The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold, II

By Seizô ITô

§ 0. Introduction (and supplements to the previous paper). Recently we have shown the existence of the fundamental solution of parabolic differential equations in a differentiable manifold (under some assumptions) in a previous paper ${ }^{1)}$ which will be quoted here as [FS]. We have set no boundary condition in [FS], while we shall here show the existence of the fundamental solution of parabolic differential equations with some boundary conditions in a compact subdomain of a differentiable manifold.

We shall first add the following supplements 1°) and 2°) to [FS], as we shall quote not only the results obtained in the paper but also the procedures used in it:
1°) Corrections. Throughout the paper [FS]

$$
\begin{array}{lll}
\text { for } & \exp \left\{M_{1}(t-s)^{\frac{1}{2}}\right\}, & \text { read } \exp \left\{M_{1}(t-s)\right\} ; \\
\text { for } & \exp \left\{2 M_{1}(t-s)^{\frac{1}{2}}\right\}, & \text { read } \exp \left\{2 M_{1}(t-s)\right\} .
\end{array}
$$

In the inequality (3.4),

$$
\text { for } \quad(t-s)^{-\left(\frac{m}{2}+1\right)}, \quad \text { read } \quad(t-s)^{-\frac{m+1}{2}}
$$

2°) The proof of Theorem 4 in [FS, §4] is available only for the case : $t_{0}=\infty$. Instead of completing the proof, we are enough to establish a slightly ameliorated theorem as follows:

Theorem 4. i) The function $u(t, x ; s, y)$ is non-negative, and $\int_{M} u(t, x ; s, y) d_{a} y \leq \exp \{\lambda(t-s)\}$ where $\lambda=\sup _{t}{ }_{x} c(t, x)$; ii) if especially $c(t, x) \equiv 0$, then $\int_{M} u(t, x ; s, y) d_{a} y=1$.

We see that $|\lambda| \leqq K(<\infty)$ by virtue of the assumption II) in [FS, p. 76]. To prove this theorem, we consider the functions

$$
\begin{equation*}
f_{s}(t, x)=\int_{M} u(t, x ; s, y) f(y) d_{a} y \tag{0.1}
\end{equation*}
$$

and

[^0]\[

$$
\begin{equation*}
g_{s}^{(\tau, n)}(t, x)=f_{s}(t, x) \exp \left\{-\left(\frac{t-s}{\tau-s}\right)^{n}\right\} \tag{0.2}
\end{equation*}
$$

\]

where $f(x)$ is an arbitrary function continuous on \boldsymbol{M}, with a compact support $\subset \boldsymbol{M}$ and satisfying $0 \leqq f(x) \leqq 1$, and n is a natural number $\geqq 2$ and $s<\tau<t_{0}$. Then $g_{s}^{(\tau, n)}(t, x)$ is continuous in $\left[s, t_{0}\right) \times \boldsymbol{M}$ and

$$
\begin{equation*}
g_{s}^{(\tau, n)}(s, x) \equiv f(x), \text { consequently } 0 \leqq g_{s}^{(\tau, n)}(s, x) \leqq 1 \tag{0.3}
\end{equation*}
$$

By virtue of [FS, (3.10)] and the correction 1°) stated just above, we have

$$
\begin{equation*}
\left|f_{s}(t, x)\right| \leqq M \exp \{M(t-s)\} \tag{0.4}
\end{equation*}
$$

for a suitable constant $M>0$.
Lemma A. If $c(t, x) \leqq 0$, then the function $g_{s}^{(\tau, n)}(t, x)$ takes neither positive maximum nor negative minimum at any point in $\left(s, t_{0}\right) \times \boldsymbol{M}$.

The proof may be achieved by the well known method and so will be omitted.

Lemma B. If $c(t, x) \leqq 0$, then $u(t, x ; s, y) \geqq 0$ and $\int_{M_{2}} u(t, x ; s, y) d_{a} y \leqq 1$.
Proof. By virtue of the continuity of $u(t, x ; s, y)$ (see [FS, Theorem 1]), it is sufficient to prove that $0 \leqq f_{s}(t, x) \leqq 1$ for any function $f(x)$ satisfying the above stated conditions (see (0.1)).

Suppose that $f_{s_{1}}\left(t_{1}, x_{1}\right)>1$ for some $t_{1}>s_{1}$ and x_{1}. Then, if we take τ and τ^{\prime} such that $t_{1}<\boldsymbol{\tau}<\tau^{\prime}<t_{0}$ and sufficiently large n, we have

$$
g_{s_{1}}^{(\tau, n)}\left(t_{1}, x_{1}\right)>1
$$

and

$$
\left|g_{s_{1}}^{(r, n)}\left(t_{1}, x_{1}\right)\right|>\left|g_{s_{1}}^{(\tau, n)}(t, x)\right| \quad \text { for any } t>\tau^{\prime} \text { and } x \in \boldsymbol{M}
$$

by virtue of (0.2) and (0.4). From this fact and (0.3), it follows that $g_{s_{1}}^{(\tau, n)}(t, x)$ takes the positive maximum at some point in $\left(s, t_{0}\right) \times \boldsymbol{M}$; this contradicts Lemma A. Hence we have $f_{s}(t, x) \leqq 1$.

Similar argument shows that, if $f_{s_{1}}\left(t_{1}, x_{1}\right)<0$ for some $t_{1}<s_{1}$ and x_{1}, there exist τ and n such that $g_{s_{1}}^{(\tau, n)}(t, x)$ takes the negative minimum at some point in $\left(s, t_{0}\right) \times \boldsymbol{M}$ contradictly to Lemma A. Hence we get $f_{s}(t, x) \geqq 0$, q.e.d.

Proof of Theorem 4. Let $u(t, x ; s, y)$ be the fundamental solution of the equation $L f=0$. Then we may easily prove that the function

$$
u_{\lambda}(t, x ; s, y)=e^{-\lambda(t-s)} u(t, x ; s, y)
$$

is the fundamental solution of the equation $(L-\lambda) f=0$. Since $c(t, x)$ $-\lambda \leqq 0$, we have

$$
u_{\lambda}(t, x ; s, y) \geqq 0 \quad \text { and } \quad \int_{x} u_{\lambda}(t, x ; s, y) d_{a} y \leqq 1
$$

by Lemma B, and hence

$$
u(t, x ; s, y) \geqq 0 \quad \text { and } \quad \int_{M} u(t, x ; s, y) d_{a} y \leqq e^{\lambda(t-s)}
$$

Finally, if $c(t, x) \equiv 0$, we may apply Theorem 2 in [FS] to the function $f(t, x) \equiv 1$ and we get

$$
\int_{m} u(t, x ; s, y) d_{a} y=1, \quad \text { q.e.d. }
$$

§ 1. Fundametal notions and main results. We shall say, by definition, that a function $f(x)$ defined on a subset E of the Euclidean m-space R^{m} satisfies the generalized Lipschitz condition in E if, for any $x \in E$, there exist positive numbers N, δ and γ (each of them may depend on x) such that $|f(x)-f(y)| \leqq N \sum_{i}\left|x^{i}-y^{i}\right|^{\gamma}$ whenever $y \in E$ and $\left|x^{i}-y^{i}\right| \leqq \delta(i=1, \ldots, m)$, where $\left(x^{i}\right)$ and $\left(y^{i}\right)$ denote the coordinates of x and y respectively ${ }^{2}$.

A function $f(x)$ defined on a domain $G \subset R^{m}$ is said to be of $C^{k, L_{-}}$ class if $f(x)$ is of C^{k}-class in the usual sense and each partial derivative of k-th order of $f(x)$ satisfies the generalized Lipschitz condition in G. A manifold of $C^{k, L_{-}}$class, a hypersurface of $C^{k, L_{-}}$-class, etc. should be understood analogously.

Let \boldsymbol{M} be an m-dimensional manifold of $C^{4, L_{-c}}$ class, and \boldsymbol{G} be a domain in \boldsymbol{M} such that the closure $\overline{\boldsymbol{G}}$ is compact and the boundary $\boldsymbol{B}=\overline{\boldsymbol{G}}-\boldsymbol{G}$ consists of a finite number of hypersurfaces of $m-1$ dimension and of $C^{4, L_{-}}$-class.

Under a canonical coordinate around $x \in \boldsymbol{M}$, we understand any local coordinate which maps a neighbourhood of x onto the interier of the unit sphere in R^{m} and especially transforms x to the centre of the sphere. For each $x \in \boldsymbol{M}$ and any fixed canonical coordinate around x, we denote by $U_{8}(x)$ the neighbourhood of x of the form $\left\{y \in \boldsymbol{M} ; \sum\left(y^{i}-x^{i}\right)^{2}<\varepsilon\right\} \quad$ where $\quad 0<\varepsilon \leqq 1$.

