On Principally Linear Elliptic Differential Equations of the Second Order.

By Mitio Nagumo

§ 0 Introduction

We use the notations $\underset{x_{i}}{ } u$ or ${\underset{i}{i}} u$ for $\frac{\partial u}{\partial x_{i}}$ and $\partial_{x_{i} x_{j}}{ }^{2} u$ or $\partial_{i j}^{2} u$ for $\frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}$.
 $(i, j=1, \cdots, m)$.

In this note we shall consider principally linear partial differential equation ${ }^{1)}$ of elliptic type

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{2} u=f\left(x, u, \partial_{x} u\right) . \tag{0}
\end{equation*}
$$

We assume once for all that the quadratic form $\sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j}$ is positive definite. We denote by $\mathrm{C}[A]$ the set of all continuous functions on A, and by $\mathrm{C}^{p}[A]$ the set of all functions whose partial derivatives up to the p-th order are all continuous on A. Under a solution of (0) in the domain D we understand a function of $\mathrm{C}^{2}[D]$ which satisfies (0) for $x \in D .{ }^{2)}$ We say that a solution $u(x)$ of (0) in D takes the boundary value $\beta(x)$, when $u(x) \in \mathrm{C}[\bar{D}]$ and $u(x)=\beta(x)$ for $x \in \dot{D}$. ${ }^{3)}$

We say a function $\omega(x)$ is a quasi-supersolution (-subsolution) of (0) in a domain D, if for every point $x_{0} \in D$, there exist a neighborhood U of x_{0} and a finite number of functions $\omega_{\nu}(x) \in \mathbb{C}^{2}[U](\nu=1, \cdots, n)$ such that

$$
\omega(x)=\operatorname{Min}_{1 \leqq \nu \leqq n} \omega_{\nu}(x)\left(\operatorname{Max}_{1 \leqq \nu \leqq n} \omega_{\nu}(x)\right) \quad \text { for } \quad x \in U
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x) \partial_{i j}^{2} \omega_{\nu} \leqq f\left(x, \omega_{\nu},{\underset{x}{ }}_{\partial} \omega_{\nu}\right)\left(\geqq f\left(x, \omega_{\nu},{\underset{x}{x}} \omega_{\nu}\right)\right) . \tag{0.2}
\end{equation*}
$$

[^0]The purpose of this note is to give an existence theorem for the solution of the boundary value problem of the first kind regarding the equation (0), under adequate supplementary conditions, in such a way that the solution $u(x)$ is limited by the inequalities

$$
\underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x),
$$

where $\bar{\omega}(x)$ and $\underline{\omega}(x)$ are quasi-supersolution and quasi-subsolution of (0) respectively. The main result of this note is given in $\S 6$.

The argument of this note is based on the work of J. Schauder: Über lineare elliptische Differentialgleichungen zweiter Ordung. ${ }^{4}$ We define the distance of two points x and x^{\prime} by $\left.\left|x-x^{\prime}\right|=\left(\sum_{i=1}^{m}\left(x_{i}-x_{i}\right)^{\prime}\right)^{2}\right)^{1 / 2}$. We also define $\left|\partial_{x} f\right|$ and $\left|\partial_{x}^{2} f\right|$ by

$$
\left|\partial_{x} f\right|=\left(\sum_{i=1}^{m}\left(\partial_{i} f\right)^{2}\right)^{1 / 2}, \quad\left|\partial_{x}^{2} f\right|=\left(\sum_{i, j=1}^{m}\left(\partial_{i j}^{2} f\right)^{2}\right)^{1 / 2}
$$

A function $f(x)$ is said to be H_{a}-continuous $(0<\alpha \leqq 1)$ on A, if there exists a constant C such that

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leqq C\left|x-x^{\prime}\right|^{\infty} \quad \text { for all } \quad x, x^{\prime} \in A
$$

Then we define $H_{\Delta}^{\alpha}(f)$ (the Hölder constant of f on A) as the least value of such C. We also use the notation

$$
\begin{equation*}
\|f\|_{A}^{\alpha}=\operatorname{Max}_{x \in A}|f(x)|+H_{A}^{\alpha}(f) \tag{0.3}
\end{equation*}
$$

and, if $f \in \mathrm{C}^{2}(A)$,

$$
\begin{equation*}
\|f\|_{A}^{\alpha, 2}=\|f\|_{A}^{\alpha}+\left\|\partial{ }_{x} f\right\|_{A}^{\alpha}+\left\|\partial_{x}^{2} f\right\|_{A}^{\alpha} . \tag{0.4}
\end{equation*}
$$

Schauder proved the following theorems:
Theorem A. Let D be a bounded domain, and let $a_{i j}(x)$ be $H_{a+\mathrm{e}^{-}}$ continuous in D and subjected to the condition
(0.5) $\quad \operatorname{det}\left(a_{i j}\right)=1$ and $\quad\left\|a_{i j}(x)\right\|_{D}^{\alpha+\varepsilon} \leqq \Lambda \quad(0<\alpha<1, \varepsilon>0)$.

Then there exists a constant C_{Λ} depending only on α, ε and Λ such that, for any compact set K in D and any solution $u(x)$ of

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2} u=f(x) \tag{0.6}
\end{equation*}
$$

such that $\|u\|_{D}^{\alpha, 2}<+\infty$, holds the inequality

$$
\|u(x)\|_{K}^{\alpha, 2} \leqq C_{\Lambda} \delta^{-4}\left(\|f\|_{D}^{\alpha}+\operatorname{Max}_{D}|u(x)|\right)
$$

where $\delta=\operatorname{dist}(K, \dot{D})$.

[^1]Theorem B. Let D be a bounded domain whose boundary \dot{D} is of type Bh. ${ }^{5}$ Let $a_{i j}(x)$ satisfy (0.5) and let $\beta(x)$ be a function of $\mathrm{C}^{2}[\bar{D}]$ such that $\|\beta\|_{D}^{\alpha, 2}<_{-}+\infty$. Then there exists a solution $u(x)$ of (0.6) in D with the boundary value $\beta(x)$ such that

$$
\|u\|_{D}^{\alpha, 2} \leqq C\left(\|f\|_{D}^{\alpha}+\|\beta\|_{D}^{\alpha, 2}\right),
$$

where C is a constant depending only on D, α, ε and Λ.
REmark. We can easily prove that there exists a constant Λ depending only on A and L such that (0.5) holds, if $a_{i j}(x)$ satisfies

$$
A^{-1} \leqq \sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \leqq A \quad \text { for } \quad \sum_{i=1}^{m} \xi_{i}^{2}=1 \quad(A \leqq 1)
$$

and

$$
\left\{\sum_{i, j=1}^{m}\left(a_{i j}\left(x^{\prime}\right)-a_{i j}(x)\right)^{2}\right\}^{1 / 2} \leqq L\left|x^{\prime}-x\right|^{\alpha+\varepsilon}
$$

where A and L are positive constants.

§ 1 Limitation of $\boldsymbol{u}(\boldsymbol{x})$

1. Theorem 1. Let $\omega(x)$ be a quasi-supersolution (-subsolution) of the equation

$$
\begin{equation*}
\Phi[u] \equiv \sum_{i, j=1}^{m} a_{i j}(x){ }_{x} \partial^{2} u-F\left(x,{ }_{x} u\right)=0 \tag{1.1}
\end{equation*}
$$

in the domain D, and let $v(x)$ be a function of $\mathrm{C}^{2}[D]$ with the following properties:
(1.2) $\quad \Phi[v]>0(<0)$ for x such that $v(x)>\omega(x)(<\omega(x))$
and

$$
\begin{equation*}
\lim _{x \rightarrow \dot{x}}\{v(x)-\omega(x)\} \leqq 0(\geq 0) \quad \text { for } \quad \dot{x} \in \dot{D} \tag{1.3}
\end{equation*}
$$

Then

$$
v(x) \leqq \omega(x)(\geqq \omega(x)) \quad \text { for } \quad x \in D .
$$

Proof. If the conclusion was not true, there exist by (1.3) a positive constant α and a point $x_{0} \in D$ such that

$$
\begin{equation*}
v\left(x_{0}\right)=\omega\left(x_{0}\right)+\alpha \quad \text { and } \quad v(x) \leqq \omega(x)+\alpha \quad \text { in } D . .^{6)} \tag{1.4}
\end{equation*}
$$

Then there exist a neighborhood U and a function $\omega_{\nu}(x) \in C^{2}[D]$ such that

[^2]\[

$$
\begin{equation*}
\omega_{\nu}\left(x_{0}\right)=\omega\left(x_{0}\right), \quad \omega_{\nu}(x) \geqq \omega(x) \quad \text { in } U \tag{1.5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\Phi\left[\omega_{\nu}\right] \leqq 0 \quad \text { in } U \tag{1.6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\omega_{\nu}\left(x_{0}\right)<v\left(x_{0}\right) \tag{1.7}
\end{equation*}
$$

and, as $\omega_{\nu}(x)-v(x)$ is minimum for $x=x_{0}$ by (1.4) and (1.5), we have

$$
\begin{equation*}
\partial_{x} \omega_{\nu}\left(x_{0}\right)={ }_{x} \partial v\left(x_{0}\right) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}\left(x_{0}\right) \partial_{i j}^{2} \omega_{\nu}\left(x_{0}\right) \geqq \sum_{i, j=1}^{m} a_{i j}\left(x_{0}\right) \partial_{i j}^{2} v\left(x_{0}\right) .^{7)} \tag{1.9}
\end{equation*}
$$

Hence, from (1.8) and (1.9)

$$
\begin{equation*}
\Phi[v]_{x=x_{0}} \leqq \Phi\left[\omega_{\nu}\right]_{x=x_{0}} \tag{1.10}
\end{equation*}
$$

On the other hand, from (1.7), (1.2) and (1.6) we get

$$
\Phi[v]_{x=x_{0}}>0 \geqq \Phi\left[\omega_{\nu}\right]_{x=x_{0}}
$$

which contradicts (1.10), q.e.d.
2. We say that a domain D has the property $((\sigma))$, when there exists a constant $\sigma>0$ with the following property: To any point p of \dot{D} there corresponds a closed sphere S_{p} with radius σ such that $\bar{D} \cap S_{p}=(p)$.

