On Covering Property of Abstract Riemann Surfaces

By Zenjiro Kuramochi

Let R be an abstract Riemann surface of finite genus belonging to the class $O_{A B}$, then it is well known that any covering surface on the w-plane, defined by a non-constant analytic function on R covers any point except at most a null-set, that is, the boundary of the surface of $O_{A B}$ on the w-plane. In this paper we shall study Iversen's and Gross's property, but at present what we can prove is only that a subclass of $O_{A B}$ has Iversen's property, thus the validity of Iversen's property of $O_{A B}$ is an open problem.

1) We suppose a conformal metric is given on R, of which a line element is given by the local parameter $d s=\lambda(t)|d t|$, and let O be a fixed point of R. Denote by D_{ρ} the domain bounded by the point set having a distance $\rho: \rho<\infty$ from O, and suppose for $\rho<\infty$ that the domain D_{ρ} is compact, $\lim _{\rho=\infty} D_{\rho}=R$, the boundary Γ_{ρ} of D_{ρ} is composed of $n(\rho)$ components, $r_{1}, r_{2}, \cdots, r_{n}$, and that $\Lambda(\rho)$ is the largest length of $r_{k}(k=1.2, \cdots n$,$) :$

$$
l_{k}=\int_{r_{k}} d s, \quad \Lambda(\rho)=\max _{k} l_{k}
$$

Put

$$
N(\rho)=\max _{\rho^{\prime} \leqq \rho} n\left(\rho^{\prime}\right)
$$

Pfluger proved ${ }^{(1)}$ that if

$$
\lim _{\rho=\infty} \sup \left[4 \pi \int_{\rho_{0}}^{\rho} \frac{d \rho}{\Lambda(\rho)}-\log N(\rho)\right]=\infty
$$

then $R \in O_{A B}$.
Theorem 1. If

$$
\lim _{\rho=\infty} \sup \left[\pi \int_{\rho_{0}}^{\rho} \frac{d \rho}{\Lambda(\rho)}-\log N(\rho)\right]=\infty \quad(\text { genus of } R \leqq \infty)
$$

[^0]then every connected piece of R over $\left|w-w_{0}\right|<S$, covers every points except at most the null-set ${ }^{(2)} E_{A B}$, which is the boundary set of a domain of $O_{A B}$ on the w-plane.

Proof. If there exists a lacunary set E, which is being clearly closed, not contained in $E_{A B}$ in $\left|w-w_{0}\right|<S$, we can construct a bounded analytic function $A(w)$ in the w-plane except E and regular on $\left|w-w_{0}\right|=S$. Define a harmonic function $U(w)$ on $\left|w-w_{0}\right| \leqq S$ such that $U(w)=$ real part of $A(w)$ on $\left|w-w_{0}\right|=S$, then it is clear that the conjugate function $V(w)$ of $U(w)$ is bounded on $\left|w-w_{0}\right| \leqq S$ and $A(w)-U(w)-i V(w)=B(w)$ is bounded on $\left|w-w_{0}\right| \leqq S$ and further $B(w) \neq$ constant. Consider the closed domain \bar{G} such that ${ }^{(3)} \operatorname{Re}(B(w))$ $\geqq 0:\left|w-w_{0}\right| \leqq S$, and let V be the image of \bar{G} on R, then V has relative boundaries $l_{1}, l_{2}, \cdots, l_{p}, \cdots$, on which the $R e B(w)$ vanishes.

Each l_{i} is non compact, since otherwise $\Im_{m} B(w)$ is not one valued on account of $\int_{l_{i}} \frac{\partial R e B(w)}{\partial n} d s>0$.

Every l_{i} converges to the boundary of R. Let $B(p)$ be the function $B(w)$ considered as the function on $R \cap V, p \in R \cap V$.

