On a Topological Characterization of the Dilatation in E^{3}

By Tatsuo Homma and Shin'ichi Kinoshita

Introduction

A topological characterization of the dilatation in E^{2} has been given by B. v. Kerékjártó [5] ${ }^{1 \text { 1 }}$ and recently in another form by us [2]. The purpose of this paper is to give a topological characterization of the dilatation in E^{3}. In fact we shall prove the following

Theorem. Let h be a homeomorphism of E^{3} onto itself satisfying the following conditions:
(i) for each $x \in E^{3}$ the sequence $h^{n}(x)$ converges to the origin 0 when $n \rightarrow \infty$ and
(ii) for each $x \in E^{3}$ except for o the sequence $h^{n}(x)$ converges to the point at infinity when $n \rightarrow-\infty$.

Then if h is sense preserving, h is topologically equivalent to the transformation

$$
x^{\prime}=\frac{1}{2} x, y^{\prime}=\frac{1}{2} y, z^{\prime}=\frac{1}{2} z
$$

and if h is sense reversing, h is topologically equivalent to the transformation

$$
x^{\prime}=\frac{1}{2} x, y^{\prime}=\frac{1}{2} y, z^{\prime}=-\frac{1}{2} z
$$

in Cartesian coordinates.

§ 1.

1. Notations. Throughout this paper h is a given homeomorphism of the 3 -dimensional Euclidean space E^{3} onto itself given by the assumption of our Theorem.

Following notations will be used:

[^0]\[

$$
\begin{aligned}
& B(T)=\text { the boundary of } T . \\
& \operatorname{Int}(T)=T-B(T) \\
& U_{\mathbb{8}}(T)=\{x \mid d(x, T)<\varepsilon\} \\
& {[a, b]=\{x \mid a \leqq x \leqq b\}} \\
& S_{r}=\{x| | x \mid=r\}
\end{aligned}
$$
\]

Let M and M^{\prime} be two 2 -manifolds in $E^{3} . \quad M^{\prime} \ll M$ means that M^{\prime} is contained in the bounded component of the complementary domain of M. As an exceptional case we shall write $o \ll M$ which means also that o is contained in the bounded component of the complementary domain of M.
2. Lemma 1. If T is a compact subset of E^{3}, then the sequence $h^{n}(T)$ converges to o when $n \rightarrow \infty$ and if T is a compact subset which does not contain 0 , then the sequence $h^{n}(T)$ converges to the point at infinity when $n \rightarrow-\infty$.

This is a consequence of Lemmas 5 and 6 of [2].

$\S 2$.

3. Now we shall prove the following

Lemma 2. Let T be a compact subset of E^{n} and g a homeomorphism of E^{m} onto itself such that.
(i) $g(T) \subset T$,
(ii) $B\left(g^{n}(T)\right) \cap B(T) \neq 0$,
(iii) $g^{n+1}(T) \subset \operatorname{Int}(T)$,
where n is a natural number. Let ε be a positive real number. Then there exists a compact subset T^{\prime} such that
(i) $T \subset T^{\prime} \subset U_{\varepsilon}(T)$,
(ii) $g\left(T^{\prime}\right) \subset T^{\prime}$,
(iii) $g^{n}(T) \subset \operatorname{Int}\left(T^{\prime}\right)$.

And if T is a continuum, then T^{\prime} is also a continuum.
Proof. Put $B\left(g^{n}(T)\right) \cap B(T)=C \neq 0$. Since C is compact and

$$
g(C) \subset g\left(B\left(g^{n}(T)\right)\right)=B\left(g^{n+1}(T)\right) \subset \operatorname{Int}(T),
$$