Lemma 1. Let D be a bounded domain with the property $((\sigma))$, and let d be the diameter of D. Let $a_{i j}(x)$ be subjected to the condition

$$
\begin{equation*}
A^{-1} \leqq \sum_{i, j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \leqq A \quad \text { for } \sum_{i=1}^{m} \xi_{i}^{2}=1 \tag{2.1}
\end{equation*}
$$

where A is a constant $\geqq 1$. Then there exists a constant $C_{A, \sigma, a}$ depending only on m, A, σ and d such that for the solution $u(x)$ of

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2} u=f(x) \tag{2.2}
\end{equation*}
$$

with the boundary value $u=0(x \in \dot{D})$, where $f(x)$ is bounded on D, holds the inequality

$$
\begin{equation*}
|u(x)| \leqq C_{A, \sigma, a} \operatorname{dist}(x, \dot{D}) \sup _{D}|f(x)| \tag{2.3}
\end{equation*}
$$

[^3]Proof. Let x_{0} be any point of D and let p be a point of \dot{D} such that dist $\left(x_{0}, \dot{D}\right)=\left|x_{0}-p\right|$. Let S_{p} be the closed sphere with radius σ such that $\bar{D}_{\cap} S_{p}=(p)$, and let c be the center of S_{p}. If we put $\omega(x)=\varphi(r)$, where $r=|x-c|$, then
(2.4) $\quad \sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2} \omega=\alpha(x) \varphi^{\prime \prime}+r^{-1}\left\{\sum_{i=1}^{m} a_{i i}-\alpha(x)\right\} \varphi^{\prime}$,
where

$$
\alpha(x)=r^{-2} \sum_{i, j=1}^{m} a_{i j}(x)\left(x_{i}-c_{i}\right)\left(x_{j}-c_{j}\right)
$$

Thus, if we define $\varphi(r)$ by

$$
\begin{equation*}
\varphi(r)=(m A)^{-1} F \int_{\sigma}^{r}\left\{(d+\sigma)^{m A^{2}} r^{-m A^{2}+1}-r\right\} d r \tag{2.5}
\end{equation*}
$$

where F is a constant $>\sup |f(x)|$, and as $\varphi^{\prime}(r)>0, \varphi^{\prime \prime}(r)<0$ for $\sigma \leqq r<\delta+d$ and

$$
\left.\sum_{i=1}^{m} a_{i i}(x) \leqq m A, \quad \alpha(x) \geqq A^{-1} \quad \text { (by }(2.1)\right)
$$

we have

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{2} \omega+F \leqq 0 \quad \text { in } D \tag{2.6}
\end{equation*}
$$

and $\omega(x) \geqq 0$ for $x \in \dot{D}$.
On the other hand, as $F>|f(x)|$ in D, we get from (2.2)

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{\partial^{2}} u+F>0 \quad \text { in } D \tag{2.7}
\end{equation*}
$$

and $u(x)=0 \leqq \omega(x)$ for $x \in \dot{D}$. Thus, by Theorem 1 ,

$$
u(x) \leqq \omega(x)=\varphi(r) \quad \text { in } D
$$

Then, as $\omega(p)=\varphi(\sigma)=0$ and $\varphi^{\prime \prime}<0$,

$$
u\left(x_{0}\right) \leqq \rho^{\prime}(\sigma)\left|x_{0}-p\right|
$$

or from (2.5)
where

$$
\begin{gathered}
u\left(x_{0}\right) \leqq C_{A, \sigma, a} \operatorname{dist}\left(x_{0}, \dot{D}\right) F \\
C_{A, \sigma, a}=(m A)^{-1}\left\{(d+\sigma)^{m A^{2}} \sigma^{-m A^{2}+1}-\sigma\right\}
\end{gathered}
$$

Similarly we obtain

$$
u\left(x_{0}\right) \geqq-C_{A, \sigma, a} \operatorname{dist}\left(x_{0}, \dot{D}\right) F
$$

Letting F tend to $\sup |f(x)|$ we get (2.3).

$\S 2$ Estimation of ${ }_{x} \boldsymbol{u}$

3. Theorem 2. Let D be a bounded domain, whose diameter is d. Let $a_{i j}(x)$ be subjected to the conditions (2.1) and
(3.1) $\quad\left(\sum_{i, j=1}^{m}\left\{a_{i j}\left(x^{\prime}\right)-a_{i j}(x)\right\}^{2}\right)^{1 / 2} \leqq L\left|x^{\prime}-x\right| \quad$ for any $x, x^{\prime} \in D$,
Γ and $f(x, u, p)\left(p=\left(p_{1}, \cdots, p_{m}\right)\right)$ satisfy the inequality

$$
\begin{equation*}
|f(x, u, p)| \leqq B|p|^{2}+\Gamma \tag{3.2}
\end{equation*}
$$

for $x \in D, \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x)$ and $|p|<+\infty$. Let $u(x)$ be any solution of (0) such that

$$
\begin{equation*}
|u(x)| \leqq M \quad \text { in } D, \text { where } 16 A B M<1 \tag{3.3}
\end{equation*}
$$

Then there exist constants $C^{(1)}$ and $C^{(2)}$, depending only on m, A, L, B, M Γ and d, such that

$$
\left|\partial_{x} u(x)\right| \leqq C^{(1)} / \rho(x)^{-1} \operatorname{Max}_{\left|x^{\prime}-x\right| \leqq \rho(x)}\left\{\left|u\left(x^{\prime}\right)\right|\right\}+C^{(2)}
$$

where $\rho(x)=\operatorname{dist}(x, \dot{D})$.
Proof. Let a be any point of D, and let \sum_{κ} be a closed sphere defined by

$$
\sum_{\mathrm{\kappa}}=\{x ;|x-a| \leqq \kappa \operatorname{dist}(a, \dot{D})\} \quad(0<\kappa<1)
$$

We put also

$$
\begin{equation*}
\mu_{\kappa}=\operatorname{Max}_{x \in \Sigma_{\kappa}}\left\{|\partial u| \rho_{\kappa}(x)\right\} \tag{3.4}
\end{equation*}
$$

where $\rho_{\kappa}(x)=\operatorname{dist}\left(x, \dot{\Sigma}_{\kappa}\right)$. Then there exists a point $x_{0} \in \sum_{\kappa}$ such that

$$
\begin{equation*}
\left|\partial_{x} u\left(x_{0}\right)\right| \rho_{\kappa}\left(x_{0}\right)=\mu_{\kappa} \quad\left(x_{0} \in \sum_{\kappa}\right) \tag{3.5}
\end{equation*}
$$

Now let $T x=x^{\prime}$ be a linear transformation of coordinates such that

$$
\left.\sum_{i, j=1}^{m} a_{i j}\left(x_{0}\right) \partial_{i j}^{2} u=\sum_{i=1}^{m} \partial_{i i}^{2} u^{\prime},{ }^{8}\right)
$$

where

$$
u^{\prime}\left(x^{\prime}\right)=u(x) \quad \text { and } \quad f\left(x, u, \partial_{x} u\right)=f^{\prime}\left(x^{\prime}, u^{\prime}, \partial_{x^{\prime}} u^{\prime}\right)
$$

Then we have for (0)

$$
\begin{equation*}
\Delta u^{\prime}=\sum_{i, j=1}^{m}\left(\delta_{i j}-a_{i j}^{\prime}\left(x^{\prime}\right)\right) \partial_{i j}^{2} u^{\prime}+f^{\prime}\left(x^{\prime}, u^{\prime},{ }_{x^{\prime}} u^{\prime}\right) \tag{3.6}
\end{equation*}
$$

Let S_{λ} be a closed sphere in $T(D)=D^{\prime}$ with the center $x_{0}{ }^{\prime}=T\left(x_{0}\right)$ and the radius $\lambda \rho_{\mathrm{k}}\left(x_{0}\right)$, where λ is a constant such that $0<\lambda<A^{-1 / 2} / 2$ and $S_{\lambda} \subset T\left(\sum_{k}\right)$. Let $G\left(x^{\prime}, \xi\right)$ be the Green's function of the equation $\Delta u^{\prime}=0$ with respect to the domain S_{λ} so that from (3.6)
8) $\underset{i}{\partial u^{\prime}}$ means $\underset{x_{i}}{\partial} u^{\prime}$.

$$
\begin{aligned}
u^{\prime}= & -\omega_{m}^{-1} \int_{S_{\lambda}} G\left(x^{\prime}, \xi\right)\left\{\sum_{i, j=1}^{m}\left(\delta_{i j}-a_{i j}^{\prime}(\xi)\right) \underset{i j}{\left.\left.\partial^{2} u^{\prime}(\xi)\right\} d^{m} \xi^{9}\right)}\right. \\
& -\omega_{m}^{-1} \int_{S_{\lambda}} G\left(x^{\prime}, \xi\right) f^{\prime}\left(\xi, u^{\prime}(\xi), \underset{\xi}{\partial} u^{\prime}(\xi)\right) d^{m} \xi+h\left(x^{\prime}\right)
\end{aligned}
$$

where $h\left(x^{\prime}\right)$ is the harmonic function which takes the same value as $u^{\prime}\left(x^{\prime}\right)$ for $x^{\prime} \in \dot{S}_{\lambda}$. Then

$$
\begin{equation*}
\left|\partial_{x^{\prime}} u^{\prime}\left(x_{0}{ }^{\prime}\right)\right| \leqq(\mathrm{I})+(\mathrm{II})+(\mathrm{III}), \tag{3.7}
\end{equation*}
$$

where

Since by T the distance will be changed by the ratio between $A^{-1 / 2}$ and $A^{1 / 2}$, we have
(3.8) $\quad\left(\sum_{i, j=1}^{m}\left\{a_{i j}^{\prime}(\xi)-\delta_{i j}\right\}^{2}\right)^{1 / 2} \leqq A^{3 / 2} L\left|\xi-x_{0}{ }^{\prime}\right|, \quad\left(\sum_{i j}\left(\partial_{\xi} a_{i j}^{\prime}\right)^{2}\right)^{1 / 2} \leqq A^{3 / 2} L$. As $\left|\partial_{x} u(x)\right| \leqq\left(1-\lambda A^{1 / 2}\right)^{-1} \rho_{\kappa}\left(x_{0}\right)^{-1} \mu_{\kappa}$ in $T^{-1} S_{\lambda}\left(\subset \sum_{\kappa}\right)$, we have, taking λ so small that $\left(1-\lambda A^{1 / 2}\right)^{-2}<2$,

$$
\begin{equation*}
\left|\partial_{\xi} u^{\prime}(\xi)\right| \leqq \sqrt{ } 2 A^{1 / 2} \rho_{\kappa}\left(x_{0}\right)^{-1} \mu_{\kappa} \quad \text { for } \quad \xi \in S_{\lambda} \tag{3.9}
\end{equation*}
$$

and from (3.2)
(3. 10) $\left|f^{\prime}\left(\xi, u^{\prime}(\xi),{ }_{\xi}^{\partial} u^{\prime}(\xi)\right)\right|=\left|f\left(x, u, \partial_{x} u\right)\right| \leqq 2 B \rho_{\kappa}\left(x_{0}\right)^{-2} \mu_{\kappa}^{2}+\Gamma$.