Since $B(p): p \in(R \cap V)$ is bounded, we can suppose that V is mapped on the semi-circle $|\xi|<1 R e \xi \geqq 0$ and every l_{i} is mapped on the imaginary axis. After Pfluger we introduce in $|\xi|<1$ the hyperbolic metric by the line element defined by $d s=\frac{|d \xi|}{1-|\xi|^{2}}$. Consider V in D_{ρ} and put $D_{\rho}{ }^{\prime}=D_{\rho} \cap V$. The boundary of $D_{\rho}{ }^{\prime}$ is composed of \hat{l}_{i} and $\sum_{i=1}^{n(\rho)} \sum_{j=1}^{i(1)} r_{i}^{\jmath}$, where r_{i}^{j} is an arc contained in r_{i}. Let L_{i}^{\jmath} be a segment on imaginary axis connecting two end-points of the image r_{i}^{3} lying on the imaginary axis, and \tilde{L}_{i}^{j} be image of r_{i}^{j}. Then

$$
\tilde{L}_{i}^{j}=\int_{r_{i}^{j}} d s \geqq \text { length of } L_{i}^{j} .
$$

Let A_{j}^{i} be the area bounded by \tilde{L}_{i}^{f} and L_{i}^{j}. Then by the isoperimetric problem

$$
\begin{gathered}
4 A_{i}^{j}\left(A_{i}^{j}+\pi\right) \leqq\left(\tilde{L}_{i}^{j}+L_{i}^{j}\right)^{2} \leqq 4\left(\tilde{L}_{i}^{j}\right)^{2} \\
4 A_{i}\left(A_{i}+\pi\right) \leqq 4 \tilde{L}_{i}^{2}
\end{gathered}
$$

[^1]where
$$
A_{i}=\sum_{j} A_{i}^{j}, \quad \tilde{L}_{i}=\sum_{j} \tilde{L}_{i}^{j}
$$

If r_{j} has no common point with any l_{i}, then we have

$$
4 A_{\boldsymbol{j}}\left(A_{\boldsymbol{j}}+\pi\right) \leqq \tilde{L}_{j}^{2}
$$

Thus

$$
4 A_{i}\left(A_{i}+\pi\right) \leqq 4 \widetilde{L}_{i}^{2}, \quad \text { for every } i
$$

Denote by A_{ρ} the area of image of $D_{\rho}{ }^{\prime}$. Then $A_{\rho} \leqq \sum A_{i}$, and in the same manner as used by Pfluger, we have

$$
4 A_{\rho}\left(\pi+\frac{A_{\rho}}{n}\right) \leqq 4 \pi\left(\sum A_{i}+\sum A_{i}^{2}\right) \leqq 4 \sum \tilde{L}_{i}^{2}
$$

On the other hand

$$
\begin{gathered}
\tilde{L}_{i}^{2} \leqq l_{i} \int_{r_{i}} \frac{\left|\frac{d \xi}{d z}\right|^{2}}{\left(1-|\xi|^{2}\right)^{2}} d z \\
\sum^{n} \tilde{L}_{i}^{2} \leqq \Lambda(\rho) \frac{d A_{\rho}}{d \rho} \\
A_{\rho}\left(\pi+\frac{A_{\rho}}{n}\right) \leqq \Lambda(\rho) \frac{d A_{\rho}}{d \rho},
\end{gathered}
$$

hence

$$
\frac{A_{\rho_{0}}}{\pi+A_{\rho_{0}}} \leqq N(\rho) \exp \left(-\pi \int_{\rho_{0}}^{\rho} \frac{d \rho}{\Lambda(\rho)}\right)
$$

Thus by assumption $A_{\rho_{0}}$ must be zero, from which the conclusion follows.

Denote by $n(w)$ the number of sheets of connected piece of R on $\left|w-w_{0}\right|<S$ over a point w.

Theorem 2. Let R be a Riemann surface belonging to $O_{A B}\left(O_{A D}\right)$ of finite genus and let V be a connected piece on $\left|w-w_{0}\right|<\rho$ such that $\underset{w \in V}{n(w)} \leqq N<\infty$. Then V covers every point except at most a null-set $E_{A B}\left(E_{A D}\right)$.

Denote by D_{N} set of points of projection of V such that $n(w)=N$. Then from the lower semi-continuity of $n(w)$, it is clear that D_{N} is an open set and the boundary B_{N} of D_{N} is closed.