We understand the partial derivatives of a function $f(x)$ (defined on $\overline{\boldsymbol{G}})$ at $\xi \in \boldsymbol{B}$ as follows : $\partial f(\xi) / \partial x^{i}=\alpha_{i}(\xi \in \boldsymbol{B}), i=1, \ldots, m$, means that

$$
f(x)=f(\xi)+\alpha_{i}\left(x^{i}-\xi^{i}\right)+o\left(\sum_{i}\left|x^{i}-\xi^{i}\right|\right) \quad \text { for any } \quad x \in U(\xi) \cap \overline{\boldsymbol{G}}
$$

where $U(\xi)$ is a coordinate neighbourhood of ξ.
2) Cf. Footnote 1) in [FS].

We fix s_{0} and t_{0} such that $-\infty<s_{0}<t_{0}<\infty$ and consider the parabolic differential operator L :

$$
\begin{equation*}
L \equiv L_{t x}=A_{t x}-\frac{\partial}{\partial t}, \quad\left(x \in \overline{\boldsymbol{G}}, s_{0}<t<t_{0}\right) \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
A \equiv A_{t x}=a^{i j}(t, x) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}+b^{i}(t, x) \frac{\partial}{\partial x^{i}}+c(t, x) \tag{1.2}
\end{equation*}
$$

and $\left\|a^{i j}(t, x)\right\|$ is a strictly positive-definite symmetric matrix for each $<t, x>\in\left(s_{0}, t_{0}\right) \times \overline{\boldsymbol{G}} ; a^{i j}(t, x)$ and $b^{i}(t, x)$ are transformed between any two local coordinates by means of (1.3) and (1.4) in [FS]. We assume that
(A.1) the functions

$$
\begin{gathered}
\frac{\partial a^{i j}(t, x)}{\partial t}, \frac{\partial^{3} a^{i j}(t, x)}{\partial x^{h} \partial x^{k} \partial x^{l}}, \frac{\partial b^{i}(t, x)}{\partial x^{k}} \quad(i, j, h, k, l=1, \ldots, m) \\
\text { and } \quad c(t, x)
\end{gathered}
$$

satısfy the generalized Lipschitz condition in $\left[s_{0}, t_{0}\right] \times \overline{\boldsymbol{G}}$.
We define the partial derivative $\partial f(\xi) / \partial \boldsymbol{n}_{t \xi}$ to the outer transversal direction $\boldsymbol{n}_{t \xi}$ as follows: when \boldsymbol{B} is represented by $\psi(x) \equiv \psi\left(x^{1}, \ldots, x^{m}\right)$ $=0$ with respect to a local coordinate around ξ and $\psi(\dot{x})>0$ in \boldsymbol{G}, we set

$$
\begin{equation*}
\frac{\partial f(\xi)}{\partial \boldsymbol{n}_{t \xi}}=-\frac{\partial f(\xi)}{\partial x^{i}} \cdot \frac{\partial \psi(\xi)}{\partial x^{j}} a^{i j}(t, \xi) ; \tag{1.3}
\end{equation*}
$$

this notion is independent of the special choice of the local coordinate around ξ by virtue of the transformation rule for $a^{i j}(t, x)$ (see [FS. (1.3)]). If we take a local coordinate with respect to which $a^{i j}(t, \xi)=\delta^{i j}$ i.e. $a^{i j}(t, \xi) \frac{\partial^{2}}{\partial x^{i} \partial x^{j}}=$ Laplacian at the point $\langle t, \xi\rangle($ fixed $)$, then $\partial f(\xi) / \partial \boldsymbol{n}_{t \xi}$ means the partial derivative to the outer normal direction to \boldsymbol{B}. We consider the boundary condition :
$\left(B_{\alpha(t)}\right)$

$$
\alpha(t, \xi) f(\xi)+\{1-\alpha(t, \xi)\} \frac{\partial f(\xi)}{\partial \boldsymbol{n}_{t \xi}}=0 \quad(\xi \in \boldsymbol{B})
$$

for each t, where $\alpha(t, \xi)$ is a function on $\left[s_{0}, t_{0}\right] \times \boldsymbol{B}$, of C^{1}-class in t and of $C^{2, L}$-class in ξ and $0 \leqq \alpha(t, \xi) \leqq 1$. We shall say that a function $f(t, x)$ on $\left(s_{0}, t_{0}\right) \times \boldsymbol{G}$ satisfies the boundary condition $\left(B_{\alpha}\right)$ if it satisfies $\left(B_{\alpha(t)}\right)$ for any $t \in\left(s_{0}, t_{0}\right)$.

We define the metric tensor $a_{i j}(x)$, as stated in [FS, p. 79], and consider the measure $d_{a} x=\sqrt{a(x)} d x^{1} \cdots d x^{m}\left(a(x)=\operatorname{det}\left\|a_{i j}(x)\right\|\right)$ and de-
fine the adjoint operator L^{*} resp. A^{*} of L resp. A with respect to this measure. If \boldsymbol{M} is an orientable Riemannian manifold with a metric tensor $g_{i j}(x)$ a priori, then it is natural to take the measure $d_{g} x=$ $\sqrt{g(x)} d x^{1} \cdots d x^{m}\left(g(x)=\operatorname{det}\left\|g_{i j}(x)\right\|\right)$ in place of $d_{a} x$; in this case, it is sufficient only to replace $a(x)$ by $g(x)$ throughout the course of the present paper, while $a_{i j}(x)$ should not be replaced by $g_{i j}(x)$.

We assume further that:
(A.2) the following relations hold on the set

$$
\begin{gather*}
\{<t, \xi>; \alpha(t, \xi) \neq 1\}\left(\subset\left[s_{0}, t_{0}\right] \times \boldsymbol{B}\right): \\
\frac{\partial a^{i j}(t, \xi)}{\partial \boldsymbol{n}_{t \xi}}=0^{3)} \quad(i, j=1, \ldots, m) \quad \text { and } \tag{1.4}\\
b^{i}(t, \xi)=\frac{1}{\sqrt{a(\xi)}} \cdot \frac{\partial}{\partial x^{j}}\left[\sqrt{a(\xi)} a^{i j}(t, \xi)\right](i=1, \ldots, m) . \tag{1.5}
\end{gather*}
$$

Under the above stated conditions (A.1) and (A.2), we shall consider the parabolic differential equations $L f=0$ and $L^{*} f^{*}=0$ in the domain \boldsymbol{G} with the boundary condition $\left(B_{\alpha}\right)$.

By definition, a function $u(t, x ; s, y), s_{0}<s<t<t_{0} ; x, y \in \boldsymbol{G}$, is called a fundamental solution of the parabolic equation $L f=0$ with the boundary condition (B_{α}) if, for any s and any function $f(x)$ which is continuous in $\overline{\boldsymbol{G}}$ and satisfies the condition $\left(B_{\alpha(s)}\right)$, the function

$$
\begin{equation*}
f(t, x)=\int_{G} u(t, x ; s, y) f(y) d_{a} y \quad(t<s) \tag{1.6}
\end{equation*}
$$

satisfies the conditions ${ }^{4)}$: $\left\{\begin{array}{l}f(t, x) \text { is of } C^{1} \text {-class in } t \text { and of } C^{2} \text {-class in } x, \text { and satisfies the } \\ \text { equation } L f=0 \text { as well as the boundary condition }\left(B_{\alpha}\right)\end{array}\right.$ and

$$
\begin{equation*}
\lim _{t \downarrow s} f(t, x)=f(x) \quad \text { uniformly on } \overline{\boldsymbol{G}} . \tag{1.8}
\end{equation*}
$$

A function $u^{*}(s, y ; t, x), s_{0}<s<t<t_{0} ; x, y \in \overline{\boldsymbol{G}}$, is called a fundamental solution of the adjoint equation $L^{*} f^{*}=0$ (of the equation $L f=0$) with the boundary condition (B_{α}) if, for any t and any continuous function

[^1]$f(x)$ on G, the function
\[

$$
\begin{equation*}
f^{*}(s, y)=\int_{G} u^{*}(s, y ; t, x) f(x) d_{a} x \quad(s<t) \tag{*}
\end{equation*}
$$

\]

satisfies the conditions ${ }^{5}$:
(1.7*) $\left\{\begin{array}{l}f^{*}(s, y) \text { is of } C^{1} \text {-class in } s \text { and of } C^{2} \text {-class in } y, \text { and satisfies } \\ \text { the equation } L^{*} f^{*}=0 \text { as well as the boundary condition }\left(B_{\alpha}\right)\end{array}\right.$ and

$$
\begin{equation*}
\lim _{s \uparrow t} f^{*}(s, y)=f(y) \tag{*}
\end{equation*}
$$

pointwisely in \boldsymbol{G} and also strongly in $L^{1}(\boldsymbol{G})$.
The purpose of the present paper is to prove the following theorems, which are literally the same as those in [FS] ${ }^{6}$ except the statements concerning the boundary condition.