Then regarding (3.8), (3.9), (3.10), $\left|\partial x_{x^{\prime}} G\left(x_{0}{ }^{\prime}, \xi\right)\right| \leqq 2\left|\xi-x_{0}{ }^{\prime}\right|^{-m+1} \quad$ and $\left|{ }_{x^{\prime} \xi}^{2} G\left(x_{0}{ }^{\prime}, \xi\right)\right| \leqq(m+2)\left|\xi-x_{0}\right|^{-m}$, we get

$$
\begin{equation*}
(\mathrm{I}) \leqq 4 \lambda \rho_{\kappa}\left(x_{0}\right)^{-1} B \mu_{\kappa}^{2}+2 \lambda \rho_{\kappa}\left(x_{0}\right) \Gamma, \tag{3.11}
\end{equation*}
$$

$$
+\left|\omega_{m}^{-1} \int_{S_{\lambda}} \underset{x^{\prime}}{ } G\left(x_{0}^{\prime}, \xi\right) \sum_{\imath}, \partial_{\xi_{j}} \partial a_{i j}^{\prime}(\xi) \partial_{i} u^{\prime}(\xi) d^{m} \xi\right|
$$

$$
+\left|\omega_{m}^{-1} \int_{S_{\lambda}} \sum_{i, j_{x^{\prime} \xi_{j}}} \partial^{2} G\left(x_{0}^{\prime}, \xi\right)\left(\delta_{i j}-a_{i j}^{\prime}(\xi)\right) \partial_{i}^{\prime}(\xi) d^{m} \xi\right|
$$

or

$$
\begin{equation*}
\text { (II) } \leqq(m+6) \sqrt{ } 2 A L \lambda \mu_{\kappa} \tag{3.12}
\end{equation*}
$$

9) ω_{m} means the surface measure of the m-dimensional unit sphere, and $d^{m} \xi=d \xi_{1} \cdots d \xi_{m}$.
10) $d \sigma$ means the infinitesimal surface element of S_{λ} and n is the normal of S_{λ}.

$$
\begin{aligned}
& \text { (} \mathrm{I})=\left|\omega_{m}^{-1} \int_{S_{\lambda}} \underset{w^{\prime}}{ } \partial G\left(x_{0}{ }^{\prime}, \xi\right) f^{\prime} d^{m} \xi\right|, \\
& \text { (II) }=\left|\omega_{m}^{-1} \int_{S_{\lambda}} \underset{x^{\prime}}{ } \partial\left(x_{0}{ }^{\prime}, \xi\right) \sum_{i j}\left(\delta_{i j}-a_{i j}^{\prime}(\xi)\right) \partial_{i j}^{2} u^{\prime}(\xi) d^{m} \xi\right|, \\
& \text { (III) }=\left|\partial_{x} h\left(x_{0}{ }^{\prime}\right)\right| \text {. }
\end{aligned}
$$

and

$$
\text { (III) } \leqq \lambda^{-1} \rho_{\kappa}\left(x_{0}\right)^{-1} \operatorname{Max}\left\{\left|u^{\prime}\left(x^{\prime}\right)\right| ;\left|x^{\prime}-x_{0}{ }^{\prime}\right| \leqq \lambda \rho_{\kappa}\left(x_{0}\right)\right\},
$$

hence

$$
\begin{equation*}
\text { (III) } \leqq \lambda^{-1} \rho_{\kappa}\left(x_{0}\right)^{-1} \sup _{|x-a| \leqq \leqq^{\rho}(a)}|u(x)| . \tag{3.13}
\end{equation*}
$$

As

$$
\left|{ }_{x^{\prime}}^{\partial} u^{\prime}(x)\right| \geqq A^{-1 / 2}\left|\partial_{x} u\left(x_{0}\right)\right|=A^{-1 / 2} \rho_{\kappa}\left(x_{0}\right)^{-1} \mu_{\kappa}
$$

and $\rho_{\kappa}\left(x_{0}\right)<2 \rho(a) \leqq d$, we get from (3.7), (3.11), (3.12) and (3.13),

$$
\begin{equation*}
\lambda C_{0} \mu_{\mathrm{k}}^{2}-\left(1-\lambda C_{1}\right) \mu_{\mathrm{k}}+\lambda^{-1} C_{2} \geq 0, \tag{3.14}
\end{equation*}
$$

where

$$
C_{0}=4 A^{1 / 2} B, \quad C_{1}=\sqrt{ } 2(m+6) A^{5 / 2} L d
$$

and

$$
C_{2}=A^{1 / 2} \sup _{|x-a| \leqq \rho(a)}|u(x)|+8 \lambda \rho(a)^{2} A^{1 / 2} \Gamma .
$$

Since $C_{0} C_{2} \leqq 4 A B M+8 \lambda d^{2} A B \Gamma$, by (3.3) we can take $\lambda>0$, depending only on m, A, L, B, Γ and d, so small that

$$
\begin{equation*}
\lambda C_{1}<1 / 2 \quad \text { and } \quad\left(1-\lambda C_{1}\right)^{2}>4\left(\lambda C_{0}\right)\left(\lambda^{-1} C_{2}\right) . \tag{3.15}
\end{equation*}
$$

Let R_{1} and $R_{2}\left(R_{1}<R_{2}\right)$ be the distinct real roots of the equation in X

$$
\begin{equation*}
\lambda C_{0} X^{2}-\left(1-\lambda C_{1}\right) X+\lambda^{-1} C_{2}=0 . \tag{3.16}
\end{equation*}
$$

Then we have from (3.14)

$$
\mu_{\mathrm{\kappa}} \leqq R_{1} \quad \text { or } \quad \mu_{\mathrm{\kappa}} \geqq R_{2}\left(R_{1}<R_{2}\right) .
$$

But we can easily see from (3.4) that μ_{κ} depends on κ continuously for $0<\kappa<1$ and $\lim _{\kappa \rightarrow 0} \mu_{\kappa}=0$. Then we have only $\mu_{\kappa} \leqq R_{1}$. And, letting κ tend to 1 , by the definition of μ_{κ}

$$
\begin{equation*}
\left|\partial_{x} u(a)\right| \leqq R_{1} \rho(a)^{-1} . \tag{3.17}
\end{equation*}
$$

As R_{1} is the smaller root of (3.16) and $\lambda C_{1}<1 / 2$,

$$
R_{1}<\frac{4 C_{2}}{2 \lambda\left(1-\lambda C_{1}\right)}<4 \lambda^{-1} C_{2} .
$$

Thus from (3.17)

$$
\left|\partial_{x} u(a)\right| \leqq C^{(1)} \rho(a)^{-1} \sup _{|x-a| \leqq \leqq^{\rho}(a)}|u(x)|+C^{(2)},
$$

where $C^{(1)}=4 \lambda^{-1} A^{1 / 2}$ and $C^{(2)}=16 d A^{1 / 2} \Gamma^{\prime}$ depend only on m, A, L, B, M, Γ and d, q.e.d,

Corollary. If we replace the condition (3.2) in Theorem 2 by

$$
\begin{equation*}
|f(x, u, p)| \leqq \Gamma \tag{3.19}
\end{equation*}
$$

and omit (3.3), then there exists a constant $C_{A, L, a}$ depending only on m, A, L and d, such that

$$
|\partial u(x)| \leqq C_{A, L, d} \rho(x)^{-1} \sup _{\left|x^{\prime}-x\right| \leqq \rho(x)}\left|u\left(x^{\prime}\right)\right|+8 A^{1 / 2} \rho(x) \Gamma .
$$

where $\rho(x)=\operatorname{dist}(x, \dot{D})$.
Proof. We have instead of (3.14)

$$
\left(1-\lambda C_{1}\right) \mu_{\mathrm{k}} \leqq \lambda^{-1} C_{2} .
$$

Then, putting $\lambda=C_{1} / 2$, we get

$$
\mu_{\kappa} \leqq 2 C_{1}^{-1} A^{1 / 2} \sup _{|x-a| \leqq^{\rho}(a)}|u(x)|+8 A^{1 / 2} \rho(a)^{2} \Gamma
$$

Thus we have from (3.4), letting κ tend to 1 ,

$$
\left|\partial_{x}^{\partial} u(a)\right| \leqq C_{A, L, a} \rho(a)^{-1} \sup _{|x-a| \leqq \rho(a)}|u(x)|+8 A^{1 / 2} \rho(a) \Gamma,
$$

where $C_{A, L, d}=\sqrt{ } 2(m+6) A^{3} L d$, q. e. d.

§ 3 Existence theorem for bounded $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{p})$

4. We say that $f(x, u, p)$ is H_{α}-continuous in the finite part of a $2 m+1$-dimensional domain D^{*}, when there exists a constant $H_{M, N}$ depending on arbitrary positive numbers M and N such that

$$
\begin{equation*}
\left|f\left(x^{\prime}, u^{\prime}, p^{\prime}\right)-f(x, u, p)\right| \leqq H_{3, N}\left\{\left|x^{\prime}-x\right|^{\alpha}+\left|u^{\prime}-u\right|^{\alpha}+\left|p^{\prime}-p\right|^{\alpha}\right\} \tag{4.1}
\end{equation*}
$$

for any $(x, u, p),\left(x^{\prime}, u^{\prime}, p^{\prime}\right)$ with the restriction $|u|,\left|u^{\prime}\right| \leqq M$ and $|p|,\left|p^{\prime}\right| \leqq N$.

Theorem 3. Let D be a bounded domain with the diameter d, the boundary \dot{D} being a hypersurface of type $B h$, and let $a_{i j}(x)$ be $H_{1}-$ continuous in \bar{D}. Let $f(x, u, p)$ be H_{a}-continuous $(0<\alpha<1)$ in the finite part of

$$
D^{*}=\{(x, u, p) ; x \in \bar{D},|u|<+\infty,|p|<+\infty\}
$$

and bounded:

$$
\begin{equation*}
|f(x, u, p)| \leqq \Gamma \quad \text { in } D^{*} . \tag{4.2}
\end{equation*}
$$

Then there exists a solution $u(x)$ of (0) with the boundary value $u=0$ ($x \in \dot{D}$) such that $\|u(x)\|_{D}^{\alpha, 2}<+\infty$.