1) B_{N} is a totally disconnected set. If it were not so, take a continuum-component $B_{N}{ }^{\prime}$ of B_{N} and a point p such that $n(p)=\max n(w)$
$=S: w \in B_{N}$, and let $v(p)$ be a neighbourhood of p with boundary l such that l has at least one component $l^{\prime}\left(\in D_{N}\right)$ of ($l-B_{N}{ }^{\prime}$) and $v(\rho)$ $\left.\cap B_{N^{\prime}}\right) \not \subset D_{S^{\prime}+1}$. Since p is covered S times by V, there exists at most. S discs $k_{S^{\prime}}, \cdots, k_{S^{\prime}}\left(S^{\prime} \leqq S\right)$ on v and at least another disc k_{0} on v, and V on k_{0} has at least a connected piece with lacunary of a continuum, larger than $v(p) \cap B^{\prime}{ }_{N}$, and at most $(N-S)$ number of relative boundary components $L_{1}, L_{2}, \cdots, L_{N^{\prime}-s^{\prime}}$ lying on $l^{\prime}\left(N^{\prime}-S^{\prime} \leqq N-S\right)$. We denote such a connected piece by \tilde{V}. Since the genus of R is finite, it can be mapped by $w=f(p)$ onto a sub-Riemann surface R in the other closed surface $R^{*} . R^{*}-R$ is a totally disconnected set. Consider the image of \tilde{V} in R^{*}. Then we can see easily that every image of $L_{i}\left(i=1,2, \cdots, N^{\prime}-S^{\prime}\right)$ converge to a point of R^{*}, because $R^{*}-R$ is totally disconnected and $p=f^{-1}(w): p \in R^{*}$ is continuous. Denote by $\tilde{\tilde{V}}$ the domain on R^{*} bounded by the image L_{i} and by a finite number of points of a subset of $R^{*}-R$. On the other hand by assumption $v(p)$ has a continuum boundary except the projection of L_{i}, thus we can define a bounded (Dirichlet bounded) analytic function $\boldsymbol{\rho}(\boldsymbol{w}(\boldsymbol{p}))$ on $v(p)$ with vanishing real part on L_{i}. If $\mathcal{p}(\boldsymbol{w}(p))$ is analytic in $\tilde{\tilde{V}}$, it must be a constant, therefore there exists in $\tilde{\tilde{V}}$, a closed set E where $\varphi(p)$ is not regular. Therefore by Neumann's ${ }^{(4)}$ method and by Abel's integral, we can construct a bounded analytic (Dirichlet bounded) function on R, which contradicts the fact that $R \in O_{A B}\left(O_{A D}\right)$.
2) Since B_{N} is a totally disconnected closed set, we can take a neighbourhood $V^{\prime}(p)$ such that the boundary ${ }^{(5)}$ of $V^{\prime}(p)$ is completely contained in D_{N} and enclosing a lacunary set E of the connected piece. Thus by the same method as above, we can conclude that $R \bar{\in} O_{A B}\left(O_{A D}\right)$.

Remark 1) If $R \in O_{A B}\left(O_{A D}\right)$ covers the w-plane a bounded number of times, then we can see easily that the mapping function is regular throughout R^{*}, and the function must be an algebraic function.

[^2]Remark 2) We conjecture that every Riemann surface belonging to $O_{A B}$ of finite genus has Iversen's property but the present auther did not succeed to prove it.

Theorem 3. A Riemann surface belonging to $O_{A B}$ of finite genus has not necessarily the Gross's property.

Example. Let F_{0} be the unit-circle $|z|<1$ with slits $S_{i}^{n}: n=1,2$, $3, \cdots ; i=1,2, \cdots, q_{n}$ such that (Fig. 1)

$$
\begin{aligned}
& S_{i}^{n}: 1-\frac{1}{p_{n}} \leqq|z|<1, \quad \arg z=\frac{2 \pi i}{q_{n}} \\
& i=1,2,3, \cdots, q_{n}, \quad p_{n}=\tilde{a}^{n}: \tilde{a}>4 .
\end{aligned}
$$

Lemma. Let F_{i}^{n} be the unit-circle with slits S_{i}^{n}, and connect F_{0} with every F_{i}^{n} on corresponding slits S_{i}^{n} crosswise, then we have infinitely many sheeted covering surface on the unit-circle. If we take q_{n} sufficiently large, then we have $\omega(p) \equiv 0$, where $\omega(p)$ is the harmonic measure of the boundary of F_{0} on $|z|=1$.

Fig. 1
$F_{i}^{n}: i=1,2, \cdots, i_{0}(n) . \quad n=1,2,3, \cdots \cdots$.

