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On the Existence of Vnknotted Polygons

on 2-Manΐϊolds in E*

By Tatsuo HOMMA

Introduction

All sets considered in this paper lie in the 3-dimensional Euclidean
space E3. Let P be a simple closed polygon and N an arbitrary set.
Then P will be called an N-unknotted polygon, if P is the boundary-
polygon of a polyhedral disk D(P} whose interjor is contained in N,
and D(P} will be called an associated disk. An £3-unknotted polygon
is usually called an unknotted polygon. The purpose of this paper is
to prove the following theorems :

Theorem 1. Let M be a closed polyhedral 2-manifold whose genus is
different from 0. Then there exists an unknotted polygon on M not homologous
to 0 in M.

Theorem 2. Let M be a closed polyhedral 2-manifold whose genus is
different from 0. Then there exists an (E*-M)-unknotted polygon on M not
homotopic to 0 in M.

As an extension to Theorem 1 we have further

Theorem 3. Let M be a closed polyhedral 2-manifold of genus p.
Then there exists p mutually disjoint unknotted polygons such that they are
linearly independent in the homology group of M.

§1-

First we shall introduce several definitions.

Let Mbe a closed polyhedral 2-manifold. A family δβ of the planes
normal to a given unit vector θ will be said to be admissible with
respect to M, if the vertices of M lie in different planes of the family.
In general the intersection of M with representative plane L of an
admissible family Sβ is the union of a finite number of mutually dis-
joint simple closed polygons. The intersection of M with an exceptional
plane L of the family is either

( 1 ) the union of an isolated point q and a finite collection of
mutually disjoint simple closed polygons in the complement of qy or
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( 2 ) p simple closed polygons, of which p' pieces (1 <^pf <,p} have
a singular point q in common, the polygons being otherwise mutually
disjoint.

The isolated and singular points are to be found among the verti-
ces of M, so that there are but a finite number of exceptional planes
in the family %θ +

A simple closed polygon P contained in the intersection of M
with one of the planes of the admissible family 8Θ will be called a
singular polygon on M with respect to %θ , if P contains a singular point.

A connected subset M' of M will be said to be elementary, if the
intersection of M' with any planes of %θ is either a simple closed poly-
gon or a single point or an empty set.

A continuum M' on M which is homeomorphic to a continuum on
the 2-sphere will be called a semi-planary continuum. A simple closed
polygon P of a semi-planary continuum T will be called a boundary-
polygon of T, if P does not divide T.

If E is elementary, then E is a semi-planary continuum. It is
evident that if T and T are semi-planary continua and Tr\ T' is a
boundary-polygon of both T and T, then the union T\jT is also a
semi-planary continuum.

Now we shall prove the following

Lemma. Let M be a closed polyhedral 2-manίfold and £θ an abmissible
family with respect to M. If any singular polygon on M with respect to
£0 is homologous to 0 in My then M is a polyhedral 2-sphere.

PROOF. Let ty be the collection of all singular polygons on M with
respect to Sβ . Let q be a given point of M not lying on any singular
polygon. Put Pt <^ Pj for every pair of Pt , P 5 6 ̂ , if Pj separates
Pi from the point q in M. Then ty is a partially ordered set.

Since any P 6^3 is homologous to 0 in M, the complement of P
in M consists of two component. Let T(P) be one of the two compo-
nents such that T(P)A# = 0.

Now we shall prove that for each P e φ T(P) is a semi-planary
continuum. If P is one of the minimal elements of φ, then T(P) is

elementary. Therefore T(P) is a semi-planary continuum. Suppose

that P is not minimal and that for each P' <^P T(P7} is a semi-planary
continuum. Put

= {P'\P'<P}.

Let φ'(P) be the set of all maximal elements of ^(F). Since
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- \J T(P') is elementary, TOP)- \J T(P7) is a semi-planary conti-
P'e$'(P) P'€$'(P)
nuum. For any P/eS

P0'=T(P)- V7

is a boundary -polygon of both semi-planary continua T(P)— \7 T(P')

and T(P'). Then it follows that T(P) is a semi-planary continuum.
Thus for each Pe^β T(P) is a semi-planary continuum.

Let ?β' be the set of all maximal elements of φ. Since M- \J TOP7)
___ p' e $'

is elementary, M— \J T(P') is a semi-planary continuum. For any

Pf € ξ

is a boundary-polygon of both semi-planary continua M— /°\ T(P')
P' 6 $'

and T(P0'). Then it follows that the closed polyhedral 2-manifold M is
a semi-planary continuum. From this it follows that M is a polyhedral
2-sphere and the proof of Lemma is complete.