Proof. For fixed positive constants N and Λ, let $\mathfrak{F}_{N, \Lambda}$ be the set of functions $v(x) \in C^{1}[\bar{D}]$ with the following properties:

$$
\begin{equation*}
v(x)=0 \quad \text { for } x \in \dot{D} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
|\partial v(x)| \leqq N \quad \text { in } D, \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\partial_{x} v\left(x^{\prime}\right)-\partial_{x} v(x)\right| \leqq \Lambda\left|x^{\prime}-x\right| \quad \text { for } x, x^{\prime} \in D . \tag{4.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
|v(x)| \leqq N d \quad \text { for all } v(x) \in \mathfrak{F}_{N, \Lambda} \tag{4.6}
\end{equation*}
$$

$\mathfrak{F}_{N, \Lambda}$ is a compact convex set in $\mathrm{C}^{1}[\bar{D}]$, where $\mathrm{C}^{1}[\bar{D}]$ is a Banach space with the norm

$$
\|v\|=\operatorname{Max}_{\bar{D}}|v(x)|+\underset{\bar{D}}{\operatorname{Max}}\left|\partial_{x} v(x)\right|
$$

For convenience we write $f_{[v\}}(x)=f\left(x, v(x),{\underset{x}{x}}_{\partial v}(x)\right)$, then $f_{\{v]}$ is $H_{\alpha^{-}}$ continuous in D for $v \in \mathfrak{F}_{N \Lambda}$. Because, there exists a constant $\kappa \geq 1$ such that any pair of points x and x^{\prime} in D can be joined by a curve in D with length $\leqq \kappa\left|x-x^{\prime}\right|$, hence from (4.4)

$$
\left|v\left(x^{\prime}\right)-v(x)\right| \leqq \kappa N\left|x^{\prime}-x\right| \quad \text { for all } v \in \mathfrak{F}_{N, \Lambda}
$$

Thus by (4.1), (4.5) and (4.6)

$$
\begin{equation*}
H_{D}^{\alpha}\left(f_{(v)}\right) \leqq H_{N a, N}\left(1+(\kappa N)^{\alpha}+\Lambda^{\alpha}\right) . \tag{4.7}
\end{equation*}
$$

Now by Schauder's Theorem B, for any $v \in \mathscr{F}_{N \Lambda}$, there exists the solution $u(x)$ of

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2} u=f_{!v j}(x) \tag{4.8}
\end{equation*}
$$

with the boundary value $u=0(x \in \dot{D})$, which satisfies

$$
\begin{equation*}
\left|\partial_{x}^{2} u\right|+H_{D}^{\alpha}\left(\partial_{x}^{2} u\right) \leqq C^{(1)}\left\{\underset{\bar{D}}{ }\left|\operatorname{Max}_{\lceil v]}\right|+H_{D}^{\alpha}\left(f_{[v)}\right)\right\}, \tag{4.9}
\end{equation*}
$$

where $C^{(1)}$ depend only on D, A and L, as there exist constants A and L such that (2.1) and (3.1) hold.

Since D has the property $((\sigma))$ for certain $\sigma>0$, we have by (4.2) and Lemma 1,
(4.10) $\quad|u(x)| \leqq C_{A, \sigma, a} \rho(x) \Gamma, \quad$ where $\quad \rho(x)=\operatorname{dist}(x, \dot{D})$.

Then from Corollary in $\S 3$, by (4.10),

$$
\begin{equation*}
\left|\partial_{x} u(x)\right| \leqq C^{*} \Gamma \tag{4.11}
\end{equation*}
$$

where C^{*} is a constant depending only on m, A, L, σ and d. Now we put

$$
\begin{equation*}
N=C * \Gamma=N_{0} . \tag{4.12}
\end{equation*}
$$

Then from (4.7) and (4.9), for any $v \in \mathfrak{F} N_{0}, \Lambda$,

$$
\left|\partial_{x}^{2} u\right| \leqq C^{(1)}\left\{\Gamma+H_{0}\left(1+\left(\kappa N_{0}\right)^{\alpha}+\Lambda^{\alpha}\right)\right\} \quad\left(H_{0}=H_{N_{0} d, N_{0}}\right),
$$

hence
(4.13) $\quad\left|\partial_{x} u\left(x^{\prime}\right)-{\underset{x}{x}} u(x)\right| \leqq \kappa C^{(1)}\left\{\Gamma+H_{0}\left(1+\left(\kappa N_{0}\right)^{\alpha}+\Lambda^{\alpha}\right)\right\}\left|x^{\prime}-x\right|$.

Since $0<\alpha<1$, we can choose Λ_{0} so large that

$$
\kappa C^{(1)}\left\{\Gamma+H_{0}\left(1+\left(\kappa N_{0}\right)^{\alpha}+\Lambda_{0}^{\alpha}\right)\right\} \leqq \Lambda_{0} .
$$

Then by (4.13)

$$
\begin{equation*}
\left|\partial_{x} u\left(x^{\prime}\right)-{ }_{x} u(x)\right| \leqq \Lambda_{0}\left|x^{\prime}-x\right| . \tag{4.14}
\end{equation*}
$$

If we denote by Φ the transformation of $v \in \mathfrak{F}_{N_{0}, \Lambda_{0}}$ into the solution u of (4.8) with the boundary value $u=0(x \in \dot{D})$:

$$
u=\Phi[v]
$$

such that $\|u\|_{D}^{\alpha, 2}<+\infty$, then (4.11), (4.12) and (4.14) show that

$$
\begin{equation*}
\Phi\left(\mathfrak{F}_{N_{0}, \Lambda_{0}}\right) \subset \mathfrak{F}_{N_{0}, \Lambda_{0}} \tag{4.15}
\end{equation*}
$$

The mapping Φ of $\mathfrak{F}_{N_{0}, \Lambda_{0}}$ into itself is continuous in $\mathrm{C}^{1}[\bar{D}]$. Because, if $v, v^{\prime} \in \mathfrak{F}_{N_{0}, \Lambda_{0}}$
(4. 16) $\quad\left|f_{[v]}-f_{[v, \prime}\right| \leqq H_{0}\left(\left|v^{\prime}-v\right|^{\alpha}+\left|\partial_{x} v^{\prime}-{\underset{x}{x}} v\right|^{\alpha}\right) \leqq 2 H_{0}\left(\left\|v^{\prime}-v\right\|\right)^{\alpha}$.

And for $u=\Phi[v]$ and $u^{\prime}=\Phi\left[v^{\prime}\right]$

$$
\sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2}\left(u-u^{\prime}\right)=f_{\{v\}}(x)-f_{\left[v^{\prime}\right\}}(x) \quad \text { in } D
$$

and $u(x)-u^{\prime}(x)=0$ for $x \in \dot{D}$. Thus by Lemma 1 and Corollary in $\S 2$, replacing Γ by $2 H_{0}\left(\left\|v^{\prime}-v\right\|\right)^{\infty}$ in (4.10) and (4.11), we get

$$
\left|u(x)-u^{\prime}(x)\right| \leqq 2 C_{A, \sigma, a} d H_{0}\left(\left\|v-v^{\prime}\right\|\right)^{\alpha}
$$

and

$$
\left|\partial_{x} u-{ }_{x}^{\partial} u^{\prime}\right| \leqq 2 C^{*} H_{0}\left(\left\|v-v^{\prime}\right\|\right)^{\infty}
$$

These show the continuity of Φ. Then from (4.15), by the fixed point theorem in functional space, ${ }^{11)}$ there exists a $u_{0} \in \mathfrak{F}_{N_{0}, \Delta_{0}}$ such that

$$
\Phi\left[u_{0}\right]=u_{0}
$$

[^4]Then $u_{0}(x)$ is a solution of (0) with the boundary value $u=0$, q.e.d.

§4 Existence theorem for regular boundary condition

5. Lemma 2. Let D be a bounded domain with the property $((\sigma))$ and the diameter d. Let $a_{i j}(x)$ be subjected to the conditions (2.1) and (3.1), and $f(x, u, p)$ to the condition (3.2) Let $u(x)$ be a solution of (0) with the boundary value $u=0(x \in \dot{D})$ and satisfy (3.3). Then there exists a constant C \# depending only on $m, A, L, B, \Gamma, M, \sigma$ and d, such that

$$
\left|\partial_{x} u(x)\right| \leqq C^{\#} .
$$

Proof. First we shall prove the existence of a constant C^{*} depending only on m, A, L, B, Γ, M and σ such that for the solution of (0), which vanishes on D and satisfy (3.3), holds the inequality

$$
\begin{equation*}
|u(x)| \leqq C^{*} \operatorname{dist}(x, \dot{D}) . \tag{5.1}
\end{equation*}
$$

Let x_{0} be any point of D and let p be a point of \dot{D} such that $\left|x_{0}-p\right|=\operatorname{dist}\left(x_{0}, \dot{D}\right)$. Let S_{p} be a closed sphere with the radius σ such that $S_{p} \cap \bar{D}=(p)$, and c be the center of S_{p}. Then the function

$$
\begin{equation*}
\omega(x)=M \log \left[\left(r-\sigma^{\prime}\right) /\left(\sigma-\sigma^{\prime}\right)\right], \tag{5.2}
\end{equation*}
$$

where

$$
r=|x-c|, \quad \sigma^{\prime}=\left(1-\varepsilon^{2}\right) \sigma,
$$

satisfies the inequality

$$
\begin{equation*}
\Phi[\omega] \equiv \sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{\partial^{2}} \omega+B\left|{ }_{x} \omega\right|^{2}+\mathrm{\Gamma}^{\prime} \leqq 0 \tag{5.3}
\end{equation*}
$$

for $\sigma \leqq|x-c| \leqq \sigma(1+\varepsilon)$, where $\Gamma^{\prime}>\Gamma>0$ (for example $\Gamma^{\prime \prime}=\Gamma+1$) and

$$
\begin{equation*}
\varepsilon=\operatorname{Min}\left\{\left(2 m A^{2}\right)^{-1}, \quad \sigma^{-1}\left(M / 8 A \Gamma^{\prime}\right)^{1 / 2}\right\} . \tag{5.4}
\end{equation*}
$$