Fig. 2
We denote by $G_{i, i+1}^{m, n}(n \geqq m)$ the domain of F_{0} enclosed by straight lines A, B and circular $\operatorname{arcs} C, D$ such that (Fig. 2)

$$
\begin{aligned}
& A: \quad 1-\frac{1}{p_{n}} \leqq|z| \leqq 1-\frac{1}{p_{n+1}} ; \arg A=\arg S_{i}^{m}=\arg S_{i}^{n}, \\
& B: \quad 1-\frac{1}{p_{n}} \leqq|z| \leqq 1-\frac{1}{p_{n+1}} ; \arg B=\arg S_{i+1}^{n}, \\
& C: \quad|z|=1-\frac{1}{p_{n+1}} ; \arg S_{i+1}^{n} \leqq \arg z \leqq \arg S_{i}^{n}, \\
& D: \quad|z|=1-\frac{1}{p_{n}} ; \arg S_{i+1}^{n} \leqq \arg z \leqq \arg S_{i+1}^{n} .
\end{aligned}
$$

$F_{i}^{m}\left(F_{i+1}^{n}\right)$ has a slit $S_{i}^{m}\left(S_{i+1}^{n}\right)$ with edges ${ }^{+} S_{i}^{m},{ }^{-} S_{i}^{m}\left({ }^{+} S_{i+1}^{n},{ }^{-} S_{i+1}^{n}\right)$ (S_{i}^{n} has two edges). We consider $\omega(p)$ in the surface $F_{i}^{m}+G_{i, i+1}^{m, n}+F_{i+1}^{n}$, where $G_{i, i+1}^{m, n}$ is connected with F_{i}^{m} on A by ${ }^{+} S_{i}^{m}$, with F_{i+1}^{n} on B by ${ }^{-} S_{i+1}^{n} . F_{i}^{n}+G_{i, i+1}^{m, n}+F_{i+1}^{n}$ has boundaries $C, D,{ }^{-} S_{i}^{m},{ }^{+} S_{i+1}^{n}, \quad\left({ }^{+} S_{i}^{m}-A\right)$, $\left(-S_{i+1}^{m}-B\right)$ and the boundary on $|z|=1$.

Let $\omega^{*}(p)$ be harmonic measure of ${ }^{-} S_{i}^{m}+{ }^{+} S_{i+1}^{n}+\left({ }^{+} S_{i}^{m}-A\right)+\left({ }^{-} S_{i+1}^{n}\right.$ $-B)$ with respect to $F_{i}^{n}+G_{i, i+1}^{n, n}+F_{i+1}^{n}$. Then it is clear

$$
\omega^{*}(p) \geqq \omega(p) .
$$

Fig. 3
Denote by $\left(F_{i}^{n}+G_{i, i+1}^{m, n}+F_{i+1}^{m}\right)^{*}$ the simply connected domain with boundaries such that (Fig. 3)

$$
\begin{aligned}
H: & 0 \leqq|z| \leqq 1-\frac{1}{p_{n}}, \quad \arg z=\arg S_{i} \\
E: & 1-\frac{1}{p_{n+1}} \leqq|z| \leqq 1, \quad \arg z=\arg S_{i} \\
I: & 0 \leqq|z| \leqq 1-\frac{1}{p_{n}}, \quad \arg z=\arg S_{i+1} \\
F: & 1-\frac{1}{p_{n+1}} \leqq|z| \leqq 1, \quad \arg z=\arg S_{i+1} \\
J: & 0 \leqq|z| \leqq 1, \quad \arg z=\pi+\frac{\arg S_{i}+\arg S_{i+1}}{2} \\
K: & |z|=1, \quad 0 \leqq \arg z \leqq \pi \\
K^{\prime}: & |z|=1, \pi \leqq \arg z \leqq 2 \pi \\
& \text { and } C+D
\end{aligned}
$$

Let $\omega^{* *}(p)$ be the harmonic measure of $E+D+H+I+J+F+C$. Then
$0 \leqq \omega(p) \leqq \omega^{*}(p) \leqq \omega^{* *}(p)$. Let α be a half of the semi-circle passing through the point $|z|=\frac{1}{2}\left(2-\frac{1}{p_{n}}-\frac{1}{p_{n+1}}\right), \arg z=\frac{1}{2}\left(\arg S_{i}+\arg S_{i+1}\right)$.
$\left.1^{\circ}\right)$ The value of $\omega^{* *}(p): p \in \alpha$.
Suppose $\left(\arg S_{i}+\arg S_{i+1}\right)=0$, and let S be a point on $\alpha: S$ $=\left(1-\frac{p_{n+1}-p_{n}}{2 p_{n} p_{n_{+1}}}\right) e^{i \theta},|\theta| \leqq \frac{\pi}{4}$. To investigate the behaviour of $\omega^{* *}(p)$,
we transform these figures by a linear function $w=\frac{z-S}{1-\bar{S} z}$.
Let C_{n}, C_{n+1} be circles such that