PROOF OF THEOREM 1. Let M be a 2-manifold whose genus is dif-
ferent from 0. Let Sθ be an admissible family with respect to M. By
Lemma there exists at least one singular polygon P on an exceptional
plane such that P is not homologous to 0 in M. Since any simple
closed polygon on a plane is unknotted, P is the required polygon,
and the proof of Theorem 1 is complete.

§2.

PROOF OF THEOREM 2. By Theorem 1 there exists a simple closed
polygon P on M not homologous to 0 such that P is the boundary-
polygon of an associated disk D(P\ If the interior of D(P) does not
meet M, then P is the required polygon. Now suppose that MA(Z3(P)
_P) φ 0. We may assume without loss of generality that the inter-
section MAOD(P)—P) is the union of a finit number of mutually dis-
joint simple closed polygons Qt. Let /?(<?,) be the polyhedral disk
bounded by Qt in D(P). For each Qt homotopic to 0 in M there exists
one and only one polyhedral disk D[Qi~] on M, whose boundary-polygon
is Qt. Put Qt^Qj, if #[Q*] C #[G/]. Let Q0 be one of the minimal
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elements (homotopic to 0 in M) with respect to the above ordering.
Let Q0 be a simple closed polygon in D(P} sufficiently near to Q0

and not intersecting D(QQ). Then there exists a polyhedral disk D'[QQ'^\
whose boundary-polygon is Q0' such that £'[$</] is sufficiently near
to ΰ[Q0] and

= Qf and

Put

mW(P}} = (D(P}-D(Q,'}} w

This is a modification of D(P). If we repeat this modification step
by step as long as possible, then we have an associated disk m1(D(P}).

If QiCD^Qj'] for some Qj homotopic to 0 in M, then Qt is homo-
topic to 0 in M From this it follows that ml(D(P}} consists of only
a finite number 5 of mutually disjoint simple closed polygons not homo-
topic to 0 in M.

If s = 0, then w1(Z3(P))AM= 0. Therefore P is the required poly-
gon. Now we assume that s > 0. Let Q be one of the innermost
simple closed polygons in the associated disk m1(D(Py). Then it is easy
to see that Q is an (E"3-M)-unknotted polygon on M not homotopic to
0 in M. Therefore Q is the required polygon and the proof of Theorem
2 is complete.

From Theorem 2 it follows immediately the following
Corollary/ If M is a closed polyhedral 2-manifold of genus 1 in S3,

then one of the components of the complementary domain of M is
hopieomorphic to the interior of a solid torus.
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This Corollary has been proved by J. W. Alexander (See [1]).
REMARK. There exists a closed polyhedral 2-mainfold of genus 2

containing no (£3-M)-unknotted polygon not homologous to 0 in M

(See Fig.).

§3.

PROOF OF THEOREM 3. We shall prove Theorem 3 by induction on
the genus p. If p — 0, then Theorem 3 is evident. If p = 1, then
Theorem 3 is equivalent to Theorem 1. Suppose that Theorem 3 is
true for any closed polyhedral 2-mainfold whose genus is less than
p(^>l). Let M be a closed polyhedral 2-mainfold of genus p. By

Theorem 2 there exists an (E3-M)-unknotted polygon P on M not
homotopic to 0 in M and an associated disk D(P}. Let P' be a simple
closed polygon in M sufficiently near to P without intersecting P and
let D'CP') be a polyhedral disk whose boundary-polygon is P' such that

= ^ and D'ίP'^M^ P'.

Let R be the ring bounded by P and P' in M Put

— (M-R]

We consider the following two cases.
CASE A. If P is not homologous to 0 in M, then w2(M) is a closed

polyhedral 2-mainfold of genus p -1. By the hypothesis of induction
there exists/) - 1 mutually disjoint simple closed polygons such that they
are linearly independent in the homology group of M. Furthermore
we modify these p - 1 polygons into p - 1 polygons P1 , P2 , ... , Pp_1 such
that they meet neither P nor Pr . Then the p polygons P19 P2, ... ,
Pp_19 Pp = P are the required ones. Hence Theorem 3 is true for the
case A.

CASE B. If P is homologous to 0 in M, then w2(M) consists of two
closed polyhedral 2-mainfolds M' and M" of genus p' and p" respect-
ively, where p' > 0, p" > 0 and p' -\-p" = p. Then there exist p' mutually
disjoint simple closed polygons of M' and p" mutually disjoint simple
closed polygons of M" such that they are linearly independent in the
homology groups of M' and M" respectively. By the reasoning similar
to the case A we see that Theorem 3 is also true for the case B, and
the proof of Theorem 3 is complete.

(Received March 25, 1954)
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