In fact, as $\left(r-\sigma^{\prime}\right) r^{-1} \leqq \varepsilon<1 / 4$ for $\sigma \leqq r \leqq \sigma(1+\varepsilon), 2 A B M<1 / 2$, $\sum_{i=1}^{m} a_{i i} \leqq m A$ and

$$
\begin{aligned}
& r^{-2} \sum_{i, j=1}^{m} a_{i j}(x)\left(x_{i}-c_{i}\right)\left(x_{j}-c_{j}\right) \equiv \alpha(x) \leqq A^{-1}, \\
\Phi[\omega]= & M\left(r-\sigma^{\prime}\right)^{-2}\left\{\left(r-\sigma^{\prime}\right) r^{-1} \sum_{i} a_{i i}-\left(1+\left(r-\sigma^{\prime}\right) r^{-1}\right) \alpha(x)\right\} \\
& +B M^{2}\left(r-\sigma^{\prime}\right)^{-2}+\Gamma^{\prime} \\
\leqq & M\left(r-\sigma^{\prime}\right)^{-2}\left(\varepsilon m A-A^{-1}+B M\right)+\Gamma^{\prime} \\
\leqq & \Gamma^{\prime}-M(1-2 A B M) / 2 A\left(r-\sigma^{\prime}\right)^{2} \\
< & \Gamma^{\prime}-M / 8 A \varepsilon^{2} \sigma^{2} \leqq 0 \quad \text { (by (5.4)). }
\end{aligned}
$$

We have also, as $\log \left(1+\varepsilon^{-1}\right)>\log 5>1$,

$$
\begin{equation*}
\omega(x)>M \quad \text { for } \quad|x-c|=(1+\varepsilon) \sigma . \tag{5.5}
\end{equation*}
$$

Let $D_{\mathrm{\varepsilon}}$ be the part of D defined by

$$
D_{\varepsilon}=\{x ; x \in D,|x-c|<(1+\varepsilon) \sigma\}
$$

then $\omega(x)$ is a quasi-supersolution of $\Phi=0$ in D_{ε}. But $u(x)$ satisfies the inequalities

$$
\Phi[u]<0 \quad \text { in } D_{\varepsilon}, \quad u(x) \leqq \omega(x) \text { for } x \in \dot{D}_{\varepsilon}
$$

Thus, by Theorem 1,

$$
u(x) \leqq \omega(x)=M \log \left[\left(|x-c|-\sigma^{\prime}\right) /\left(\sigma-\sigma^{\prime}\right)\right] \quad \text { for } x \in D_{\varepsilon}
$$

We get a similar inequality, if we replace $u(x)$ by $-u(x)$. Then

$$
\begin{equation*}
|u(x)| \leqq M \log \left[\left(|x-c|-\sigma^{\prime}\right) /\left(\sigma-\sigma^{\prime}\right)\right] \quad \text { for } x \in D_{\varepsilon} \tag{5.6}
\end{equation*}
$$

As $\log \left[\left(r-\sigma^{\prime}\right) /\left(\sigma-\sigma^{\prime}\right)\right] \leqq\left(\sigma-\sigma^{\prime}\right)^{-1}(r-\sigma)=\left(\sigma \varepsilon^{2}\right)^{-1}(r-\sigma)$ for $r \geqq \sigma$ and $r-\sigma=\operatorname{dist}\left(x_{0}, \dot{D}\right)$ for $x=x_{0}$, we get from (5.6)

$$
\left|u\left(x_{0}\right)\right| \leqq\left(\sigma \varepsilon^{2}\right)^{-1} M \operatorname{dist}\left(x_{0}, D\right) \quad \text { for } x_{0} \in D_{z}
$$

But this inequality holds also for $x_{0} \in D-D_{\varepsilon}$. (5.1) is thus proved.
Now by Theorem 2 we have

$$
\begin{equation*}
|\partial u(x)| \leqq C^{(1)} \rho(x)^{-1} \operatorname{Max}_{\left|x^{\prime}-x\right| \leqq \rho(x)}\left|u\left(x^{\prime}\right)\right|+C^{(2)} \tag{5.7}
\end{equation*}
$$

where $\rho(x)=\operatorname{dist}(x, \dot{D})$, and $C^{(1)}$ and $C^{(2)}$ depend only on m, A, L, B, Γ, M and d. And, as by (5.1)

$$
\left|u\left(x^{\prime}\right)\right| \leqq 2 C^{*} \rho(x) \quad \text { for } \quad\left|x^{\prime}-x\right| \leqq \rho(x)
$$

we get from (5.7)

$$
\left|{ }_{x} u(x)\right| \leqq 2 C^{*} C^{(1)}+C^{(2)}=C^{\#}, \quad \text { q. e. d. }
$$

6. Theorem 4. Let D be a bounded domain with the boundary of type Bh. Let $a_{i j}(x)$ be H_{1}-continuous in \bar{D}, and let $f(x, u, p)$ be $H_{\alpha^{-}}$ continuous $(0<a<1)$ in the finite part of

$$
D^{*}=\{(x, u, p) ; x \in \bar{D}, \quad \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x),|p|<+\infty\}
$$

where $\bar{\omega}(x)$ and $\underline{\omega}(x)$ are quasi-supersolution and quasi-subsolution of (0) respectively such that

$$
|\underline{\omega}(x)| \leqq M, \quad|\bar{\omega}(x)| \leqq M, \quad \underline{\omega}(x)<\bar{\omega}(x) .
$$

And there is a finite set $\left\{U_{j}\right\}_{j=1}^{n}$ such that (0.1) and (0.2) hold in each $U=U_{j}$ and $\bigcup_{j=1}^{n} U_{j} \supset \bar{D}$. Let $a_{i j}(x)$ be also subjected to the condition (2.1) and $f(x, u, p)$ to the condition (3.2), where (3.3) holds. Then there exists a solution of (0) with the boundary value $\beta(x)(x \in \dot{D})$ such that

$$
\underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x) \quad \text { and } \quad\|u(x)\|_{D}^{\alpha, 2}<+\infty
$$

where $\beta(x)$ is a given function of $\mathrm{C}^{3}[\bar{D}]$ such that

$$
\underline{\omega}(x)<\beta(x)<\bar{\omega}(x) \quad \text { in } D .
$$

Proof. Without loss of generality we can assume that $\beta(x)=0$. Then we put

$$
\begin{equation*}
N_{0}=\operatorname{Max}\left\{\operatorname{Max}_{U_{j}}\left|{\underset{x}{x}}_{\partial_{\nu}}\right|, \quad \operatorname{Max}_{U_{j}}\left|\partial_{x} \omega_{\nu}\right|, \quad C \#_{(\Gamma+1)}\right\},,^{12)} \tag{6.1}
\end{equation*}
$$

where $C \#_{(\Gamma+1)}$ is the constant given in Lemma 2 but Γ is replaced by $\Gamma+1$. We define $f^{*}(x, u, p)$ by
(6.2) $f^{*}(x, u, p)= \begin{cases}f(x, u, p) & \text { if }|p| \leqq N_{0}, \\ f\left(x, u, N_{0}|p|^{-1} p\right) & \text { if }|p|>N_{0},\end{cases}$
and then $f \#(x, u, p)$ by
(6.3) $f \#(x, u, p)=\left\{\begin{array}{l}f^{*}(x, \bar{\omega}(x), p)+\frac{u-\bar{\omega}(x)}{1+u-\bar{\omega}(x)} \quad \text { for } u>\bar{\omega}(x), \\ f^{*}(x, u, p) \quad \text { for } \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x), \\ f^{*}(x, \underline{\omega}(x), p)+\frac{u-\underline{\omega}(x)}{1+\underline{\omega}(x)-u} \quad \text { for } u<\underline{\omega}(x) .\end{array}\right.$

We can easily prove that $f \#(x, u, p)$ is bounded and H_{a}-continuous in

$$
D_{\#}^{\#}=\{(x, u, p) ; x \in \bar{D}, \quad|u|<+\infty,|p|<+\infty\}
$$

Then by Theorem 3 there exists a solution $u(x)$ of

$$
\begin{equation*}
\sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{2} u=f \#\left(x, u, \partial_{x} u\right) \tag{6.4}
\end{equation*}
$$

vanishing on \dot{D} such that $\|u(x)\|_{D}^{\alpha, 2}<+\infty . u(x)$ must satisfy the inequality

$$
\begin{equation*}
\underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x) . \tag{6.5}
\end{equation*}
$$

In fact, as $f \#\left(x, \bar{\omega}_{\nu}(x),{\underset{x}{x}}_{\partial} \bar{\omega}_{\nu}(x)\right)=f\left(x, \bar{\omega}_{\nu}(x),{\underset{x}{x}}^{\partial} \bar{\omega}_{\nu}(x)\right)$ for x and ν such that $\bar{\omega}(x)=\bar{\omega}_{\nu}(x), \bar{\omega}(x)$ is a quasi-supersolution of the equation

[^5]$$
\Phi[u] \equiv \sum_{i, j=1}^{m} a_{i j}(x) \partial_{i j}^{2} u-f \#\left(x, \bar{\omega}(x), \partial_{x} u\right)=0 .
$$

But, as $f \#(x, \bar{\omega}(x), p)=f^{*}(x, \bar{\omega}(x), p), u(x)$ satisfies

$$
\Phi[u]=\frac{u-\bar{\omega}(x)}{1+u-\bar{\omega}(x)}>0
$$

for x such that $u(x)>\bar{\omega}(x)$, and $u(x)=0 \leqq \bar{\omega}(x)$ for $x \in \dot{D}$. Then by Theorem 1 we get

$$
u(x) \leqq \bar{\omega}(x) \quad \text { in } D
$$

Similarly we obtain $u(x) \geqq \underline{\omega}(x)$ in D.
Now f \# satisfies the condition

$$
|f \#(x, u, p)| \leqq B|p|^{2}+\Gamma+1,
$$

and for $u(x)$ holds $|u(x)| \leqq M$, and $16 A B M<1$. Then by Lemma 2 we have

$$
\begin{equation*}
\left|{ }_{x} u(x)\right| \leqq C \#_{(\Gamma+1)} \leqq N_{0} . \tag{6.6}
\end{equation*}
$$

(6.5) and (6.6) show that $u(x)$ is a solution of (0), q.e.d.

§5 Preparation for the general boundary condition.