Theorem 1. There exists a function $u(t, x, s, y)$ of C^{1}-class in t and $s\left(s_{0}<s<t<t_{0}\right)$ and of C^{2}-class in x and $y(x, y \in \overline{\boldsymbol{G}})$, with the following properties:
i) $u(t, x ; s, y)$ is a fundamental solution of the equation $L f=0$ with the boundary condition (B_{a}),
ii) $u^{*}(s, y ; t, x)=u(t, x ; s, y)$ is a fundamental solution of the adjoint equation $L^{*} f^{*}=0$ with the boundary condition $\left(B_{a}\right)$,
iii) $L_{t x} u(t, x ; s, y)=0, L_{s y}^{*} u(t, x ; s, y)=0$ and $u(t, x ; s, y)$ satisfies the boundary condition $\left(B_{\alpha}\right)$ as a function of $\langle t, x\rangle$ and also as a function of $\langle s, y\rangle$,
iv) $\int_{G} u(t, x, \tau, z) u(\tau, z ; s, y) d_{a} z=u(t, x ; s, y), s<\tau<t$.

Theorem 2. Let $u(t, x ; s, y)$ and $u^{*}(s, y ; t, x)$ be the functions stated in Theorem 1.
i) If a function $f(t, x)$ on $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ satisfies (1.7) and (1.8) where $f(x)$ is continuous in $\overline{\boldsymbol{G}}$ and satisfies $\left(B_{a}\right)$, then it is expressible by (1.6).
ii) If a function $f^{*}(s, y)$ on $\left(s_{0}, t\right) \times \overline{\boldsymbol{G}}$ satisfies (1.7*) and (1.8*) where $f(x)$ is a continuous function on $\overline{\boldsymbol{G}}$, then it is expressible by (1.6*).

Theorem 3. If a function $v(t, x ; s, y)$ is continuous in the region: $s_{0}<s<t<t_{0} ; x, y \in \overline{\boldsymbol{G}}$, and fatisfies the condition i) or ii) in Theorem 1 , then it is identical with $u(t, x ; s, y)$ stated in Theorem 1.

Theorem 4. i) $u(t, x ; s, y) \geqq 0$ and $\int_{G} u(t, x ; s, y) d_{a} y \leqq e^{\lambda(t-s)}$ where

[^2]$\lambda=\sup _{t,{ }_{x}} c(t, x)$; ii) if $c(t, x) \equiv 0$ in the differential operator $A_{t x}$ and if $\alpha(t, \xi) \equiv 1$ in the boundary condition $\left(B_{\alpha}\right)$, then $\int_{G} u(t, x ; s, y) d_{a} y=1$.

We shall show, in another paper ${ }^{7}$, the existence of the fundamental solution of the parabolic differential equation with a boundary condition considered in a domain whose closure is not compact.
§ 2. Preliminaries. The following lemma may be proved by means of Lebesgue's convergence theorem, and will be useful throughout the present paper:

Lemma 1. Let (X, μ) be a measure space, and assume that
i) $f(t, \chi)$ is measurable in $\chi \in X$ for each $t \in\left(t_{1}, t_{2}\right)$,
ii) $f(t, \chi)$ is differentiable in t for a.a. $\chi \in X$ and
iii) there exists a measurable function $\varphi(\chi)$ such that

$$
\left|\frac{\partial f(t, \chi)}{\partial \bar{t}}\right| \leqq \varphi(\chi) \text { in }\left(t_{1}, t_{2}\right) \text { and } \int_{X} \varphi(\chi) d \mu(\chi)<\infty .
$$

Then

$$
\frac{d}{d t} \int_{X} f(t, \chi) d \mu(\chi)=\int_{X} \frac{\partial f(t, \chi)}{\partial t} d \mu(\chi)
$$

Now let $\boldsymbol{G}, \boldsymbol{B}$ and $A_{t x}$ be as stated in $\S 1$ and z be any fixed point in \boldsymbol{B}. Then, for any canonical coordinate (see $\S 1$) around $z, \boldsymbol{B} \cap U_{1}(z)$ is represented by means of $\psi\left(x^{1}, \ldots, x^{m}\right)=0$ where ψ is a function of $C^{4, L_{-}}$-class. Hence, considering a suitable coordinate transformation in $U_{1}(z)$, we may show that

Lemma 2. There exists a canonical coordinate $\left(x^{i}\right)$ around z such that $\boldsymbol{B} \backslash U_{1}(z)$ is expressible by $x^{1}=0$ and that $x^{1}>0$ in $\boldsymbol{G} \cap U_{1}(z)$.

Next we shall prove that
Lemma 3. Let $\left(x^{i}\right)$ be a canonical coordinate as stated in Lemma 2, and consider the coordinate transformation: $\left(x^{i}\right) \rightarrow\left(x_{t}^{i}\right)$, for each $t\left(s_{0} \leqq t\right.$ $\leqq t_{0}$), defined by

$$
\left\{\begin{array}{l}
x_{t}^{1}=\mathscr{P}^{1}(t, x) \equiv \gamma x^{1} \tag{2.1}\\
x_{t}^{j}=\mathscr{P}^{j}(t, x) \equiv \gamma\left\{-\frac{a^{1 j}\left(t, \xi_{x}\right)}{a^{11}\left(t, \xi_{x}\right)} x^{1}+x^{\jmath}\right\}, \quad j=2, \ldots, m,
\end{array}\right.
$$

[^3]where $\xi_{x}=<0, x^{2}, \ldots, x^{m}>(\in \boldsymbol{B})$ for $x=<x^{1}, \ldots, x^{m}>\in U_{1}(z)$ and γ is a suitable positive constant. Then there exists $\delta=\delta_{z}>0$ such that i) $U_{\delta}(z) \subset U_{1}^{t}(z) \subset U_{1}(z)$ and $U_{\delta / 3}(z) \subset U_{1 / 3}^{t}(z)$ for any t, ii) \boldsymbol{B} is represented by $x_{t}^{1}=0$ in $U_{1}^{t}(z)$ and iii) if $a^{i j}(t, x)$ is changed into $a_{\varphi}^{i j}(t, x)$ by means of this transformation $(i, j=1, \ldots, m)$, then
(2.2) $a_{\varphi}^{1 j}(t, \xi)=a_{\varphi}^{j 1}(t, \xi)=0 \quad$ and $\quad a_{1,}^{\varphi}(t, \xi)=a_{j 1}^{\varphi}(t, \xi)=0, \quad j=2, \ldots, m$,
for any $\quad \xi \in \boldsymbol{B} \cap U_{1}^{t}(z)$, where $U_{\varepsilon}^{t}(x)=\left\{y \in \boldsymbol{M} ; \sum_{i}\left(y_{t}^{i}-x_{t}^{i}\right)^{2}<\varepsilon\right\}$ and $\left\|a_{i j}^{\varphi}(t, x)\right\|=\left\|a_{\varphi}^{i j}(t, x)\right\|^{-1}$. The mapping $\left.\varphi_{t}(x)=<\varphi^{1}(t, x), \ldots, \varphi^{m}(t, x)\right\rangle$ of $U_{\delta}(z)$ into $U_{1}^{t}(z)$ is one-to-one and of $C^{3, L}$-class in x, and $a_{\varphi}^{i j}(t, x), i, j=$ $1, \ldots, m$, are of C^{1}-class in t and of $C^{2, L}$-class in x.

