
Osaka Mathematical Journal
Vol. 6, No. 1, June, 1954.

An Example of a Null-Boundary Riemann Surface

By Zenjiro KURAMOCHI

We have proved that the Green's function is not1} uniquely deter-
mined, when its pole is at an ideal boundary point of a null-boundary
Riemann surface. M. Heins introduced2' the notion of the minimal
function due to R. S. Martin3) and constructed a boundary point of
dimension of preassigned number and conjectured that there would
exist a boundary point of dimension infinity. We show by an example
that his conjecture holds good.

1) Example. We denote by G the domain bounded by straight
lines L19 L2 and the semi-circle C such that

C : |*|=1, 0

On G we define a sequence of slits such that

,

, **S = τ '=3,4,5,

Oraί4 >

» = 1, 2, 3, ...

Let G1 and G2 be the same examplars with the same boundary and
connect G1 with G2 by identifying Lί9 L2 and {!]} of them, to con-

1) Z. Kuramochi: Potential theory and its applications, I, Osaka Math. J. 3 (1951"),
123-174.

2) M. Heins: Riemann surfaces of infinite genus, Annals of Math. 55 (1952), 296-
317.

3) R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc. 19
(1941), 137-172.
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struct the symmetric surface with respect to Lί + L 2 + { I i

j } . We denote
such a Riemann surface by F then F has only one compact relative
bonudary lying on C and is of infinite genus and further has it one ideal
boundary point at z — oo, and it is clear that F has a null ideal boundary.

L2

2) Let Bn be the subsurface of F with projection on the part

arg z ̂  r̂ . Then Bn has boundary on | * | = 1, ^ arg * ̂

and

/ I 1
M . i

n~ l αro 9 > _ ^ 7"», arg 2 — ^ry , y i . \ <^ V™ αr rr <y _i ^ z , arg 2 —

and

_

7Γ"

We transform 5W by the mapping ^ = ± (2^ 2M)2W^ where j. corresponds
to the mapping of upper or lower exemplars respectively, then Bn is
mapped onto the &?-plane slits +/L ~Jw lying on arg z# — 0, or arg w = τr
and having the boundary on | w \ = 1, and ~/n , +/»* >
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Then we have

-Ti .
Jw

Ora M; O?Z
> _f; £w <- £ί <- ^ £w
, rϊί+ΐ όi ̂  °n ~

\ιn\W

Denote by ω+ί(w) the harmonic measure of +Ji

w with respect to the
domain |^|^>1. Then we have by elementary calculation the follow-
ing inequality

1 — άw
log

log

a—w
a2-!

— a
a =

On the other hand, denote by U£(p) the harmonic function on F in

the part |* |<Γ7j: 7j = ( o )> such that U£(p) = log)*], when
\ ^ /

π ^ n A TTJl \ Π Ti I I n ^

or %i ;> arg z :> 0 and further U3

n(p] = 0, when 1*1=1. Since U£(p) ^ 0,
£ I

we define Un(p) by a uniformly convergent subsequence ( U j

n ( p ) }
then it is clear £/„(,£) ̂  log|*|. On the other hand, let Vί(p) be
a harmonic function such that Vj

n(p) is harmonic in Bnr\{\z\<^γn

j})

= on - ^ i o r

and 2* — δ^ <: 1 -ε | <: 2*, arg * = ̂  and on /i, Yi and consider
00 CO

is the harmonic measure of the boundary of Bn lying on {/£}, {/w+ι}

Then we have F*(*) ̂ 0, * ef] {/ί,/ί+ι} Consider ω+έ(^) : |* Ί = fy»,

arg *j = 2^+τ , i e. the value of ω+ί(w) at w = e*^" r : r =

Then we have
2

log

log

log2 + z'4Mlog2

Thus

at z} (j = n, n + 1, ....)
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where ^ is a finite constant, from which follows the unboundedness
of V*(z) at Zj(j = l,29...), and hence Un(p) ^ Vί(p) ^ V*(p) yields
the non-constancy of U n ( p ) .