7. Lemma 3. Let D be a bounded domain. Let $a_{i j}(x)$ be subjected to the conditions (2.1) and (3.1), and $f(x, u, p)$ to the conditions (3.2) and (4.1) in

$$
D^{*}=\{(x, u, p) ; x \in \bar{D}, \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x), \quad|p|<+\infty\}
$$

where $\omega(x)$ and $\bar{\omega}(x)$ are continuous functions on D such that

$$
|\underline{\omega}(x)| \leqq M,|\bar{\omega}(x)| \leqq M \quad \text { and } 16 A B M<1 .
$$

Let \mathfrak{F} be the set of all solutions $u(x)$ of (0) such that

$$
\underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x) \quad \text { and }\|u\|_{D}^{\alpha, 2}<+\infty .
$$

Then, for any closed sphere S in D, there exist constants $C_{S}^{i}, C_{S}^{\mathrm{ii}}$ and $C_{s}^{\text {iii }}$ such that for all $u \in \mathfrak{F}$

$$
\left|\partial_{x} u(x)\right| \leqq C_{S}^{\mathrm{i}},\left|\partial_{x}^{2} u(x)\right| \leqq C_{S}^{\mathrm{ii}} \quad \text { for } x \in S
$$

and

$$
H_{S}^{\alpha}(u) \leqq C_{S}^{\mathrm{iii}} .
$$

Proof. Let δ be the distance between S and \dot{D}. Then by Theorem 3

$$
\begin{equation*}
\left|\partial_{\not x} u(x)\right| \leqq C^{(1)} M \delta^{-1}+C^{(2)} \equiv C_{S}^{\mathrm{i}} \quad \text { for } \quad x \in S, \tag{7.1}
\end{equation*}
$$

Now let S^{\prime} be the sphere concentric with S such that $\operatorname{rad}\left(S^{\prime}\right)=\operatorname{rad}(S)$ $+\delta / 2$. We put

$$
\begin{equation*}
\mu=\operatorname{Max}_{x \in S^{\prime}}\left\{\left|{ }_{x}^{2} u(x)\right| \cdot \rho(x)^{k}\right\} \tag{7.2}
\end{equation*}
$$

where $\rho(x)=\operatorname{dist}\left(x, \dot{S}^{\prime}\right)$ and k is a positive constant to be defined afterwards. Then there exists a point $x_{0} \in S^{\prime}$ such that

$$
\begin{equation*}
\left|\partial_{x}^{2} u\left(x_{0}\right)\right| \cdot \rho\left(x_{0}\right)^{k}=\mu \tag{7.3}
\end{equation*}
$$

Let Σ be the closed sphere with the center x_{0} and the radius $\rho\left(x_{0}\right) / 2$. Then, as $\rho(x) \geq \rho\left(x_{0}\right) / 2$ for $x \in \Sigma$, we have from (7.2)

$$
\left|\partial_{x}^{2} u(x)\right| \leqq 2^{k} \rho\left(x_{0}\right)^{-k} \mu \quad \text { for } \quad x \in \Sigma .
$$

Hence
(7.4) $\quad\left|{ }_{x} u\left(x^{\prime}\right)-{ }_{x}^{\partial} u(x)\right| \leqq 2^{k} \rho\left(x_{0}\right)^{-k} \mu\left|x^{\prime}-x\right| \quad$ for $\quad x, x^{\prime} \in \sum$.

From (7.1) we get also

$$
\begin{equation*}
\left|u\left(x^{\prime}\right)-u(x)\right| \leqq C_{S^{\prime}}^{\mathrm{i}}\left|x^{\prime}-x\right| \quad \text { for } \quad x, x^{\prime} \in \sum\left(\subset S^{\prime}\right) . \tag{7.5}
\end{equation*}
$$

Then by (4.1) we obtain for $x, x^{\prime} \in \Sigma$

$$
\left|f_{〔 u\rfloor}\left(x^{\prime}\right)-f_{\lceil u, 3}(x)\right| \leqq H_{1}\left(1+\left(C_{s^{\prime}}^{\mathrm{i}}\right)^{\alpha}+2^{\alpha k} \rho_{0}{ }^{-\alpha k} \mu^{\alpha}\right)\left|x^{\prime}-x\right|^{\alpha}
$$

$$
\begin{equation*}
H_{\frac{2}{\alpha}}^{\alpha}\left(f_{[u]}\right) \leqq C_{S}^{(1)}+C_{S}^{(2)} \rho_{0}{ }^{-\alpha k} \mu^{\alpha} \tag{7.6}
\end{equation*}
$$

where

$$
C_{S}^{(1)}=H_{1}\left(1+\left(C_{S^{\prime}}^{\mathrm{i}}\right)^{\alpha}\right), C_{S}^{(2)}=2^{\alpha k} H_{1}
$$

By Schauder's Theorem A we have

$$
\begin{aligned}
\left|\partial_{x}^{2} u\left(x_{0}\right)\right| & \leqq C_{(A, L)}\left(\rho_{0} / 2\right)^{-4}\left\{H_{\Sigma}^{\alpha}\left(f_{[u]}\right)+\operatorname{Max}_{\Sigma}\left|f_{[u]}\right|+\underset{\Sigma}{\operatorname{Max}}|u|\right\} \\
& \leqq 16 C_{(A, L)} \rho_{0}^{-4}\left\{H_{\Sigma}^{\alpha}\left(f_{[u]}\right)+B\left(C_{S^{\prime}}^{\mathrm{i}}\right)^{2}+\Gamma+M\right\}
\end{aligned}
$$

Then by (7.6), putting $k=4(1-\alpha)^{-1}$, we get

$$
\rho_{0}^{k}\left|\partial_{x}^{2} u\left(x_{0}\right)\right| \leqq C_{S}^{(3)} \rho_{0}^{k-4}+C_{S}^{(4)} \mu^{\alpha}
$$

where $C_{S}^{(3)}$ and $C_{S}^{(4)}$ are positive constants depending on S. Thus from (7.3), as $k<4$ and $\rho_{0} \leqq \operatorname{rad}\left(S^{\prime}\right)$,

$$
\begin{equation*}
\mu \leqq C_{S}^{(3)} \operatorname{rad}\left(S^{\prime}\right)^{k-4}+C_{s}^{(4)} \mu^{\alpha} \tag{7.7}
\end{equation*}
$$

But, since $0<\alpha<1$, we obtain from (7.7)

$$
\begin{equation*}
\mu \leqq C_{s}^{(5)} \tag{7.8}
\end{equation*}
$$

where $C_{S}^{(5)}$ is a positive constant depending on S. Then, as $\rho(x) \geqq \delta / 2$ for $x \in S$, from (7.2) and (7.8)

$$
\begin{equation*}
\mid{ }_{x}^{\partial^{2} u(x) \mid \leqq 2^{k} C_{S}^{(5)} \delta^{-k} \equiv C_{S}^{\mathrm{ii}} \text { in } S \text { for all } u \in \mathfrak{F} . . . \text {. }{ }^{2} .} \tag{7.9}
\end{equation*}
$$

Now we get easily from (4.1), (7.5) and (7.9), replacing S by S^{\prime},

$$
\begin{equation*}
H_{s^{\prime}}^{\alpha}\left(f_{〔 u\}}\right) \leqq H_{1}\left\{1+\left(C_{s^{\prime}}^{\mathrm{i}}\right)^{\alpha}+\left(C_{S^{\prime}}^{\mathrm{ii}}\right)^{\alpha}\right\} . \tag{7.10}
\end{equation*}
$$

But by Schauder's Theorem A

$$
\begin{aligned}
H_{S}^{\alpha}\left(\partial_{x}^{2} u\right) & \leqq C_{(A, L)}(\delta / 2)^{-4}\left\{H_{S^{\prime}}^{\alpha}\left(f_{[u u)}\right)+\operatorname{Max}_{S^{\prime}}\left|f_{[u]}\right|+\operatorname{Max}_{S^{\prime}}|u|\right\} \\
& \leqq 16 C_{(A, L)} \delta^{-4}\left\{H_{S^{\prime}}^{\alpha}\left(f_{\lceil u]}\right)+B\left(C_{S^{\prime}}^{\mathrm{i}}\right)^{2}+\Gamma+M\right\}
\end{aligned}
$$

Thus by (7.10) there exists a constant C_{S}^{iii} such that

$$
H_{s}^{\alpha}\left(\partial_{x}^{2} u\right) \leqq C_{s}^{\mathrm{iii}} \quad \text { for all } \quad u \in \mathfrak{F}, \quad \text { q.e. d. }
$$

8. Now we assume the existence of a sequence of domains $\left\{D_{n}\right\}$ such that $\bar{D}_{n-1} \subset D_{n}, \bigvee_{x=1}^{\infty} D_{n}=D$ and \dot{D}_{n} is of type $B h$. We can prove the existence of such sequence $\left\{D_{n}\right\}$ for any open domain D, but we will not enter into it here.

Theorem 5. Let $a_{i j}(x)$ be H_{1}-continuous in each \bar{D}_{n} and satisfy (2.1) in D. Let $f(x, u, p)$ be H_{a}-continuous $(0<\alpha<1)$ in the finite part of each

$$
D_{n}^{*}=\left\{(x, u, p) ; x \in \bar{D}_{n}, \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x), \quad|p|<+\infty\right\},
$$

where $\underline{\omega}(x)$ and $\bar{\omega}(x)$ are bounded continuous functions such that

$$
|\underline{\omega}(x)| \leqq M,|\bar{\omega}(x)| \leqq M,
$$

and

$$
|f(x, u, p)| \leqq B|p|^{2}+\Gamma_{n} \quad \text { in } D_{n}^{*},
$$

where B and Γ_{n} are positive constants such that $16 A B M<1$. Let $\left\{\ddot{\omega}_{\gamma}(x)\right\}$ and $\left\{\underline{\omega}_{\gamma}(x)\right\}(\gamma \in \Omega)$ be systems of quasi-supersolutions and quasisubsolutions of (0) respectively such that

$$
\underline{\omega}(x) \leqq \underline{\omega}_{\gamma}(x)<\bar{\omega}_{\gamma^{\prime}}(x) \leqq \bar{\omega}(x) \text { in } D \quad\left(\gamma, \gamma^{\prime} \in \Omega\right) .
$$

Then there exists a solution $u(x)$ of (0) such that

$$
\sup _{\gamma \in \Omega} \omega_{\gamma}(x) \leqq u(x) \leqq \inf _{\gamma \in \Omega} \bar{\omega}_{\gamma}(x) \quad \text { in } D .
$$