Proof. We notice that $a^{11}(t, x)>0$ in $U_{1}(z)$, and consider the coordinate transformation (2.1) around z. Then $x_{t}^{1}=0$ if and only if $x^{1}=0$, and we have for any $\xi=<0, x^{2}, \ldots, x^{m}>\in \boldsymbol{B} \cap U_{1}(z)$

$$
\left\{\begin{array}{l}
\left(\frac{\partial x_{t}^{1}}{\partial x^{k}}\right)_{x=\xi}=\gamma \delta_{k}^{1} \tag{2.3}\\
\left(\frac{\partial x_{t}^{j}}{\partial x^{k}}\right)_{x=\xi}=\gamma\left\{-\frac{a^{1 j}(t, \xi)}{a^{11}(t, \xi)} \delta_{k}^{1}+\delta_{k}^{j}\right\} \quad\left(\delta_{k}^{j}: \text { Kronecker's delta }\right)
\end{array}\right.
$$

for $1 \leqq j \leqq m$ and $2 \leqq j \leqq m$. Hence the Jacobian

$$
\frac{\partial\left(x_{t}^{1}, \ldots, x_{t}^{m}\right)}{\partial\left(x^{1}, \ldots, x^{m}\right)}
$$

is bounded away from zero in $U_{\varepsilon_{1}}(z)$ for suitable $\varepsilon_{1}\left(0<\varepsilon_{1}<1\right)$ which may be chosen independently of t by virtue of the continuity of $a^{i j}(t, x)$ on the compact set $\left[s_{0}, t_{0}\right] \times \overline{U_{\mathrm{z}}(z)}$ for any $\varepsilon(0<\varepsilon<1)$, and hence the transformation (2.1) is well defined in $U_{\varepsilon_{1}}(z)$. Considering the continuity of $a^{i j}(t, x)$ on $\left[s_{0}, t_{0}\right] \times \overline{U_{\varepsilon_{1}}(z)}$ again, we may determine γ and $\delta>0$ so that $U_{\delta}(z) \subset U_{1}^{t}(z) \subset U_{1}(z)$ and $U_{\delta / 3}(z) \subset U_{1 / 3}^{t}(z)$ for any t. By virtue of the transformation rule for $a^{i s}$ (see [FS, (1.3)]), we have, for any $<t, \xi>\in\left[s_{0}, t_{0}\right] \times\left(\boldsymbol{B} \cap U_{1}^{t}(z)\right)$ and for $j \geqq 2$,

$$
\begin{aligned}
a_{\varphi}^{1 j}(t, \xi) & =\left(\frac{\partial x_{t}^{1}}{\partial x^{k}}\right)_{x=\xi} \cdot\left(\frac{\partial x_{t}^{j}}{\partial x^{i}}\right)_{x=\xi} a^{k l}(t, \xi) \\
& =-\gamma^{2} \frac{a^{1 j}(t, \xi)}{a^{11}(t, \xi)} a^{11}(t, \xi)+\gamma^{2} a^{1 j}(t, \xi)=0 \quad \text { (see (2.3)) }
\end{aligned}
$$

and consequently we get (2.2). The last part of Lemma 3 is also evident by means of the above arguments.
§ 3. Local construction of a quasi-parametrix. Let $\boldsymbol{G}, \boldsymbol{B}$ and $A_{t x}$ be as before, let z be any fixed point in \boldsymbol{B}, and let $\left(x^{i}\right)$ and $\left(x_{t}^{i}\right)\left(s_{0} \leqq t \leqq t_{0}\right)$ be canonical coordinates around z as stated in Lemma 3. Then we have

$$
\begin{equation*}
\frac{\partial f(\xi)}{\partial \boldsymbol{n}_{t}}=-\frac{\partial f(\xi)}{\partial x_{t}^{i}} a_{\varphi}^{i 1}(t, \xi)=-a_{\varphi}^{11}(t, \xi) \frac{\partial f(\xi)}{\partial x_{t}^{1}} \tag{3.1}
\end{equation*}
$$

for any function $f(x)$ of C^{1}-class, and hence the assumption (1.4) implies that

$$
\begin{equation*}
\frac{\partial a_{i j}^{\varphi}(t, \xi)}{\partial x_{t}^{1}}=0 \quad \text { on }\{<t, \xi>; \alpha(t, \xi) \neq 1\} \tag{3.2}
\end{equation*}
$$

Now we put for $s_{0} \leqq s<t \leqq t_{0}$ and $X, Y \in R^{m}$

$$
\left\{\begin{array}{l}
V_{0}\left(A_{i j} ; t, X ; s, Y\right)=(t-s)^{-\frac{m}{2}} \exp \left[-\frac{A_{i j}\left(X^{i}-Y^{i}\right)\left(X^{j}-Y^{j}\right)}{4(t-s)}\right] \tag{3.3}\\
V_{0}\left(A_{i j}\right)=\int_{R^{m}} \exp \left[-\frac{A_{i j} Y^{i} Y^{j}}{4}\right] d Y^{1} \ldots d Y^{m}
\end{array}\right.
$$

and define for $s_{0} \leqq s<t \leqq t_{0}$ and $x, y \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}\left(\delta=\delta_{z}\right.$ as stated in Lemma 3)

$$
\left\{\begin{array}{l}
V(t, x ; s, y)=V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, \varphi_{s}(y)\right) \quad \text { (see Lemma 3) } \tag{3.4}\\
\bar{V}(t, x ; s, y)=V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, \bar{\varphi}_{s}(y)\right) \\
V(t, x)=V_{0}\left(a_{i j}^{\varphi}(t, x)\right)
\end{array}\right.
$$

where $\bar{\rho}_{s}(y)=<-\varphi^{1}(s, y), \varphi^{2}(s, y), \ldots, \varphi^{m}(s, y)>$. Further we put

$$
\left\{\begin{array}{l}
p(t, x ; s, y) \tag{3.5}\\
=\frac{2(t-s) \cdot \alpha\left(t, \xi_{t x}\right)}{2(t-s) \alpha\left(t, \xi_{t x}\right)+\varphi^{1}(s, y)\left[1-\alpha\left(t, \xi_{t x}\right) \exp \left\{-\left|\varphi^{1}(t, x)\right|^{2}\right\}\right]} \\
q(t, x ; s, y) \\
=\frac{\rho^{1}(s, y)\left[1-\alpha\left(t, \xi_{t x}\right) \exp \left\{1-\left|\varphi^{1}(t, x)\right|^{2}\right\}\right]}{2(t-s) \alpha\left(t, \xi_{t x}\right)+\varphi^{1}(s, y)\left[1-\alpha\left(t, \xi_{t x}\right) \exp \left\{-\left|\varphi^{1}(t, x)\right|^{2}\right\}\right]}
\end{array}\right.
$$

where $\xi_{t x}$ is the point $(\in \boldsymbol{B})$ defined by the equations:

$$
\varphi^{1}\left(t, \xi_{t x}\right)=0, \varphi^{j}\left(t, \xi_{t x}\right)=\varphi^{j}(t, x) \quad \text { for } \quad j \geqq 2
$$

such $\xi_{t x}$ is uniquely determined for any $x \in U_{\delta}(z)$ and any t by virtue of Lemma 3.

Applying (3.1), (3.2), Lemma 1 and Lemma 3 to (3.3), (3.4) and (3.5), and making use of the fact that $\partial f / \partial \boldsymbol{n}_{t \xi}$ is independent of the local coordinate, we obtain

$$
\begin{equation*}
\frac{\partial V(t, \xi)}{\partial \boldsymbol{n}_{t \xi}}=0 \tag{3.6}
\end{equation*}
$$

and
(3.7) $\quad \frac{\partial V(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t \xi}}=-a_{\varphi}^{11}(t, \xi) \cdot\left\{-a_{11}^{\varphi}(t, \xi) \cdot \frac{-\phi^{1}(s, y)}{2(t-s)} V(t, \xi ; s, y)\right\}$ $=\frac{-\varphi^{1}(s, y)}{2(t-s)} V(t, \xi ; s, y)$
for $\langle t, \xi\rangle$ such that $\xi \in \boldsymbol{B} \cap U_{\delta}(z)$ and $\alpha(t, \xi) \neq 1$, and we get also

$$
\begin{equation*}
\frac{\partial \boldsymbol{p}(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t \xi}}=\frac{\partial q(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t \xi}}=0 \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
V(t, \xi ; s, y)=\bar{V}(t, \xi ; s, y) \tag{3.9}
\end{equation*}
$$

for any $\xi \in \boldsymbol{B} \cap U_{\delta}(z)$. We define

$$
\begin{align*}
W_{z}(t, x ; s, y) & =p(t, x ; s, y) J_{s}(y) \frac{V(t, x ; s, y)-\bar{V}(t, x ; s, y)}{V(t, x)} \tag{3.10}\\
& +q(t, x ; s, y) J_{s}(y) \frac{V(t, x ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)}
\end{align*}
$$

where

$$
\begin{equation*}
J_{s}(y)=\frac{\partial\left[\varphi^{1}(s, y), \ldots, \varphi^{m}(s, y)\right]}{\partial\left[y^{1}, \ldots, y^{m}\right]} \quad \text { (Jacobian). } \tag{3.11}
\end{equation*}
$$

