^0]: 1) Y. Tôki, A topological characterization of pseudo-harmonic functions, Osaka Mathematical J. 3 (1951), 101-122. See also J. Jenkins and M. Morse, Topological methods on Riemann surface, pseudoharmonic function. Contributions to the theory of Riemann surfaces 1953 p. 114.