Proof. First we consider a fixed $\gamma \in \Omega$. Let $\beta_{n}(x)$ be a function of $\mathrm{C}^{3}[\bar{D}]$ such that $\underline{\omega}_{\gamma}(x)<\beta_{n}(x)<\bar{\omega}_{\gamma}(x)$ in D_{n}. Then by Theorem 3
there exists a solution $u_{n}(x)$ of (0) such that $u_{n}(x)=\beta_{n}(x)$ for $x \in \dot{D}_{n}$,

$$
\underline{\omega}_{\gamma}(x) \leqq u_{n}(x) \leqq \bar{\omega}_{\gamma}(x) \quad \text { in } D_{n}, \quad \text { and }\left\|u_{n}\right\|_{D_{n}}^{\alpha, 2}<+\infty .
$$

Let S be any closed sphere in D, then $S \subset D_{i}$ for sufficiently large i. By Lemma 3 the sequences $\left\{u_{n}(x)\right\},\left\{\partial u_{n}(x)\right\}$ and $\left\{\partial_{x}^{2} u_{n}(x)\right\}$ are all uniformly bounded and equi-continuous in S. Then, as S is an arbitrary closed sphere in D, we can choose a sequence of natural numbers $\{n(\nu)\}(n(\nu+1)>n(\nu))$ in such a way that the sequences

$$
\left\{u_{n(\nu)}(x)\right\},\left\{Э_{x} u_{n(\nu)}(x)\right\} \text { and }\left\{\partial_{x}^{2} u_{n(\nu)}(x)\right\}
$$

converge uniformly in D in the generalised sense. Then we can easily see that

$$
\lim _{\nu \rightarrow \infty} u_{n(\nu)}(x)=u(x)
$$

is also a solution of (0) such that

$$
\underline{\omega}_{\gamma}(x) \leqq u(x) \leqq \bar{\omega}_{\gamma}(x) \quad \text { in } \quad D .
$$

Now let \mathfrak{F}_{γ} be the set of all solutions of (0) such that

$$
\underline{\omega}_{\gamma}(x) \leqq u(x) \leqq \bar{\omega}_{\gamma}(x) \quad \text { in } D \quad \text { and }\|u\|_{D_{n}}^{\alpha, 2}<+\infty .
$$

By Lemma $3 \mathfrak{F}_{\gamma}$ is compact in $\mathrm{C}^{2}[D]$, where $\mathrm{C}^{2}[D]$ is a linear topological space with the pseudo-norm

$$
\|u\|_{n}=\underset{D_{n}}{\operatorname{Max}}|u(x)|+\underset{D_{n}}{\operatorname{Max}}\left|\partial_{x} u\right|+\underset{D_{n}}{\operatorname{Max}}\left|\partial_{x}{ }^{2} u\right| .
$$

If $\gamma_{1}, \ldots, \gamma_{n}$ are any finite number of $\gamma \in \Omega$, we see easily that

$$
\begin{aligned}
& \operatorname{Min}_{1 \leq i \leqq n}\left\{\bar{\omega}_{y_{i}}(x)\right\}=\bar{\omega}_{*}(x) \text { is a quasi-supersolution of }(0) \\
& \operatorname{Max}_{1 \leqq^{i} \leqq n}\left\{\underline{\varrho^{n}}(x)\right\}=\omega_{*}(x) \text { is a quasi-subsolution of }(0),
\end{aligned}
$$

such that $\underline{\omega}(x) \leqq \underline{\omega}_{*}(x)<\bar{\omega}_{*}(x) \leqq \bar{\omega}(x)$ in D, and $\bigcap_{i=1}^{n} \mathfrak{F}_{\gamma_{i}}$ is the set of all solutions of (0) such that

$$
\underline{\omega}_{*}(x) \leqq u(x) \leqq \bar{\omega}_{*}(x) \quad \text { in } \quad D, \quad\|u\|_{\nu_{n}}^{\alpha, 2}<+\infty
$$

Then by the first part of the proof $\bigcap_{i=1}^{n} \mathscr{F}_{\gamma_{i}}$ is not empty. Thus

$$
\bigcap_{\gamma \in \Omega} \mathscr{F}_{\gamma} \neq 0
$$

by the intersection property of compact sets, q.e.d.

§6 Main existence theorem.

9. We say that a domain D satisfies the condition of Poincaré, if
for each point c of \dot{D} there exists a cone of one nappe K with the vertex c such that, in a sufficiently small neighbourhood of c, K lies outside of D. Now we shall prove the main existence theorem :

Theorem 6. Let D be a bounded domain satisfying the condition of Poincaré. Let $a_{i j}(x)$ be $H_{1}-$ continuous in \bar{D} and satisfy
(9.1) $\quad A^{-1} \leqq \sum_{i j=1}^{m} a_{i j}(x) \xi_{i} \xi_{j} \leqq A \quad$ for $\sum_{i=1}^{m} \xi_{i}^{2}=1(A \geqq 1)$.

Let $f(x, u, p)$ be H_{a}-continuous $(0<\alpha<1)$ in the finite part of

$$
D^{*}=\{(x, u, p) ; x \in \bar{D}, \underline{\omega}(x) \leqq u \leqq \bar{\omega}(x),|p|<+\infty\}
$$

where $\bar{\omega}(x)$ and $\underline{\omega}(x)$ are quasi-supersolution and quasi-subsolution of (0) respectively such that

$$
\begin{equation*}
|\bar{\omega}(x)| \leqq M, \quad|\underline{\omega}(x)| \leqq M \quad \text { in } D . \tag{9.2}
\end{equation*}
$$

$f(x, u, p)$ satisfies also

$$
\begin{equation*}
|f(x, u, p)| \leqq B|p|^{2}+\mathbf{\Gamma} \tag{9.3}
\end{equation*}
$$

where B and Γ are positive constants such that

$$
\begin{equation*}
16 A B M<1 \tag{9.4}
\end{equation*}
$$

Then there exists a solution $u(x)$ of (0) such that

$$
\mid \underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x) \quad \text { in } D
$$

with the boundary value $\beta(x)(x \in \dot{D})$, where $\beta(x)$ is a given continuous function on \bar{D} such that $\underline{\omega}(x)<\beta(x)<\bar{\omega}(x)$ in D.

Proof. Let c be any point of \dot{D}, and K be a cone of one nappe with the vertex c, which lies outside of D for $|x-c| \leqq \delta_{0}\left(\delta_{0}>0\right)$. By a suitable linear transformation of coordinates, we can assume

$$
\sum_{i, j=1}^{m} a_{i j}(c) \partial_{i j}^{2} u(c)=\sum_{i=1}^{m} \partial_{i i}^{2} u(c)
$$

But (9.3) must be replaced by

$$
|f(x, u, p)| \leqq A B|p|^{2}+\Gamma .
$$

We assume also that the axis of the cone K is the x_{1}-axis with the positive sence directed into D. Let us introduce the new coordinates $r, \theta, \xi_{2}, \ldots, \xi_{m}$ by

$$
|x-c|=r, \quad x_{1}-c_{1}=r \cos \theta, \quad x_{i}-c_{i}=r \sin \theta \cdot \xi_{i} \quad(i \geqq 2)
$$

And we assume that K is represented by
(K)

$$
\pi-\varepsilon_{0} \leqq \theta \leqq \pi \quad\left(0<\varepsilon_{0}<\pi / 2\right)
$$

Now we shall construct a quasi-supersolution $\omega_{c}(x)$ of (0) of the form

$$
\omega_{c}(x)=r^{\gamma} \varphi(\theta)+\beta(c)+\varepsilon \quad(\varepsilon>0)
$$

in a neighbourhood of c. Then we have

$$
\begin{aligned}
\partial_{i} \omega_{c}= & \gamma r^{\gamma-2}\left(x_{i}-c_{i}\right) \mathcal{P}(\theta)+r_{i}^{\gamma} \partial \varphi^{\prime}(\theta), \\
\partial_{i j}^{2} \omega_{c}= & r^{\gamma-2}\left\{\left(\gamma(\gamma-2) r^{-2}\left(x_{i}-c_{i}\right)\left(x_{j}-c_{j}\right)+\delta_{i j}\right) \mathcal{P}\right. \\
& \left.+\left(\gamma\left(x_{i}-c_{i}\right)_{j} \theta+\gamma\left(x_{j}-c_{j}\right) \partial_{i} \theta+r_{i j}^{2} \partial_{i j}^{2} \theta\right) \mathcal{P}^{\prime}+r_{i}^{2} \partial_{j} \partial_{j} \theta \mathcal{P}^{\prime \prime}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
\partial \theta & = \begin{cases}-r^{-1} \sin \theta & \text { if } i=1 \\
r^{-1} \cos \theta \cdot \xi_{i} & \text { if } i \geqq 2,\end{cases} \\
{ }_{i j}^{2} \theta & =\left\{\begin{array}{lll}
r^{-2} \sin 2 \theta & \text { if } i=j=1 \\
-r^{-2} \cos 2 \theta \cdot \xi_{i} & \text { if } i=1, j \geqq 2, \\
r^{-2}\left[\cot \theta \cdot\left(\delta_{i j}-\xi_{i} \xi_{j}\right)-\sin 2 \theta\right] & \text { if } \quad i, j \geq 2
\end{array}\right.
\end{aligned}
$$

Thus, assuming $0<\gamma<1$ and $0<\delta<1$, we get for $r=|x-c|<\delta$

$$
\left\{\begin{array}{l}
\Delta \omega_{c} \leqq r^{\gamma-2}\left\{\varphi^{\prime \prime}+(m-2) \cot \theta \cdot \varphi^{\prime}+\gamma(m-1)|+|\varphi|\}\right. \tag{9.5}\\
\left|\partial_{x_{c}}\right|^{2} \leqq r^{\gamma-2}\left(\left|\varphi^{\prime}\right|+\gamma|\varphi|\right)^{2} \\
\sum_{i, j=1}^{m}\left(a_{i j}-\delta_{i j}\right) \partial_{i j}^{2} \omega_{c} \leqq k r^{\gamma-2} \delta\left\{\gamma|\varphi|+(1+|\cot \theta|)\left|\mathcal{P}^{\prime}\right|+\left|\varphi^{\prime \prime}\right|\right\}
\end{array}\right.
$$

where k is a fixed constant. Then, assuming $0<\delta<\operatorname{Min}\left\{1, k^{-1}\right\}$, we get from (9.5) for $r<\delta$

$$
\begin{align*}
\Phi\left[\omega_{c}\right] & \equiv \sum_{i, j=1}^{m} a_{i j}(x)_{i j}^{2} \omega_{c}+A B\left|\partial_{x} \omega_{c}\right|^{2}+\Gamma \tag{9.6}\\
& \leqq r^{\gamma-2}\left\{\left(\left(\mathcal{P}^{\prime \prime}+k \delta\left|\varphi^{\prime \prime}\right|\right)+(m-2) \cot \theta \cdot \mathscr{Q}^{\prime}\right.\right. \\
& \left.+(2 A B|\mathcal{P}|+1+|\cot \theta|)\left|\varphi^{\prime}\right|+m_{\gamma}|\varphi|+\delta \Gamma\right\}
\end{align*}
$$