Then we may prove from (3.6-9) and by simple calculation that

$$
\begin{array}{r}
\alpha(t, \xi) W_{z}(t, \xi ; s, y)+\{1-\alpha(t, \xi)\} \frac{\partial W_{z}(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t x}}=0 \tag{3.12}\\
\text { for } \xi \in U_{\delta}(z) \cap \boldsymbol{B},
\end{array}
$$

that is, $W_{z}(t, x ; s, y)$ satisfies the boundary condition $\left(B_{\alpha}\right)$ as a function of $\langle t, x\rangle \in\left[s_{0}, t_{0}\right] \times U_{\delta}(x)$. Since

$$
\begin{align*}
& \int_{U_{\delta}(z) \cap \boldsymbol{G}} V(t, x ; s, y) J_{s}(y) d y+\int_{U_{\delta}(z) \cap \boldsymbol{G}} \bar{V}(t, x ; s, y) J_{s}(y) d y \tag{3.13}\\
& \leqq \int_{R^{m}} V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, Y\right) d Y=V(t, x) \\
& \left(d y=d y^{1} \cdots d y^{n_{n}}, d Y=d Y^{1} \cdots d Y^{m}\right)
\end{align*}
$$

and since the denominators and numerators in the right-hand side of (3.5) are positive for any $x, y \in U_{\delta}(z) \cap \boldsymbol{G}$, we get

$$
\begin{equation*}
\int_{U_{\delta}(z) \cap G}\left|W_{z}(t, x ; s, y)\right| d y \leqq 1 \quad \text { for any } \quad x \in U_{\delta}(z) \cap \bar{G} . \tag{3.14}
\end{equation*}
$$

Now we have the following
Lemma 4. If $f(x)$ is continuous in $\overline{\boldsymbol{G}}$ and vanishes outside $U_{\delta}(z)$, then

$$
\begin{equation*}
\lim _{t \downarrow s} \int_{G} \frac{V(t, x ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)} f(y) J_{s}(y) d y=f(x) \tag{3.15}
\end{equation*}
$$

uniformly in $U_{\delta}(z) \cap \bar{G}$.
Proof. By virtue of (3.3) and the uniform continuity of $\varphi^{j}(t, x)$ on $\left[s_{0}, t_{0}\right] \times \overline{U_{\delta}(z)}$, we may show that

$$
\begin{array}{r}
\lim _{t \downarrow s} \int_{R^{m}} \frac{V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, Y\right)}{V_{0}\left(a_{i j}^{\varphi}(t, x)\right)} F(Y) d Y=F\left(\varphi_{s}(x)\right) \\
\text { uniformly in } U_{\delta}(z) \cap \bar{G}
\end{array}
$$

for any continuous function $F(Y)$ with a compact support; and hence, if especially $F(\bar{Y})=F(Y)$ where $\left.\bar{Y}=<-Y^{1}, Y^{2}, \ldots, Y^{m}\right\rangle$ for $Y=\left\langle Y^{1}, Y^{2}, \ldots, Y^{m}\right\rangle$, then

$$
\begin{gathered}
\lim _{t \downarrow s} \int_{R^{m}\left(Y^{1}>0\right)} \frac{V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, Y\right)+V_{0}\left(a_{i j}^{\varphi}(t, x) ; t, \varphi_{t}(x) ; s, \bar{Y}\right)}{V_{0}\left(a_{i j}^{\varphi}(t, x)\right)} F(Y) d Y \\
=F\left(\varphi_{s}(x)\right) \quad \text { uniformly in } \quad U_{\delta}(z) \cap \overline{\boldsymbol{G}} .
\end{gathered}
$$

Putting

$$
F(Y)=F(\bar{Y})= \begin{cases}f\left(\varphi_{s}{ }^{-1}(Y)\right) & \text { if } \sum_{i}\left(Y^{j}\right)^{2}<1 \\ 0 & \text { if not }\end{cases}
$$

in the above relation, and considering (3.4) and (3.11), we obtain (3.15).
Lemma 5. If $f(x)$ is such a function as stated in Lemma 3 and if \boldsymbol{D} is an open set containing $\boldsymbol{B}^{(s)}=\{\xi \in \boldsymbol{B} ; \alpha(s, \xi)=1\}$, where s is any fixed real number $\left(s_{0}<s<t_{0}\right)$, then

$$
\lim _{t \downarrow s} \int_{\boldsymbol{G}} W_{z}(t, x ; s, y) f(y) d y=f(x) \quad \text { uniformly in } U_{\delta}(z) \cap \overline{\boldsymbol{G}}-\boldsymbol{D}
$$

Proof. Let ε be an arbitrary positive number. Then, by virtue of Lemma 4, there exists $\Delta_{1}>0$ such that

$$
\begin{equation*}
\left|\int_{U_{\delta}(z) \cap \bar{G}} \frac{V(t, x ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)} J_{s}(y) f(y) d y-f(x)\right|<\frac{\varepsilon}{4} \tag{3.16}
\end{equation*}
$$

for any $x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}$ whenever $s<t<s+\Delta_{1}$. On the other hand, by
virtue of (3.13) and (3.14), there exists $\eta_{1}>0$ such that

$$
\begin{equation*}
\left|\int_{U_{\delta}(z) \cap\left\{\varphi^{1}(s, y)<\eta_{1}\right\} \bar{G}} \frac{V(t, x, ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)} J_{s}(y) f(y) d y\right|<\frac{\varepsilon}{4} \tag{3.17}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left|\int_{U_{\delta}(z) \cap\left\{\varphi^{1}(s, y)<\eta_{1}\right\} \cap \overline{\boldsymbol{G}}} W_{z}(t, x ; s, y) f(y) d y\right|<\frac{\varepsilon}{4} . \tag{3.18}
\end{equation*}
$$

Since $1-\alpha\left(t, \xi_{t x}\right) \exp \left\{-\left|\mathscr{P}^{1}(t, x)\right|^{2}\right\}>0$ for any t and any $x \in U_{\delta}(z) \cap$ $\overline{\boldsymbol{G}}-\boldsymbol{B}^{(s)}$, there exists $\eta_{2}>0$ such that

$$
1-\alpha\left(t, \xi_{t x}\right) \exp \left\{-\left|\varphi^{1}(t, x)\right|^{2}\right\} \geqq \eta_{2} \quad \text { (see (3.5)) }
$$

for any t and any $x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}-\boldsymbol{D}$. Hence $\mathscr{P}^{1}(s, y) \geqq \eta_{1}$ implies that

$$
|1-q(t, x ; s, y)|=|p(t, x ; s, y)| \leqq(t-s) / \eta_{1} \eta_{2}
$$

for any $t \geqq s$ and any $x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}-\boldsymbol{D}$, and hence it follows from (3.10) and (3.13) that there exists $\Delta_{2}>0$ such that

$$
\begin{align*}
& \mid \int_{U_{\delta}(z) \cap\left\{\varphi^{1}(s, y) \geqq \eta_{1}\right\} \cap \bar{G}}\left\{W_{z}(t, x ; s, y)-\right. \tag{3.18}\\
& \left.\quad-\frac{V(t, x ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)} J_{s}(y)\right\} f(y) d y \left\lvert\,<\frac{\varepsilon}{4}\right.
\end{align*}
$$

for any $x \in U_{\delta}(z) \cap \boldsymbol{G}-\overline{\boldsymbol{D}}$ whenever $s<t<s+\Delta_{2}$. Since $f(y)=0$ for $y \in \overline{\boldsymbol{G}}-U_{\delta}(z)$, it follows from (3.16-19) that

$$
\left|\int_{G} W_{z}(t, x ; s, y) f(y) d y-f(x)\right|<\varepsilon \quad \text { for any } x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}-\boldsymbol{D}
$$

whenever $s<t<s+\min \left\{\Delta_{1}, \Delta_{2}\right\}$. Thus we obtain Lemma 5.
Lemma 6. Assume that $f(x)$ is continuous in $\overline{\boldsymbol{G}}$, vanishes outside $U_{\delta}(z)$ and satisfies the boundary condition $\left(B_{\alpha(s)}\right)$. Then

$$
\lim _{t \downarrow s} \int_{G} W_{z}(t, x ; s, y) f(y) d y=f(x) \quad \text { uniformly in } U_{\delta}(z) \cap \overline{\boldsymbol{G}} .
$$