3) Next we consider the Dirichlet integral of Un(p) on F. In
/?„_! and Bn+l and we denote by Rn

3~
l and 1?J+1, the ring-domains

contained in F—Bn with projection such that

. _
2 cin __sin ^+2 -

Dn+i . _!_ <• I .x __*/,«+ i i <- o^ ^in _ _ _ . o <: πrcf 7 yιM+1

-^-j . 2 ^l2 Pi 1^^ sin 2^+3 u ^ a r g z — p3

respectively where

n-1 ^ ίθj °1 \
j . — 2»-ι , I — ^ 2 )

Then we have

2* sin
3K"-1 = module of RΛ

J-
l = log - % -- ̂  (j*n+ j-n-2)log2+

O OnJ4

(j'n + j + n — 2) log 2 and

v0i5+1 = module of Λj+1 ̂  (j«(» + 1) + j - n - 3) log 2.

We denote by wl

n(p] the harmonic function such that

w t

n ( p ] is harmonic in (F - Bn)r\{ I^K (24 + 2t+1)}

=>~

, argar = -J- :
«

Then

and further zδi(/>) is a continuous function such that
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= log 2J : \z-p)\^-t z£Ba^:j = n,.

In R"~l and Rn^1 and w^p) is harmonic and

wl

n(p} = log2': \z -£|=-^-,

wi(/0=0 I* — ί|=sin-|ϊr,

«£(£) = log2 > : |2 -^+1|= -̂ - ,

Then by Dirichlet principle

(log 2J)2 (log 2>ί)2

DF_B (Wn(P}} ^ D(ίϋn(P}) ^ Σ —qγ\n-ι + y1, —^rc+1 H- yl,

for every i, where yl <^ °° -
Thus

DF-Bn(Un(p)) ^£ (£/ί(ί)) ^JD (ι0i(£))) < +cχ3 .

4) Since F has a null-boundary, DF(Un(p}} = oo, because if
^oo, it follows ί/n(ί) = 0, whence

Since D£n(Um(p))<:ooy if m Φ / 7 ,

all t/n(ί) are linearly independent.
We show in reality that 1°) £/"„(£) are all minimal functions, and

2°) each Bn has only one minimal function.

We denote by J8J the ring-domain 2J <,\z\^2*+l - δ^\ ^-<,

argz ^9^^ contained in Bny and denote by max Up^(p] the maximum

when^ is on B^r\C3: C5 = {|^| = 7^}. If there exists at least a Jordan
curve /in 5] starting from/>0, which is on CJf and reaching at least one

boundary component of the ring 2J <^\z\ <*2J+1 — δ^1, -
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and if we denote by ω(p) the harmonic measure of / with respect to
this ring, then there exists a constant K depending only on the module
of this ring such that

Min U (p) ̂  Kω(p) Max U (p) ̂  K Max £Λ , (p) .
p e c j p t c j p* J

5) According to R. S. Martin's theorem any positive harmonic
function can be expressed uniquely by a linear form of minimal func-
tions, thus

U=\Vdμ,

therefore there exists at least a function Fsuch that KUn:> V:

a) V is unbounded on \z\ = ̂  in Bn .

Proof. If F(^)^M<co, we define V](V](p}} such that V}(p}(V](p}}
is harmonic in |*|<7', V} = 0 (V] = M) : p £Cόr\Bn and V}=V*j=V:
p e C j f \ ( F — Bn), and take V l ( p ] , V2(p) from the uniformly convergent
sequences (V}}9 { V ] } . Then 0 < V] - V]<MωJ(p)> where ω,(p) is
the harmonic measure of C3r\Bn with respect to domain of F contained
in \z\<^γf. Since F has a null-boundary, we have V1(p) = V2(p).
On the other hand, let Uj(p) be the harmonic function in \z\<^yj

such that Uj(p) = 0: p£CjΓ\Bn, U3(p) = U(p) : p eCjΓ\ (F - Bn}y and
let U*(p) be a harmonic function obtained by taking a uniformly
convergent subsequence from (Uj(p)}. We construct ring-domains
contained in Bn such that