$$
C_{n}:|z|=1-\frac{1}{p_{n}}, \quad C_{n+1}:|z|=1-\frac{1}{p_{n+1}} .
$$

Then C_{n}, C_{n+1} will be mapped on to circles $C_{n}^{\prime}, C_{n+1}^{\prime}$ such that

$$
C_{n}^{\prime}:\left|w-\frac{a^{2} r-r}{1-a^{2} r} e^{i \theta}\right|=\frac{a-r^{2} a}{1-a^{2} r^{2}}, \quad C_{n+1}^{\prime}:\left|w-\frac{r^{2}-r b^{2}}{1-b^{2} r} e^{i \theta}\right|=\frac{b-r^{2} b}{1-b^{2} r},
$$

where

$$
a=1-\frac{1}{p_{n}}, \quad b=1-\frac{1}{p_{n+1}}, \quad r=1-\frac{p_{n+1}-p_{n}}{2 p_{n} p_{n+1}} . \cdots \text { (A) }
$$

1) distance $\left(C_{n}^{\prime}, 0\right)=\frac{p_{n}\left(2 p_{n} p_{n+1}-p_{n+1}-p_{n}\right)}{4 p_{n}^{2} p_{n+1}-3 p_{n} p_{n+1}+p_{n}^{2}+p_{n+1}-p_{n}}$

$$
=\frac{2-\frac{1}{\tilde{a}^{n}}-\frac{1}{\tilde{a}^{n+1}}}{4-\frac{3}{\tilde{a}^{n}}+\frac{1}{\tilde{a}^{n+1}}+\frac{1}{\tilde{a}^{2 n}}+\frac{1}{\tilde{a}^{2 n+1}}} .
$$

2) distance $\left(C_{n+1}^{\prime}, 0\right)=\frac{\left(p_{n+1}+3 p_{n}\right) p_{n+1}}{p_{n+1}^{2}+3 p_{n} p_{n+1}+p_{n+1}-p_{n}}=\frac{1-\frac{3}{\widetilde{a}}}{1+\frac{1}{\widetilde{a}}+\frac{1}{\tilde{a}^{n+1}}-\frac{1}{\tilde{a}^{n+2}}}$.
3) $z=S \longrightarrow w=0$.
4) $z=0 \longrightarrow w=-S$.
5) $z=e \longrightarrow w=e^{i \theta_{1}{ }^{\prime}}: \theta_{1}^{\prime}=\arg S_{i}$.
6) $z=e \longrightarrow w=e^{i \theta_{2}{ }^{\prime}}: \theta_{2}{ }^{\prime}=\arg S_{i+1}$.
7) the radius $z=\overleftarrow{0, z}=e^{i \theta_{1}} \longrightarrow$ orthogonal circle $e \widehat{i \theta_{1}^{\prime}},-S$.
8) the radius $0, e^{i \theta_{2}} \longrightarrow$ orthogonal circle $\widehat{e^{i \theta^{\prime} 2},-S \text {. }}$
9) the radius $0,-1 \longrightarrow$ orthogonal circle $-r e^{i \theta}, \frac{-1}{1+r e^{i \theta}}$, (this circle tends to $e^{-i \theta}$ when $r \rightarrow 1$.)

$$
z=1 \longrightarrow w=\frac{1-r e^{i \theta}}{1-r e^{-i \theta}}: \quad \theta \leqq \frac{\pi}{2^{2}}
$$

Let $\omega^{\beta}(z)$ be the harmonic measure of β (β lies on $|z|=1$ and arg $S_{i} \leqq \arg z \leqq \arg S_{i+1}$) with respect to the unit-circle. Then $\omega^{\beta}(z): z \in \alpha$ attains its maximum when $\arg z=\frac{1}{2}\left(\arg S_{i}+\arg S_{i+1}\right)$, which implies that the length of the image of β is largest when $\arg S=0$, in which case the mapping function is reduced to $w=\frac{z-r}{1-r z}$. If we denote by β_{1}^{*} and β_{2}^{*} the end-points of the image β^{*} of β, then we have

$$
\arg \beta_{1}^{*}=\tan ^{-1}\left[\frac{\sin \theta\left(1-r^{2}\right)}{(-2 r)+\cos \left(1+r^{2}\right)}\right]
$$