Proof. Let ε be an arbitrary positive number, and put

$$
\boldsymbol{D}=\{x ; x \in \overline{\boldsymbol{G}},|f(x)|<\varepsilon / 5\} \bigvee\{\overline{\boldsymbol{x}} ; x \in \boldsymbol{G},|f(x)|<\varepsilon / 5\}
$$

where $\left.\bar{x}=<-x^{1}, x^{2}, \ldots, x^{m}\right\rangle$ for $x=\left\langle x^{1}, x^{2}, \ldots, x^{m}\right\rangle$. Then, by virtue of the assumption of this lemma, \boldsymbol{D} is an open set containing $\boldsymbol{B}^{(s)}=\{\xi \in \boldsymbol{B} ; \alpha(s, \xi)=1\}$ and hence, by Lemma 5, there exists $\Delta>0$ such that

$$
\begin{equation*}
\left|\int_{\boldsymbol{G}} W_{z}(t, x ; s, y) f(y) d y-f(x)\right|<\varepsilon \text { for any } x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}}-\boldsymbol{D} \tag{3.20}
\end{equation*}
$$

whenever $s<t<s+\Delta$. On the other hand, by Lemma 4, there exists $\Delta^{\prime}>0$ such that

$$
\begin{aligned}
& \int_{\boldsymbol{G}} \frac{V(t, x ; s, y)+\bar{V}(t, x ; s, y)}{V(t, x)}|f(y)| J_{s}(y) d y<\frac{2}{5} \varepsilon \\
& \text { for any } x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}} \cap \boldsymbol{D}
\end{aligned}
$$

whenever $s<t<s+\Delta^{\prime}$. Hence, considering the non-negativity of $V(t, x ; s, y), \bar{V}(t, x ; s, y)$ and $J_{s}(y)$ (see the proof of Lemma 3) and using the facts : $0 \leqq p(t, x ; s, y) \leqq 1$ and $0 \leqq q(t, x ; s, y) \leqq 1$, we obtain from (3.10) that

$$
\left|\int_{\boldsymbol{G}} W_{z}(t, x ; s, y) f(y) d y\right|<\frac{4}{5} \varepsilon \quad \text { for any } x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}} \cap \boldsymbol{D}
$$

and accordingly
(3.21) $\quad\left|\int_{G} W_{z}(t, x ; s, y) f(y) d y-f(x)\right|<\varepsilon \quad$ for any $x \in U_{\delta}(z) \cap \overline{\boldsymbol{G}} \cap \boldsymbol{D}$
whenever $s<t<s+\Delta^{\prime}$. From (3.20) and (3.21) we get

$$
\left|\int_{G} W_{z}(t, x ; s, y) f(y) d y-f(x)\right|<\varepsilon \quad \text { for any } x \in U_{\delta}(z) \cap \bar{G}
$$

whenever $s<t<s+\min \left\{\Delta, \Delta^{\prime}\right\}$. Thus we obtain Lemma 6.
Next, let $f(\tau, y)$ be a continuous function on $\left(s, t_{0}\right) \times \boldsymbol{G}$ which vanishes outside $U_{\delta}(z)$ and satisfies the condition: $\int_{s}^{t} \int_{G}|f(\tau, y)| d y d \tau$ $<\infty$, and put

$$
\begin{aligned}
f(t, x, \tau) & =\int_{G} W_{z}(t, x ; \tau, y) f(\tau, y) d y, \quad t>\tau>s \\
F(t, x) & =\int_{s}^{t} f(t, x, \tau) d \tau
\end{aligned}
$$

Then we have
Lemma 7. i) $f(t, x, \tau)$ and $F(t, x)$ satisfy the boundary condition $\left(B_{\alpha}\right)$ in $U_{\delta}(z) \cap \boldsymbol{B}$; ii) for any $s^{\prime}\left(t_{0}>s^{\prime}>s\right)$

$$
\lim _{\tau \downarrow s^{\prime}} \int_{G} f(\tau, x) W_{z}\left(\tau, x ; s^{\prime}, y\right) d x=f\left(s^{\prime}, y\right) \text { in } \boldsymbol{G} \cap U_{\delta}(z) ;
$$

iii) if $f(\tau, y)$ satisfies the generalized Lipschitz condition in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$, then

$$
\begin{aligned}
& \frac{\partial F(t, x)}{\partial t}=f(t, x)+\int_{s}^{t} \int_{G} \frac{\partial W_{z}(t, x ; \tau, y)}{\partial t} f(\tau, y) d y d \tau, \\
& A_{t x} F(t, x)=\int_{s}^{t} \int_{G} A_{t x} W_{z}(t, x ; \tau, y) f(\tau, y) d y d \tau .
\end{aligned}
$$

Outline of the Proof. The proposition i) may be shown by means of (3.12) and Lemma 1, and the proposition ii) may be proved similarly to [FS, Lemma 2]. The proposition iii) is proved as follows. Considering the fact that the mapping $\varphi_{t}(x)$ is one-to-one and of $C^{2, L}$-class for any t (see Lemma 3), using the same idea as in [FS, Lemmas 1 and 3] and applying Lemma 1 (§1), we may show that

$$
\begin{aligned}
& \frac{\partial f(t, x, \tau)}{\partial t}=\int_{\boldsymbol{G}} \frac{\partial W_{z}(t, x ; \tau, y)}{\partial t} f(\tau, y) d y, \\
& \frac{\partial f(t, x, \tau)}{\partial x^{i}}=\int_{\boldsymbol{G}} \frac{\partial W_{z}(t, x ; \tau, y)}{\partial x^{i}} f(\tau, y) d y, \\
& \frac{\partial^{2} f(t, x, \tau)}{\partial x^{i} \partial x^{j}}=\int_{\boldsymbol{G}} \frac{\partial^{2} W(t, x ; \tau, y)}{\partial x^{i} \partial x^{\jmath}} f(\tau, y) d y .
\end{aligned}
$$

and

$$
\lim _{\substack{t>t \gg_{\tau} \\ t \rightarrow \tau}} f\left(t, x, t^{\prime}\right)=f(\tau, x)
$$

and that there exist $M>0$ and $\gamma=\gamma(t, x)>0$ such that

$$
\frac{\partial f\left(t^{\prime}, s, \tau\right)}{\partial t^{\prime}} \leqq M(t-s)^{-\left(1-\frac{\gamma}{2}\right)} \text { whenever } s<\tau<t \leqq t^{\prime}
$$

further we have

$$
\int_{s}^{t}\left|\frac{\partial f(t, x, \tau)}{\partial x^{i}}\right| d \tau<\infty \text { and } \int_{s}^{t}\left|\frac{\partial^{2} f(t, x, \tau)}{\partial x^{i} \partial x^{j}}\right| d \tau<\infty .
$$

Hence we may prove the proposition iii) by the same manner as in [FS, Lemma 4].

Lemma 8. If $\omega(t, x)$ is a function of C^{1}-class in t and of C^{2}-class in x, and vanishes outside $U_{\delta}(z)$, then there exists a constant $M_{0}>0$ such that

$$
\left|L_{t x}\left[\omega(t, x) W_{z}(t, x ; s, y)\right]\right| \leqq M_{0}(t-s)^{-\frac{m+1}{2}} \exp \left\{-\frac{M_{0} \sum_{i}\left(x^{i}-y^{i}\right)^{2}}{4(t-s)}\right\}
$$

This may be proved similarly to [FS, Lemma 5].
Finally we define a quasi-parametrix $W_{z}(t, x ; s, y)$ around any inner point z of \boldsymbol{G} as follows. We fix a canonical coordinate (x^{i}) around z satisfying $U_{1}(z) \subset \boldsymbol{G}$ and put

$$
\left\{\begin{array}{l}
\delta_{z}=1 \\
x_{t}^{i} \equiv \varphi^{i}(t, x)=x^{i}, i=1, \ldots, m, \text { for any } t
\end{array}\right.
$$

(consequently $\varphi_{t}(x)=<x^{1}, \ldots x^{m}>$ and $a_{i j}^{\varphi}(t, x)=a_{i j}(t, x)-c f$. Lemma 3). Using this local coordinate, we define $V(t, x ; s, y)$ and $V(t, x)$ by means of (3.3) and (3.4), and put

$$
W_{z}(t, x ; s, y)=\frac{V(t, x ; s, y)}{V(t, x)} \quad\left(s_{0}<s<t<t_{0} ; x, y \in U_{1}(z)\right) .
$$

Then we may easily prove that Lemmas 6, 8 and Lemma 7 ii), iii) hold for $W_{z}(t, x ; s, y)$ defined here. (See Lemmas 2, 4 and 5 in [FS].)
§4. Gloval construction of a quasi-parametrix and a fundamental solution. For each $\boldsymbol{z} \in \overline{\boldsymbol{G}}(=\boldsymbol{G}+\boldsymbol{B})$, we fix canonical coordinates (x^{i}) and (x_{t}^{i}) around z as stated in $\S 2$, and put

$$
U(z, \varepsilon)=\left\{x \in \boldsymbol{M} ; \sum_{i}\left(x^{i}-z^{i}\right)^{2}<\varepsilon\right\} \quad(\varepsilon>0)
$$