there exists a positive real number δ_{0} such that

$$
g\left(U_{\delta_{0}(C)} \overline{)} \subset \operatorname{Int}(T)\right.
$$

Let $\delta<\operatorname{Min}\left(\varepsilon, \delta_{o}\right)$ and put

$$
T^{\prime}=T \cup \overline{U_{\delta}(C)}
$$

It is easy to see that $T \subset T^{\prime} \subset U_{8}(T)$ and that $g\left(T^{\prime}\right) \subset T^{\prime}$. Now we prove that $g^{n}\left(T^{\prime}\right) \subset \operatorname{Int}\left(T^{\prime}\right)$. If $x \in T$, then

$$
\begin{aligned}
& g^{n}(x) \in g^{n}(T) \subset \operatorname{Int}(T) \cup\left(B(T) \cap \dot{g}^{n}(T)\right) \\
& \subset \operatorname{Int}(T) \cup C \subset \operatorname{Int}(T) \cup U_{\delta}(C) \subset \operatorname{Int}\left(T^{\prime}\right) .
\end{aligned}
$$

If $x \in \overline{U_{\delta}(C)}$, then

$$
g(x) \in g\left(\overline{U_{\delta}(C)}\right) \subset \operatorname{Int}(T) \subset \operatorname{Int}\left(T^{\prime}\right)
$$

Therefore $g^{n}(x) \in \operatorname{Int}\left(T^{\prime}\right)$. Then we have $g^{n}\left(T^{\prime}\right) \subset \operatorname{Int}\left(T^{\prime}\right)$.
From the above construction of T^{\prime} it follows that if T is a continuum, then T^{\prime} is also a continuum. Thus the proof of Lemma 2 is complete.

It follows from Lemma 2 the following
Lemma 3. Let T be a compact subset of E^{m} and g a homeomophism of E^{m} onto itself such that
(i) $g(T) \subset T$,
(ii) there exists a natural number N such that $g^{N}(T) \subset \operatorname{Int}(T)$. Let ε be a positive real number. Then there exists a compact subset T^{\prime} such that
(i) $T \subset T^{\prime} \subset U_{\varepsilon}(T)$,
(ii) $g\left(T^{\prime}\right) \subset \operatorname{Int}\left(T^{\prime}\right)$.

And if T is a continuum, then T^{\prime} is also a continuum.
4. Now we put

$$
V=\{x| | x \mid \leqq 1\}
$$

By Lemma 1 there exists a natural number N such that $h^{N}(V) \subset \operatorname{Int}(V)$. Put

$$
\bigcup_{n=0}^{N-1} h^{n}(V)=T
$$

Clearly $h(T) \subset T, h^{N}(T) \subset \operatorname{Int}(T)$ and T is a continuum. Then by Lemma 3 there exists a continuum T^{\prime} such that
(i) $V \subset T^{\prime}$,
(ii) $h\left(T^{\prime}\right) \subset \operatorname{Int}\left(T^{\prime}\right)$.

From this fact it follows that there exists a polyhedral 2-manifold M such that $o \ll h(M) \ll M$.

Remarks. It is to be remarked that the existence of M can also be proved by the method used by Prof. H. Terasaka [9].
§ 3.
5. In this paragraph we shall construct a piecewise linear ap-
proximation h_{o} of h with suitable properties.
Let M_{0} be a polyhedral 2 -manifold homeomorphic to the polyhedral 2 -manifold M given in $\S 2$. Let ρ be a piecewise linear homeomorphism of the product space $M_{o} \times[-1,1]$ into E^{3} such that
(i) $\varphi\left(M_{0} \times 0\right)=M$,
(ii) $\varphi\left(M_{0} \times t\right) \gg M$, where $0<t \leqq 1$,
(iii) $\varphi\left(M_{0} \times t\right) \ll M$, where $-1 \leqq t<0$.