Fig. 4
If we take θ so small that
(B) $\cos \theta>\frac{2 r}{1+r^{2}}$,
then the length of β^{*} is smaller than π.
Elementary calculation yields from (A) and (B)

$$
\theta<\sqrt{\frac{\tilde{a}-1}{2 \tilde{a}^{n+1}}}
$$

i.e.,

$$
q_{n}>4 \pi \sqrt{\frac{2 \tilde{a}^{n+1}}{\tilde{a}-1}}
$$

If we consider in 9) the radius $0 \longleftrightarrow-1$, then the argument of its image $\arg \left(\left(\frac{-1-r e^{i \theta}}{1+r e^{-i \theta}}\right)\right)$ is smallest when $\theta=\frac{\pi}{4}$: thus

$$
\arg \frac{-1-r e^{i \theta}}{1+r e^{-i \theta}} \geqq 2\left(\tan ^{-1} \frac{1+\sqrt{2}}{\sqrt{2}}\right)>\frac{\pi}{2}+\varepsilon_{0} \quad\left(\frac{\pi}{4} \geqq \theta \geqq 0\right),
$$

and the argument of $w=r e^{\theta+\pi}$ is $\theta+\pi$. Therefore the distance from $w=0$ to the image J is larger than a positive number δ_{1}. The same fact holds true when $-\frac{\pi}{4} \leqq \theta \leqq 0$.

Since $\omega^{* *}(p)$ attains 1 only on D, E, F, H, C, I, and J, and since the distance from $w=0$ to the images of E, D, F, H, C, I, J has a positive distance larger than δ_{3}, and further since the length of β^{*} is less than π, we see that $\omega^{* *}(z) \leqq \delta_{4}<1$, where δ_{4} is a positive
number whenever S is on α.
2°) F_{i}^{n} has a slit S_{i}^{n}. We denote by α^{\prime} the part of the circle such that $|z|=1-\frac{p_{n+1}-p_{n}}{2 p_{n} p_{n+1}}, \frac{1}{2}\left(\arg S_{i}+\arg S_{i+1}\right)+\frac{\pi}{4}<\arg z<$ $-\frac{1}{2}\left(\arg S_{i}+\arg S_{i+1}\right)+\frac{7 \pi}{4}$, and denote by $\omega^{* * *}(z)$ the harmonic measure of S_{i} with respect to the domain (unit-circle $\left.-S_{i}\right)$. Then clearly $\omega^{* * *}(z)$ $\leqq \delta_{5}<1: z \in \alpha^{\prime}$ and $\omega(p) \leqq \omega^{* * *}(z)$.

Let $\tilde{\omega}_{n}(p)$ be a harmonic function $0 \leqq \tilde{\omega}_{n}(p) \leqq 1$ such that $\tilde{\omega}_{n}(p)=0$ on the boundary of $F_{i_{1}}^{1}, F_{i_{2}}^{2}, \cdots, F^{n}$ and $=1$ on the circle on F_{0} with radius $=1-\frac{1}{p_{n+1}}$ and on the part of slits S_{n+1}^{i} contained in the part $|z| \geq 1-\frac{1}{p_{n+1}} \cdot$ On the other hand F_{0} has no common point with $F_{i}^{n+1}, F_{j}^{n+2}, \ldots$ Thus we see from 1°) and 2°)

$$
\tilde{\omega}_{n}(p) \leqq \max \left(\delta_{4}, \delta_{5}\right)
$$

where the projection of p is on the circle $|z|=1-\frac{p_{n+1}-p_{n}}{2 p_{n} p_{n+1}}$.
Let $\left\{V_{i}(p)\right\}$ be non negative continuous super-harmonic functions on F such that $V_{i}(p) \leqq 1$ and $\lim _{|p|=1} V_{i}(p)=1$, and denote $V(p)$ its lower envelope. Then

$$
V(p) \leqq \max \left(\delta_{4}, \delta_{5}\right) \quad \text { on } \quad|z|=r_{n} \quad n=1,2, \cdots,
$$

thus

$$
V(p) \leqq \max \left(\delta_{4}, \delta_{5}\right) V(p), \quad \text { and } \quad V(p) \equiv 0
$$

We denote by \hat{F} the symmetric surface with respect to the unit circle and identify the boundary of $F_{i}^{n}(n \geqq 1)$ with that of \hat{F}, then we have a planer Riemann surface \widetilde{F} over the z-plane.