Since $\overline{\boldsymbol{G}}$ is compact, there exists a finite sequence $\left\{z_{1}, \ldots, z_{N}\right\} \subset \overline{\boldsymbol{G}}$ such that

$$
\begin{equation*}
\overline{\boldsymbol{G}} \subset \bigcup_{\nu=1}^{N} U\left(z_{\nu}, \delta_{\nu} / 3\right) \text { where } \delta_{\nu}=\delta_{z_{\nu}}(\text { see } \S 2), \tag{4.1}
\end{equation*}
$$

and then, since

$$
\begin{equation*}
z_{\nu} \in \boldsymbol{G} \text { implies } U\left(z_{\nu}, \delta_{\nu}\right) \subset \boldsymbol{G} \text { (see } \S 2 \text {), } \tag{4.2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\boldsymbol{B} \subset \bigcup_{z_{\nu} \in \boldsymbol{B}} U\left(z_{\nu}, \delta_{\nu} / 3\right) \tag{4.3}
\end{equation*}
$$

 or 0 if $0 \leqq \lambda \leqq 1 / 3$ or $\lambda \geqq 2 / 3$ respectively and that $0 \leqq \omega(\lambda) \leqq 1$ for any λ, and put for each ν

$$
\omega_{\nu}(t, x)= \begin{cases}\omega\left(\sum_{i}\left[x_{t}^{i}-\left(z_{\nu}\right)_{t}^{i}\right]^{2}\right) & \text { for } x \in \overline{\boldsymbol{G}} \cap U\left(z_{\nu}, \delta_{\nu}\right) \\ 0 & \text { for } x \in \overline{\boldsymbol{G}}-U\left(z_{\nu}, \delta_{\nu}\right)\end{cases}
$$

Then $\omega_{\nu}(t, x), \nu=1, \ldots, N$, are of C^{1}-class in t and of $C^{2, L_{-}}$-class in $x \in \overline{\boldsymbol{G}}$, and

$$
\begin{equation*}
\frac{\partial \omega_{\imath}(t, \xi)}{\partial \boldsymbol{n}_{t \xi}}=0 \quad \text { for any }<t, \xi>\in\left[s_{0}, t_{0}\right] \times \boldsymbol{B} \tag{4.4}
\end{equation*}
$$

this may be proved by considering the local coordinate (x_{t}^{i}) around z_{v} for each t since the operator $\partial / \partial \boldsymbol{n}_{t}$ is independent of the special choice of the local coordinate.

Now let $a_{\nu}(x)$ be the restriction of $a(x)=\operatorname{det}\left\|a_{i j}(x)\right\|$ (see §1) to $U\left(z_{\nu}, \delta_{\nu}\right)$ with the local coordinate $\left(x^{i}\right)$ around z stated above, and put, for $s_{0}<s<t<t_{0}$,

$$
W_{\nu}(t, x ; s, y)=\left\{\begin{array}{l}
W_{z_{\nu}}(t, x ; s, y)(\text { as stated in } \S 3) \text { if } x, y \in U\left(z_{\nu}, \delta_{\nu}\right) \cap \overline{\boldsymbol{G}} \\
0 \quad \text { if not. }
\end{array}\right.
$$

We define a quasi-parametrix :

$$
Z(t, x ; s, y)=\frac{\sum_{\nu} \omega_{\nu}(t, x) \omega_{\nu}(s, y) W_{\nu}(t, x ; s, y)}{\sum_{\nu \nu} \omega_{\nu}(t, x)^{2} \sqrt{a_{\nu}(y)}} \quad\binom{s_{0}<s<t<t_{0}}{x, y \in \bar{G}}
$$

Then $Z(t, x ; s, y)$ is of C^{1}-class in t and s, and of $C^{2, t}$-class in x and y, and it follows from (3.12), (4.2), (4.3) and (4.4) that

$$
\begin{equation*}
\alpha(t, \xi) Z(t, \xi ; s, y)+\{1-\alpha(t, \xi)\} \frac{\partial \boldsymbol{Z}(t, \xi ; s, y)}{\partial \boldsymbol{n}_{t \xi}}=0(\xi \in \boldsymbol{B}) \tag{4.5}
\end{equation*}
$$

that is, $Z(t, x ; s, y)$ satisfies the boundary condition $\left(B_{\alpha}\right)$ as a function of $\langle t, x\rangle$. Further, by virtue of Lemmas 6,7 and 8 , we obtain the following three lemmas.

Lemma 9. i) If $f(x)$ is continuous in $\overline{\boldsymbol{G}}$, then

$$
\lim _{t \downarrow s} \int_{G} Z(t, x ; s, y) f(y) d_{a} y=f(x) \text { in } \boldsymbol{G} ;
$$

if especially $f(x)$ satisfies the boundary condition $\left(B_{\alpha(s)}\right)$, then the above convergence is uniform in $\overline{\boldsymbol{G}}$.
ii) if $f(t, x)$ is continuous in $\left[s, t_{0}\right) \times \overline{\boldsymbol{G}}$, then

$$
\lim \int_{G} f(t, x) Z(t, x ; s, y) d_{a} x=f(s, y) \text { in } \boldsymbol{G}
$$

Lemma 10. If $f(\tau, y)$ is continuous in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ and satisfies the condition: $\int_{s}^{t} \int_{G}|f(\tau, y)| d_{a} y d \tau<\infty$, then

$$
f(t, x, \tau)=\int_{G} Z(t, x ; \tau, y) f(\tau, y) d_{a} y \quad(t<\tau<s)
$$

and

$$
F(t, x)=\int_{s}^{t} f(t, x, \tau) d \tau
$$

satisfy the boundary condition $\left(B_{\alpha}\right)$; if further $f(\tau, y)$ satisfies the generalized Lipschitz condition in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$, then

$$
\left\{\begin{array}{l}
\frac{\partial F(t, x)}{\partial t}=f(t, x)+\int_{s}^{t} \int_{G} \frac{\partial Z(t, x ; \tau, y)}{\partial t} f(\tau, y) d_{a} y d \tau \\
A_{t x} F(t, x)=\int_{s}^{t} \int_{G} A_{t x} Z(t, x ; \tau, y) f(\tau, y) d_{a} y d \tau
\end{array}\right.
$$

Lemma 11. $Z(t, x ; s, y)$ satisfies all inequalities stated in [FS, Lemma 8] for a suitable constant $M>0$.

Thus we see that $Z(t, x ; s, y)$ has all properties stated in [FS, $\S 2]$. Hence, starting from this quasi-parametrix $Z(t, x ; s, y)$, we may construct $u(t, x ; s, y)$ in the entirely same way as in [FS, §3]. We may also construct $u^{*}(t, x ; s, y)$ in the similar manner for the adjoint equation $L^{*} f^{*}=0$ with the same boundary condition $\left(B_{\alpha}\right)$. The functions $u(t, x ; s, y)$ and $u^{*}(t, x ; s, y)$ defined here have the properties stated in [FS, §3] where the manifold \boldsymbol{M} should be replaced by the compact domain $\overline{\boldsymbol{G}}$ and the uniformity of the convergence in [FS, (3.13)] may be proved if and only if $f(x)$ is the limit of a uniformly convergent sequence of functions satisfying the the boundary condition $\left(B_{\alpha(s)}\right)^{8)}$. Moreover $u(t, x ; s, y)$ and $u^{*}(t, x ; s, y)$ satisfy the boundary condition (B_{a}) as functions of $\langle t, x\rangle-$ see Lemma 10 and the procedure of the construction of $u(t, x ; s, y)$ (in [FS, §3]).

§5. Proof of Theorems.

Lemma 12. If $f(x)$ and $h(x)$ are functions of C^{2}-class on $\overline{\boldsymbol{G}}$ satisfying the boundary condition ($\boldsymbol{B}_{\alpha(t)}$) (t : fixed), then

$$
\int_{G} f(x) \cdot A_{t x} h(x) d_{a} x=\int_{G} A_{t x}^{*} f(x) \cdot h(x) d_{a} x .
$$

Proof. By partial integration, we obtain the Green's formula :

$$
\begin{aligned}
\int_{G} f(x) \cdot & A_{t x} h(x) d_{a} x-\int_{G} A_{t x}^{*} f(x) \cdot h(x) d_{a} x \\
= & \int_{\boldsymbol{B}}\left\{f(\xi) \frac{\partial h(\xi)}{\partial \boldsymbol{n}_{t}}-\frac{\partial f(\xi)}{\partial \boldsymbol{n}_{t}} h(\xi)\right\} \tilde{d} \xi \\
& +\int_{\boldsymbol{B}}\left\{\frac{\partial}{\partial x^{j}}\left[\sqrt{a(\xi)} a^{i j}(t, \xi)\right]-\right. \\
& \left.-\sqrt{a(\xi)} b^{i}(t, \xi)\right\} \frac{\partial \psi(\xi)}{\partial x^{i}} f(x) h(x) \tilde{d \xi}
\end{aligned}
$$

where $\tilde{d} \xi=d \xi^{1}, \ldots, d \xi^{m-1}$ is the hypersurface area on \boldsymbol{B} and $\psi(x)$ is such function that $\psi(x)=0$ determines \boldsymbol{B} and that $\psi(x)>0$ in \boldsymbol{G}. But the right-hand side equals zero by virtue of the boundary condition $\left(\boldsymbol{B}_{\alpha(t)}\right)$ and the assumption (1.5). Hence we obtain Lemma 12.