Then there exists a positive real number η such that

$$
h \mathcal{P}\left(M_{0} \times[-\eta, \eta]\right) \cap \mathscr{P}\left(M_{0} \times[-\eta, \eta]\right)=0
$$

and that

$$
h^{-1} \mathcal{P}\left(M_{0} \times[-\eta, \eta] \cap \mathcal{P}\left(M_{0} \times[-\eta, \eta]\right)=0 .\right.
$$

Now let ψ be a homeomorphism of $M_{0} \times[-\eta, \eta]$ onto itself such that
(i) if $0 \leqq t \leqq 1$, then $\psi(m \times t \eta)=\left(m \times\left(\frac{1}{2} t+\frac{1}{2}\right) \eta\right)$,
(ii) if $-1 \leqq t \leqq 0$, then $\psi(m \times t \eta)=\left(m \times\left(\frac{3}{2} t+\frac{1}{2}\right) \eta\right)$, where $m \in M_{0}$.

Let h_{1} be a homeomorphism of E^{3} onto itself such that
(i) for each $x \in E^{3}-h^{-1} \mathscr{P}\left(M_{0} \times[-\eta, \eta]\right)-\mathcal{P}\left(M_{0} \times[-\eta, \eta]\right)$ $h_{1}(x)=h(x)$,
(ii) for each $x \in \mathcal{P}\left(M_{0} \times[-\eta, \eta]\right)$ $h_{1}(x)=h \rho \psi \varphi^{-1}(x)$,
(iii) for each $x \in h^{-1} \varphi\left(M_{0} \times[-\eta, \eta]\right)$

$$
h_{1}(x)=\varphi \psi \rho^{-1} h(x) .
$$

By the construction of h_{1} clearly

$$
h(M) \ll h_{1}(M) \ll M \ll h_{1}^{-1}(M) \ll h^{-1}(M) .
$$

Now let ε be a positive real number such that
$\varepsilon<\operatorname{Min}\left(d\left(M, h_{1}(M)\right), d\left(h_{1}(M), h(M)\right), d\left(M, h_{1}^{-1}(M)\right), d\left(h_{1}^{-1}(M), h^{-1}(M)\right)\right)$
and let h_{0} be a piecewise linear homeomorphism of E^{3} onto itself such that

$$
d\left(h_{0}(x), h_{1}(x)\right)<\varepsilon .
$$

The existence of such a homeomorphism h_{0} is proved by E. E. Moise [7]. Clearly
(i) $h(M) \ll h_{0}(M) \ll M \ll h_{0}^{-1}(M) \ll h^{-1}(M)$,
(ii) all $M, h_{0}(M), h_{0}^{2}(M), \ldots$ and $h_{0}^{-1}(M), h_{0}^{-2}(M), \ldots$ are polyhedral.
$\S 4$.
6. In this paragraph we shall define two modifications which will be used in $\S 5$.

The modification m_{1}. Let M and M_{0} be two polyhedral 2-manifolds in E^{3} such that $M_{0} \ll M$. Suppose that M_{0} is not a polyhedral 2sphere. Suppose further that there exist an $\left(E^{3}-M\right)$-unknotted polygon P on M and one of the associated $\operatorname{disk}^{2)}$, say $D(P)$, such that $D(P) \cap M_{0}$ is the union of a (non-zero) finite number of mutually disjoint simple closed polygons Q_{i}. Let $D\left(Q_{i}\right)$ be the polyhedral disk bounded by Q_{t} in $D(P)$.

Under the above assumption we shall define the modification m_{1} as follows: For each Q_{i} homotopic to 0 in M_{0} there exists one and only one polyhedral disk $D\left[Q_{i}\right]$ on M_{0} whose boundary-polygon is Q_{i}. Put $Q_{i}<Q_{j}$, if $D\left[Q_{i}\right] \subset D\left[Q_{j}\right]$. Let Q_{0} be one of the minimal elements (homotopic to 0 in M_{0}) with respect to the above ordering. Let Q_{0}^{\prime} be a simple closed polygon in $D(P)$ sufficiently near to Q_{o} without intersecting $D\left(Q_{o}\right)$. Then there exists a polyhedral disk $D^{\prime}\left[Q_{0}^{\prime}\right]$ whose boundary-polygon is Q_{0}^{\prime} such that $D^{\prime}\left[Q_{0}^{\prime}\right]$ is sufficiently near to $D\left[Q_{0}\right]$ and that

$$
D^{\prime}\left[Q_{0}^{\prime}\right] \cap D(P)=Q_{0}^{\prime} \quad \text { and } \quad D^{\prime}\left[Q_{0}^{\prime}\right] \cap M_{0}=0 .
$$