Now we put

$$
\begin{equation*}
\varphi(\theta)=\lambda^{-1} \mu|\theta|+(2 A B)^{-1} \log \left\{\left(1+\lambda^{2} / 2 A B \mu\right)-e^{\lambda|\theta|}\right\}+C \tag{9.7}
\end{equation*}
$$

where

$$
C=6 M-(2 A B)^{-1} \log \left(\lambda^{2} / 2 A B \mu\right)
$$

$$
\begin{equation*}
\lambda=2\left((m-1) \cot \varepsilon_{0}+12 A B M+1\right) \tag{9.8}
\end{equation*}
$$

and

$$
\mu=\lambda^{2}(2 A B)^{-1}\left(1-e^{-4 A B M}\right)\left(e^{\lambda \pi}-1\right)^{-1}
$$

Then $\varphi(\theta)\left(\in C^{2}[|\theta| \leqq \pi]\right)$ satisfies, for $|\theta| \leqq \pi$, the inequalities

$$
\begin{equation*}
\varphi^{\prime}(\theta) \cdot \theta \leqq 0, \quad \varphi^{\prime \prime}(\theta)<0, \quad 4 M \leqq \varphi(\theta) \leqq 6 M \tag{9.9}
\end{equation*}
$$

and
(9.10)

$$
\mathcal{P}^{\prime \prime}+\lambda\left|\mathcal{P}^{\prime}\right|+2 A B \mathcal{Q}^{\prime 2}+\mu<0 .
$$

Thus, assuming

$$
\left\{\begin{array}{l}
0<\delta<\operatorname{Min}\left\{\delta_{0}, 1,(2 k)^{-1}, \mu / 4 \Gamma\right\} \tag{9.11}\\
0<\gamma<\operatorname{Min}\{1, \mu / 24 m M, \log 2 / \log (1 / \delta)\}
\end{array}\right.
$$

from (9.6), (9.8), (9.9) and (9.10) we obtain
(9.12) $\Phi\left[\omega_{c}\right]<0$ for $0<|x-c|=r \leqq \delta, \quad|\theta| \leqq \pi-\varepsilon_{0}$
and, as $\quad \delta^{\gamma}>1 / 2, \quad \varphi(\theta) \geqq 4 M$ and $\beta(c) \geqq-M$,

$$
\begin{equation*}
\omega_{c}(x)>M \text { for }|x-c|=\delta,|\theta| \leqq \pi-\varepsilon_{0} . \tag{9.13}
\end{equation*}
$$

Hence $\omega_{c}=r^{\gamma} \varphi(\theta)+\beta(c)+\varepsilon$ is a quasi-supersolution of (0) in $D_{\cap}\{x$; $|x-c| \leqq \delta\}$. Then

$$
\bar{\omega}_{(c, \delta)}(x)= \begin{cases}\bar{\omega}(x) & \text { for }|x-c|>\delta, \\ \operatorname{Min}\left\{\bar{\omega}(x), \omega_{c}(x)\right\} & \text { for }|x-c| \leqq \delta,\end{cases}
$$

is a quasi-supersolution of (0) such that

$$
\bar{\omega}_{(c, e)}(x)>\beta(x) \quad \text { in } \quad D,
$$

if we take $\delta=\delta(\varepsilon)>0$ so small that (9.11) and $|\beta(x)-\beta(c)|<\varepsilon$ for $|x-c| \leqq \delta$. Similarly

$$
\underline{\omega}_{(c, \varepsilon)}(x)=\left\{\begin{array}{lrr}
\underline{\omega}(x) & |x-c|>\delta, \\
\operatorname{Max}\left\{\underline{\omega}(x) \omega_{c}^{\prime}(x)\right\} & \text { for } & |x-c| \leqq \delta,
\end{array}\right.
$$

where $\omega_{c}^{\prime}=-r^{\gamma} \varphi(\theta)+\beta(c)-\varepsilon$, is a quasi-subsolution of (0) such that

$$
\bar{\omega}_{(c, 8)}(x)<\beta(x) \quad \text { in } D .
$$

Then by Theorem 5 there exists a solution $u(x)$ of (0) such that, for all $c \in \dot{D}$ and $\varepsilon>0$,

$$
\begin{equation*}
\underline{\omega}_{(c, \varepsilon)}(x) \leqq u(x) \leqq \bar{\omega}_{(c, \ell)}(x) \quad \text { in } D . \tag{9.14}
\end{equation*}
$$

Letting ε tend to 0 , we obtain from (9.14)

$$
\begin{gathered}
\lim _{x-c} u(x)=\beta(c) \quad \text { for any } \quad c \in \dot{D} \\
\underline{\omega}(x) \leqq u(x) \leqq \bar{\omega}(x) \quad \text { in } \quad D, \quad \text { q. e. d. }
\end{gathered}
$$

and
REMARK. The condition imposed on the boundary of D can be
weakened for the case $m=2$, while the calculations in the proof will be much simplified.
10. Really we have the conjecture : the restriction (9.4) in Theorem 6 may be removed. But now we shall only show that the condition (9.3) can not be replaced by

$$
|f(x, u, p)| \leqq B|p|^{\kappa}+\Gamma
$$

where κ is any constant >2. For this, we consider the following example:
(10.1) $\Delta u=-(m-1) \sum_{i=1}^{m} x_{i} \partial u /\left(\sum_{i=1}^{m} x_{i}^{2}\right)+u\left\{1+\sum_{i=1}^{m}(\partial i u)^{2}\right\}^{1+\varepsilon}(\varepsilon>0)$, and D is the domain
(D)

$$
a^{2}<\sum_{i=1}^{m} x<b^{2} \quad(0<a<b)
$$

(10.1) has the form $\Delta u=f(x, u, \partial u)$, where f is strictly increasing with u. Then, as we can easily prove, (10.1) has at most one solution under the boundary condition
(10.2) $\quad u=0$ for $\sum x_{i}^{2}=a^{2}, \quad u=h(h>0)$ for $\sum x_{i}^{2}=b^{2}$.

Since (10.1) is invariant under any orthogonal transformation of independent variables (rotation about the origin), the unique solution of (10.1) under (10.2) is a function of $r=\left(\sum_{i=1}^{m} x_{i}^{2}\right)^{1 / 2}$ only : $u=u(r)$. Hence $u(r)$ satisfies the ordinary differential equation

$$
\begin{equation*}
u^{\prime \prime}=u\left(+u^{\prime 2}\right)^{1+\varepsilon} \tag{10.3}
\end{equation*}
$$

The solution u of (10.3) satisfies

$$
\left(1+u^{\prime 2}\right)^{-\varepsilon}=\varepsilon\left(C-u^{2}\right) \quad(C=\text { const. }) .
$$

Then $0 \leqq u^{2}<C=c^{2}$ for $a<x<b$, and

$$
-<\varepsilon^{1 / 2 \varepsilon}\left(c^{2}-u^{2}\right)^{1 / 2 \mathrm{e}} u^{\prime}<1
$$

Thus, as $u(a)=0 \quad$ and $\quad u(b)=h \leqq c$,
or

$$
\begin{gathered}
\varepsilon^{1 / 2 \varepsilon} \int_{0}^{c}\left(c^{2}-u^{2}\right)^{1 / 2} d u<b-a, \\
\gamma(\varepsilon) c^{1+1 / \varepsilon}<b-a
\end{gathered}
$$

where

$$
\gamma(\varepsilon)=2^{1 / \varepsilon} \Gamma(1 / 2 \varepsilon+1)^{2} / \Gamma(1 / \varepsilon+2) .
$$

Hence

$$
0<h \leqq c<\gamma_{1}(\varepsilon)(b-a)^{\varepsilon /(1+\varepsilon)}
$$

where $\gamma_{1}(\varepsilon)$ is a constant depending only on ε.
Therefore, if

$$
\begin{equation*}
h \geqq \gamma_{1}(\varepsilon)(b-a)^{8 /(1+\varepsilon)}, \tag{10.4}
\end{equation*}
$$

there exists no solution of (10.1) under (10.2), although

$$
\bar{\omega}(x)=M \leqq h(>0) \text { and } \omega(x)=0
$$

are quasi-supersolution and quasi-subsolution of (10.1) respectively in D. And for $x \in D$ and $0 \leqq u \leqq M$ holds the inequality

$$
|f(x, u, p)| \leqq B|p|^{2(1+\varepsilon)}+\Gamma,
$$

only if $B=(1+\varepsilon) h$, and Γ is sufficiently large. $A B M=(1+\varepsilon) h^{2}$ may also be arbitrarily small, if $b-a$ is so small that (10.4) holds.
(Received September 20, 1954)

[^0]: 1) We say that a partial differential equation is principally linear, if it is linear in the terms of the highest derivatives with coeficients containing only independent variables.
 2) D is a connected open set in the m-dimensional Euclidean space.
 3) \bar{D} means the closure of D, and \dot{D} the boundary of D.
[^1]: 4) Math. Zeit. 38 (1938), 257-282.
[^2]: 5) A l-dimentional manifold is said of type $B h$, if it is locally representable in the form $x_{i}=\varphi_{i}\left(s_{1}, \ldots, s_{l}\right)$ in such way that $\operatorname{Rank} \underset{s}{\partial}(\varphi)=l$ and $\partial_{s}^{2} \varphi$ is H_{α}-continuous $(0<\alpha<1)$.
 6) $\quad \alpha=\inf \{\lambda: \omega(x)+\lambda>v(x)$ for all $x \in D\}$.
[^3]: 7) By a linear transformation of coordinates we can bring the matrix $\left(a_{i j}\left(x_{0}\right)\right)$ into the diagonal form $\left(\lambda_{i} \delta_{i j}\right)$, where $\lambda_{i}>0$. Then $\sum \lambda_{i}{ }_{i i}^{\partial_{i}^{2}} \omega\left(x_{0}\right) \geqq \sum \lambda_{i}{ }_{i i}^{2} u\left(x_{0}\right)$, which is epuivalent to (1.9).
[^4]: 11) Tychonoff: Ueber einen Fixpuktsatz, Math. Ann. 111.
[^5]: 12) We can assume that U_{j} are bounded and closed.