Proposition. \widetilde{F} is contained in the class $O_{A B}{ }^{6}$)
If there were a non-constant bounded analytic function $A(p)=$ $U(p)+i V(p)$ on \widetilde{F}, where \tilde{p} is the symmetric point of p with respect to the unit circle, then we have

$$
U(p)-U(\tilde{p})=0, \quad V(p)-V(\tilde{p})=0
$$

which implies the constancy of $A(p)$. It is clear that \widetilde{F} has not the Gross's property.

Theorem (W. Gross). Let $z=z(p): p \in R$ be a meromorphic functıon and let R be a Riemann surface belonging to O_{G}. If we denote by $p=p(z)$ its inverse function, if $p=p(z)$ is regular at z_{0}, then we can continuate $p(z)$ analytically on half lines $z=z_{0}+r e^{i \theta}(0 \leqq r<\infty)$ except a set of θ of angular measure zero.

Thus our example is not contained in O_{G}.
When the genus of an abstract Riemann surface is finite, it is known

$$
O_{G}=O_{H B}=O_{H D} \subset O_{A B} \subset O_{A D}=O_{A B D}
$$

Since there is a Riemann surface of finite genus of $O_{A D}$ on which a non-constant bounded analytic function exists, $O_{A D}$ has not necessarily Iversen's property. In the previous ${ }^{7}$ paper we proved that O_{G} is the only class in which any Riemann surface always has Gross's property. Now even when we confine ourselves to Riemann surfaces of finite genus, we know that O_{G} is the maximal class in which Gross's theorem holds.

Denote by P_{I}, P_{G} the class of Riemann surfaces having Iversen's or Gross's property respectively. Then

1) Case of infinite genus

$$
P_{I}>O_{H B}>O_{H P}>O_{G}, \quad P_{I} \ngtr O_{A B}, \quad P_{I} \not \supset O_{H D}, P_{G} \not \supset O_{H P}
$$

2) Case of finite genus

$$
P_{I} \stackrel{?}{>} O_{A B}, \quad P_{I} \supset O_{G}, \quad P_{I} \ngtr O_{A D}, \quad P_{G}>O_{G}, \quad P_{G} \not \supset O_{A B}
$$

(Received March 16, 1954)

[^3]
[^0]: 1) A. Pfluger: Sur l'existence de fonctions non constantes, analytiques, uniformes et bornées sur une surface de Riemann ouverte, C. R. Acad. Sci. Paris, 230, 1950, pp. 166-168,
[^1]: 2) In this article, we denote by $E_{A_{B}}$ the null set of $O_{A_{B}}$ on the plane.
 3) Without loss of generality we may assume that there exists a point w_{0} satisfying the real part of $B\left(w_{0}\right)$ is poritive.
[^2]: 4) Since $E\left(C\left(R^{*}-R\right)\right)$ is a closed and totally disconnected set, we can find a domain D, with relative boundary ∂D, in $\tilde{\tilde{V}}$ such that $D \supset E^{\prime}\left(E \supset E^{\prime}\right)$, distance (∂D. relative boundary of $\tilde{\tilde{V}})>0$, and distance $\left(E^{\prime} . \partial D\right)>0$. Then by Neumann's method, we can construct a non constant harmonic function $U_{1}(p)$ such that $\left(R e \varphi(p)-U_{1}(p)\right.$ is harmonic in \tilde{V}, $U_{1}(p)$ is harmonic in $R^{*}-D$, and the conjugate of $U_{1}(p)$ is single valued in D, therefore we can construct a bounded (Diriclet bounded) function with a linear form of Abel's first kind of integral.
 5) $\tilde{\tilde{V}}$ in R^{*}, above defined, of every connected piece on $V^{\prime}(p)$ has at most N number of analytic curves as its relative boundary.
[^3]: 6) T. Kuroda: A property of some open Riemann surfaces and its applications, Nagoya Math. Journ., Vol. 6 (1953). pp. 77-84.
 7) Z. Kuramochi: On covering surfaces, Osaka Math. Journ., vol. 5 (1953). pp. 155-201.