Put

$$
m_{1}^{\prime}(D(P))=\left(D(P)-D\left(Q_{0}^{\prime}\right)\right) \cup D^{\prime}\left[Q_{0}^{\prime}\right] .
$$

This is a modification of $D(P)$. If we repeat this modification step by step as long as possible, then we have an associated disk $m_{1}(D(P))$, which will be called the associated disk deduced from $D(P)$ by the modification m_{1}.

It should be pointed out that the added part to $D(P)$ by the modification m_{1} is sufficiently near to M_{0}.

If $Q_{i} \subset D\left[Q_{j}\right]$ for some Q, homotopic to 0 in M_{0}, then Q_{i} is homotopic to 0 in M. From this fact it follows that $m_{1}(D(P)) \cap M_{0}$ consists of only a finite number of simple closed polygons not homotopic to 0 in M.
7. The modification m_{2}. Let M be a polyhedral 2 -manifold in E^{3} with genus p. Let P be an $\left(E^{3}-M\right)$-unknotted polygon on M and $D(P)$ one of the associated disks.. Then there exist a simple closed polygon P^{\prime} on M sufficiently near to P without intersecting P and a polyhedral disk $D^{\prime}\left(P^{\prime}\right)$ whose boundary-polygon is P^{\prime} such that $D^{\prime}\left(P^{\prime}\right)$ is sufficiently near to $D(P)$ and that

$$
D^{\prime}\left(P^{\prime}\right) \cap D(P)=0 \quad \text { and } \quad D^{\prime}\left(P^{\prime}\right) \cap M=P
$$

[^1]Let R be the ring bounded by P and P^{\prime} in M. Put

$$
m_{2}(M)=(M-R) \cup D(P) \cup D^{\prime}\left(P^{\prime}\right)
$$

This modification will be called the modification m_{2} of M along $D(P)$.
If P is not homologous to 0 in M, then $m_{2}(M)$ is a polyhedral 2 -manifold with genus $p-1$. If P is homologous to 0 in M, then $m_{2}(M)$ consists of two polyhedral 2 -manifolds M^{\prime} and $M^{\prime \prime}$ with genus p^{\prime} and $p^{\prime \prime}$, where $p^{\prime}+p^{\prime \prime}=p$. And if P is homologous to 0 but not homotopic to 0 in M, then $p^{\prime}<p$ and $p^{\prime \prime}<p$ hold.

§ 5.

8. In this paragraph we shall obtain by modifying the polyhedral 2 -manifold M a polyhedral 2 -sphere S such that $o \ll h(S) \ll S$. If the genus p of M is equal to 0 , then we have already the required 2 sphere. If $p>0$, we are only to prove that there exists a polyhedral 2 -manifold M^{\prime} of genus p^{\prime} smaller than p such that $0 \ll h\left(M^{\prime}\right) \ll M^{\prime}$. Assume therefore that the genus of M is different from 0 .

By a theorem of T. Homma [3] there exists at least one $\left(E^{3}-M\right)$ unknotted polygon on M not homotopic to 0 in M. It is easy to see that for each $\left(E^{3}-M\right)$-unknotted polygon P on M there exists one of the associated disks say $D(P)$ such that $D(P) \cap o=0$. Therefore if h_{0} is a piecewise linear approximation sufficiently near to h, then there is a natural number N such that there exists an $\left(E^{3}-M\right)$ unknotted polygon P_{1} on M not homotopic to 0 in M and one of the associated disks, say $D_{1}\left(P_{1}\right)$, satisfying the conditions

$$
D_{1}\left(P_{1}\right) \cap h_{0}^{N}(M)=0 \quad \text { and } \quad D_{1}\left(P_{1}\right) \cap h_{0}^{-N}(M)=0 .
$$

Hereafter we assume that h_{0} is such a piecewise linear approximation sufficiently near to h.