From this lemma we obtain the following (see [FS, Lemma 11])
Lemma 13. If a function $f^{*}(s, y)$ on $\left(s_{0}, t\right) \times \overline{\boldsymbol{G}}$ satisfies (1.7*) and (B_{α}), then

[^4]$$
\int_{G} f^{*}(\tau, x) u(\tau, x ; s, y) d_{a} x=f^{*}(s, y) \text { for any } \tau \in(s, t) .
$$

Therefore, we may see that:
Proof of Theorems 1, 2 and 3 may be performed in the same way as the proof of the corresponding theorems in [FS] (see [FS, pp. 89-90]). It seems not to be necessary to repeat the entirely same argument. The propositions concerning the boundary condition which are not included in [FS] may be easily proved from properties of $u(t, x ; s, y)$ and $u^{*}(t, x ; s, y)$ stated in $\S 4$ of the present paper.

In order to prove Theorem 4, we consider, as in $\S 0$, the functions

$$
\begin{equation*}
f_{s}(t, x)=\int_{G} u(t, x ; s, y) f(y) d_{a} y \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g(t, x) \equiv g_{s}^{(\tau, n)}(t, x)=f_{s}(t, x) \exp \left\{-\left(\frac{t-s}{\tau-s}\right)^{n}\right\} \tag{5.2}
\end{equation*}
$$

where $f(x)$ is an arbitrary continuous function on \boldsymbol{G} such that $0 \leqq$ $f(x) \leqq 1$ and the support of $f(x)$ is a compact set contained in the domain \boldsymbol{G}, and τ and n are as stated in $\S 0$. Then $g_{s}^{(\tau, n)}(t, x)$ is continuous in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ and satisfies (0.3), (0.4) and the boundary condition $\left(B_{\alpha}\right)$.

Lemma 14. If $c(t, x) \leqq 0$, then the function $g(t, x)$ takes neither positive maximum nor negative minimum at any point in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ (for any fixed τ, n and s).

Proof. It is easily proved by the well known method that $g(t, x)$ takes neither positive maximum nor negative minimum at any point in the open set $\left(s, t_{0}\right) \times \boldsymbol{G}$.

Suppose that:
(5.3) $g(t, x)$ takes the positive maximum at $\left\langle t_{1}, \xi_{1}\right\rangle \in\left(s, t_{0}\right) \times \boldsymbol{B}$.
$f_{s}(t, x)$ satisfies $L f=0$ in $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ as may be seen from the properties of $u(t, x ; s, y)$, where the partial derivatives at any $\xi \in \boldsymbol{B}$ should be understood as defined in $\S 1$, and $g(t, x)$ satisfies the boundary condition $\left(B_{\alpha}\right)$ as well as $f_{s}(t, x)$. We adopt a canonical coordinate around ξ_{1} as stated in Lemma 3. Then we obtain from (5.3), (3.1) and (B_{α}) that $\partial g\left(t_{1}, \xi_{1}\right) / \partial x_{t}^{1} \leqq 0$ and that

$$
\alpha\left(t_{1}, \xi_{1}\right) g\left(t_{1}, \xi_{1}\right)-\left\{1-\alpha\left(t_{1}, \xi_{1}\right)\right\} a_{\varphi}^{11}\left(t_{1}, \xi_{1}\right) \frac{\partial g\left(t_{1}, \xi_{1}\right)}{\partial x_{t}^{1}}=0
$$

Since $g\left(t_{1}, \xi_{1}\right)>0$ and $a_{\varphi}^{11}\left(t_{1}, \xi_{1}\right)>0$, it follows that $\alpha\left(t_{1}, \xi_{1}\right)$ should be
zero, consequently $\partial g\left(t_{1}, \xi_{1}\right) / \partial x_{t}^{1}=0$, and accordingly $\partial^{2} g\left(t_{1}, \xi_{1}\right) /\left(\partial x_{t}^{1}\right)^{2}$ $\leqq 0$ by virtue of (5.3). Moreover, since $\left.<t_{1}, \xi_{1}\right\rangle$ may be considered as the maximising point of $g(t, \xi)$ restricted to $\left(s, t_{0}\right) \times \boldsymbol{B}$, we have

$$
\sum_{i, j \geq 2} a_{\varphi}^{i j}\left(t_{1}, \xi_{1}\right) \frac{\partial^{2} g\left(t_{1}, \xi_{1}\right)}{\partial x_{t}^{i} \partial x_{t}^{j}} \leqq 0 \text { and } b_{\varphi}^{i}\left(t_{1}, \xi_{1}\right) \frac{\partial g\left(t_{1}, \xi_{1}\right)}{\partial x_{t}^{i}}=0
$$

where we use the following facts: $a_{\varphi}^{1 j}\left(t_{1}, \xi_{1}\right)=a_{\varphi}^{j 1}\left(t_{1}, \xi_{1}\right)=0$ for $j \geqq 2$ (see Lemma 3) and accordingly $\left\|a_{\varphi}^{i j}\left(t_{1}, \xi_{1}\right)\right\|_{i, j=2}, \ldots,{ }_{m}$ is a positive-definite symmetric matrix. Thus we get $\operatorname{Ag}\left(t_{1}, \xi_{1}\right) \leqq 0$, and hence

$$
0=\frac{\partial g\left(t_{1}, \xi_{1}\right)}{\partial t}=A g\left(t_{1}, \xi_{1}\right)-\frac{n\left(t_{1}-s\right)^{n-1}}{(\tau-s)^{n}} g\left(t_{1}, \xi_{1}\right)<0
$$

that is a contradiction. Hence the function $g(t, x)$ on $\left(s, t_{0}\right) \times \overline{\boldsymbol{G}}$ does not take the positive maximum at any point in $\left(s, t_{0}\right) \times \boldsymbol{B}$. Similarly it does not take the negative minimum at any point in $\left(s, t_{0}\right) \times B$.

PRoof of Theorem 4 may be performed by means of the entirely same manner as in $\S 0$ by making use of Lemma 14 in place of Lemma A in $\S 0$. We omit to repeat here the argument in $\S 0$.

Mathematical Institute, Nagoya University

[^0]: 1) S. Itô: The fundamental solution of the parabolic equation in a differentiable manifold, Osaka Math. J. 5 (1953) 75-92.
[^1]: 3) It is true that $\partial a^{i j} / \partial n_{t}$ depends on the local coodinate, but the condition (1.4) is independent of it, because, if $\left\|a^{i j}\right\|$ is changed into $\left\|\bar{a}^{i j}\right\|$ by means of the coodinate transformation $\left(x^{i}\right) \rightarrow\left(\bar{x}^{i}\right)$, then we get $\frac{\partial \bar{a}^{i} j}{\partial \boldsymbol{n}_{t}}=\frac{\partial \bar{x}^{i}}{\partial x^{k}} \cdot \frac{\partial \bar{x}^{j}}{\partial x^{i}} \cdot \frac{\partial a^{k l}}{\partial \boldsymbol{n}_{t}}$ by virtue of [FS, (1.3)].
 4), 5) Cf. [FS, Definition 2]. The conditions corresponding to (1.9) and (1.9*) in [FS] follow from (1.7) and (1.7*) respectively in the case where $\overline{\boldsymbol{G}}$ is compact.
[^2]: 6) As for Theorem 4, see the supplement to [FS] in $\$ 0$ of the present paper.
[^3]: 7) See the author's paper: Fundamental solutions of parabolic differential equations and eigenfunction expensions for elliptic differential equations, forthcoming to Nagoya Mathematical Journal.
[^4]: 8) This assumption for $f(x)$ is equivalent to the following one : $f(\xi)=0$ on $\boldsymbol{B}^{(s)}=$ $\{\xi \in \boldsymbol{B} ; \alpha(s, \xi)=1\}$