Let M_{0} be a polyhedral 2 -manifold such that $o \ll M_{0} \ll M$. Let P be an ($E^{3}-M$)-unknotted polygon on M and $D(P)$ one of the associated disks such that $D(P) \cap M_{0} \neq 0$. Let ε be a positive real number. It is also easy to see that there exists one of the associated disks say $D_{2}(P)$ such that $D_{2}(P) \cap M_{0}$ is the union of a finite number of mutually disjoint simple closed polygons and that $D_{2}(P) \subset U_{\varepsilon}(D(P))$.

The similar statement holds for a polyhedral 2 -manifold M_{0}^{\prime} such that $M \ll M_{0}^{\prime}$.
9. Now we shall prove the following proposition.
(*) Suppose that there exist an $\left(E^{3}-M\right)$-unknotted polygon P on M
not homotopic to 0 in M and one of the associated disks, say $D(P)$, such that

$$
D(P) \cap h_{0}^{n}(M) \neq 0 \quad \text { and } \quad D(P) \cap h_{0}^{n+1}(M)=0
$$

where n is a natural number. Then there exists an $\left(E^{3}-M-h_{0}^{n}(M)-\right.$ $\left.h_{0}^{-n}(M)\right)$-unknotted polygon on M not homotopic to 0 in M.

Proof. By the above arguments there exists one of the associated disks, say $D_{0}(P)$, such that $D_{0}(P) \cap h^{r}(M)$ is the union of a finite number of mutually disjoint simple closed polygons and that $D_{0}(P) \cap h_{0}^{n+1}(M)=0$.

If $D_{0}(P) \cap h_{0}^{n}(M)=0$, then P itself is the required polygon. Now suppose that $D_{0}(P) \cap h_{0}^{n}(M) \neq 0$. Using the modification m_{1}, we have one of the associated disks, say $m_{1}\left(D_{0}(P)\right)$, such that $m_{1}\left(D_{0}(P)\right) \cap h_{0}^{n}(M)$ consists of only a finite number s of mutually disjoint simple closed polygons not homotopic to 0 in $h_{0}^{n}(M)$ and that $m_{1}\left(D_{0}(P)\right) \cap h_{0}^{n+1}(M)=0$.

If $s=0$, then $m_{1}\left(D_{0}(P)\right) \cap h_{0}^{n}(M)=0$. Therefore P is again the required polygon. Now we assume that $s>0$. Let Q be one of the innermost simple closed polygons in the associated disk $m_{1}\left(D_{0}(P)\right)$. Then it is easy to see that Q is an $\left(E^{3}-h_{0}^{n}(M)-h_{0}^{n+1}(M)-M\right)-$ unknotted polygon on $h_{0}^{n}(M)$ not homotopic to 0 in $h_{0}^{n}(M)$. Put $P_{0}=h_{0}^{-n}(Q)$. Then P_{0} is an $\left(E^{3}-M-h_{0}(M)-h_{0}^{-n}(M)\right.$)-unknotted polygon on M not homotopic to 0 in M. Therefore P is the required polygon and the proof of $\left({ }^{*}\right)$ is complete.

Similarly we have the following proposition.
${ }^{(* *)}$ Suppose that there exist an $\left(E^{3}-M\right)$-unknotted polygon P on M not homotopic to 0 in M and one of the associated disks say $D(P)$ such that

$$
D(P) \cap h_{0}^{-n}(M) \neq 0 \quad \text { and } \quad D(P) \cap h_{0}^{-(n+1)}(M)=0
$$

Then there exists an $\left(E^{3}-M-h_{0}^{n}(M)-h_{0}^{-n}(M)\right)$-unknotted polygon on M not homotopic to 0 in M.

By the arguments in Nr. 8 and propositions (*) and (**) we see immediately that there exists an $\left(E^{3}-M-h_{0}(M)-h_{0}^{-1}(M)\right)$-unknotted polygon P on M not homotopic to 0 in M.

Since $h(M) \ll h_{0}(M) \ll M \ll h_{0}^{-1}(M) \ll h^{-1}(M)$, we see also that there exists an $\left(E^{3}-M-h(M)-h^{-1}(M)\right)$-unknotted polygon P on M not homotopic to 0 in M.
10. If above given P is not homologous to 0 in M, then by the modification m_{2} of M along an associated disk we have a polyhedral 2 -manifold M^{\prime} with genus $p^{\prime}=p-1$ such that $o \ll h\left(M^{\prime}\right) \ll M^{\prime}$.

If P is homologous to 0 in M, then by the modification m_{2} of M along an associated disk we have two polyhedral 2 -manifolds $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ with genus $p_{1}^{\prime \prime}<p$ and $p_{2}^{\prime \prime}<p$, where $p_{1}^{\prime \prime}+p_{2}^{\prime \prime}=p$. It is easy to see that one of $M_{1}^{\prime \prime}$ and $M_{2}^{\prime \prime}$ say M^{\prime} has the property $0 \ll h\left(M^{\prime}\right) \ll M^{\prime}$.

Then by the arguments in Nr. 8 we have a polyhedral 2 -sphere S such that $0 \ll h(S) \ll S$.

§ 6.

11. Since S is a polyhedral 2-sphere and $h(S) \cap S=0$, it is easy to see that $S \cup h(S)$ is semi-locally tamely imbedded in E^{3}. Then by a theorem of E. E. Moise [8] there exists a homeomorphism g_{1} of E^{3} onto itself such that
(i) $g_{1}(0)=0$,
(ii) $g_{1}(x)=x \quad$ for every $x \in S$,
(iii) $g_{1} h(S)$ is polyhedral,
(iv) $d\left(x, g_{1}(x)\right)<d(S, h(S)) \quad$ for every $x \in E^{3}$.

Since $g_{1} h(S) \ll S$, by a theorem of Alexander-Moise [1] [6] there exists a homeomorphism g_{2} of E^{3} onto itself such that
(i) $g_{2} g_{1}(o)=0$,
(ii) $g_{2} g_{1}(S)=S_{2}$,
(iii) $g_{2} g_{1} h(S)=S_{1}$.

Using the polar coordinates in E^{3}, for each $x=(\mathcal{P}, \psi, 2) \in S_{2}$ put

$$
f(x)=f(\mathcal{P}, \psi, 2)=\left(\mathcal{P}^{\prime}, \psi^{\prime}, 1\right)=g_{2} g_{1} h g_{1}^{-1} g_{2}^{-1}(x)
$$

and put

$$
f^{\prime}(\varphi, \psi, 2)=\left(\varphi^{\prime}, \psi^{\prime}, 2\right) .
$$

Then f^{\prime} is a homeomorphism of S_{2} onto itself.
12. Now we assume that h is sense preserving. Then it is easy to see that f^{\prime} is a sense preserving homeomorphism of S_{2} onto itself. Therefore by the deformation theorem of Tietze (See for instance [4]) there exists a family of homeomorphisms $f_{t}(\mathcal{P}, \psi, 2)=\left(\varphi_{t}, \psi_{t}, 2\right)$, where $0 \leqq t \leqq 1$, such that $f_{0}=f^{\prime}$ and that f_{1} is the identity mapping of S_{2}. Now we define a homeomorphism F_{0} of the closure of the domain bounded by S_{1} and S_{2} onto itself as follows:

$$
F_{0}(\mathcal{P}, \psi, 1+t)=\left(\mathcal{P}_{t}, \psi_{t}, 1+t\right),
$$

where $0 \leqq t \leqq 1$. This homeomorphism F_{0} can be extended to a homeomorphism F of E^{3} onto itself as follows: If $x=(\mathcal{P}, \psi, r)$, where $r \neq 0$, then there exists one and only one integer n such that $1<2^{n} r \leqq 2$.

Put

$$
F(x)=F(\mathcal{P}, \psi, r)=g_{2} g_{1} h^{n} g_{1}^{-1} g_{2}^{-1} F_{0}\left(\varphi, \psi, 2^{n} r\right)
$$

and

$$
F(\varphi, \psi, 0)=(\varphi, \psi, 0)
$$

Now let H be the transformation

$$
H(\varphi, \psi, r)=\left(\dot{\varphi}, \psi, \frac{1}{2} r\right) .
$$

Then it will be seen that

$$
H(x)=F^{-1} g_{2} g_{1} h g_{1}^{-1} g_{2}^{-1} F(x)
$$

for every $x \in E^{3}$. For if $x=0$, then

$$
F^{-1} g_{2} g_{1} h g_{1}^{-1} g_{2}^{-1} F(o)=H(o)
$$

is evident. If $x=(\mathcal{P}, \psi, r)$, where $1<2^{n} r \leqq 2$, then

$$
\begin{aligned}
& F^{-1} g_{2} g_{1} h g_{1}^{-1} g_{2}^{-1} F(\varphi, \psi, r) \\
& \quad=F^{-1} g_{2} g_{1} h g_{1}^{-1} g_{2}^{-1} g_{2} g_{1} h^{n} g_{1}^{-1} g_{2}^{-1} F_{0}\left(\varphi, \psi, 2^{n} r\right) \\
& \quad=F^{-1} g_{2} g_{1} h^{n+1} g_{1}^{-1} g_{2}^{-1} F_{0}\left(\varphi, \psi, 2^{n} r\right) \\
& \quad=F^{-1} g_{2} g_{1} h^{n+1} g_{1}^{-1} g_{2}^{-1} F_{0}\left(\varphi, \psi, 2^{n+1} \cdot \frac{1}{2} r\right) \\
& \quad=F^{-1} F\left(\mathcal{P}, \psi, \frac{1}{2} r\right)=\left(\varphi, \psi, \frac{1}{2} r\right)=H(\varphi, \psi, r) .
\end{aligned}
$$

Thus h is topologically equivalent to H and the proof of the first part of our Theorem is complete.

The second part of our Theorem, where h is sense reversing, can be proved similarly.
(Received March 25, 1954)

References

[1] J. W. Alexander: On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U. S. A. 10 (1924).
[2] T. Homma and S. Kinoshita: On the regularity of homeomorphisms of E^{n}, J. Math. Soc. Japan. 5 (1953).
[3] T. Homma: On the existence of unknotted polygons on 2-manifolds in E^{3}, This volume of this Journal.
[4] B. v. Kerékjártó: Vorlesungen über Topologie. 1 (1923).
[5] -: Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac Sci. Szeged. 6 (1934).
[6] E. E. Moise. Affine structures in 3-manifolds II, Ann. of Math. 55 (1952).
[7] -: Affine structures in 3-manifolds IV, Ann. of Math. 55 (1952).
[8] -: Affine structures in 3-manifolds V, Ann. of Math. 56 (1952).
[9] H. Terasaka: On quasi-translations in E^{n}, Proc. Japan Acad. 30 (1954).

[^0]: 1) The numbers in the brackets refer to the references at the end of this paper.
[^1]: 2) Let P be an ($E^{3}-N$)-unknotted polygon in M and $D(P)$ one of the associated disks. Hereafter it is always assumed that $D(P)$ is a polyhedral disk, where the boundary-polygon of $D(P)$ is P, such that $D(P) \cap M=P$ and that $N_{\cap}(D(P)-P)=0$. (See [3]).