Fig. 1.
D / / W + 1 £n-fl ^ I y j^n+1 I <-' Oi cirt Π <~" I ct-rce y Ήn^Γ^ \ <"̂  ...-J\ t Og ±^ z — p $ j^ ^ siii o?j+2 > ^ ^S. l^rg 2 — p $ } ̂  TT

£

where

|ίΊ== 1(2*- 1^), - - - - - ^
\ /

I *-,!,_ 1 / 9 . 2 \
'^έ l~" ^Σ \ "" 2cn+1>*4 / '^ . /

and define a continuous function as in the case (3). Then we have

This implies that U*(p) = Q. By assumption V <^ U, V<LMinBn>
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we have
V= V1 = V\ V] < Uj(p), and it follow that V1 = U*(p) = F=0, there-
fore V is not bounded on CJ r\Bn and by (4) V(z) is not bounded on the

o

sequence { zt } : \ zt \ = 7*, arg zt = -^ .

b) V(p) is invariant by generalized extremisation^

Let Vj(p) be harmonic in FA {\z\<y>}, Vj(p}=V(p):p^CJr\BnVj(p)=
0: p eCjΓ\(F — Bn) : From the unboundedness of V(p] on {zt} and
from V(p) <i U(p], we can prove as (2) and (3), that there exists a
harmonic function V*(p) from {Vt(p)}9 such that

Dr-BΛ( V*(P)) < oo , V*(p) φ const.

Since \ V j ( p ) - V ( p ) \ ^ 2 U ( p ) on arg * = or

: p£CjΓ\Bny and hence we have by the same manner used in (2)
(3), DF(V*(p) - V(p)) < oo, therefore V*(p) = V(p){V*(p) is obtained by
generalized extremisation from V (p)} and thus, since U(p) ;> V(p) ^0.,
it follows that V(p) is invariant by generalized exteremisation with
respect to Bn.

c) There is only one minimal function smaller than U(p).

Since V*(/>) φ 0, if there are two functions V^p) ^ V2(/>) such
that Vt(p) <, U(p), then there are two constants Kιy K2 such that

l imMaxy, p^CJ(P) = Kt log \z\ : i = 1, 2,

but from (4) there exist constants /f3, /f4, such that

Put Mm-,=Kt, zeCtr\Bn.
* 2\Z>

Then

because

max V^z) = K{ log \z\ : z e Bn ,

min V2(2) —/£' log \z\ : z£Bn,

therefore there exists a subsequence

4) We such operation generalized extremisation for convenience. This is certainly
different from the extremisation.
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lira K'n = K
I

and

Q ^ V l ( z ) ~ K l V 2 ( z ) = 6 r

i V 2 ( z ) : lim 6J = 0 : z£Ctr\Bn,ί
thus

z\ .

ί=00

which implies that

thus Vl)t(p) is a minimal function, and if we compare U(p) with F^)
by {Ut(p)9 V l t i ( p ) } we have U(p) < K'V^p), K" being constant, thus
U(p) is a minimal function and we see that on our example there
exist exactly enumrable infinity of minimal functions.

6) Positive harmonic function in the neighbourhood of an ideal boundary
point.

Let F be a null-boundary Riemann surface with a compact relative
boundary Γ0 and p°° be an ideal boundary point.

We denote by Gi(pyp
co] (i = 1, 2, ...), the positive minimal function

with a pole at p°° and denote by Gf the domain E[G* ̂  Λ/"] and by C?N the
niveau curve E{_G* ?= JV]. Then Σ Gf is an open set with a compact

i

boundary.

Proof. If Gf e pj : Umpj =p°° and if G(pypj] is the Green's func-

tion with its pole at^, then since - ̂  ^ 0, ^ e Cp, we have by

Green's formula

&(Pi, V) = ± JG(p, Pj) ds

5) 2ΛJ

Γ0 Γ0

and

for sufficiently larrge m(n}. Let m and w -> °o. We have

It follows that

lim Λ = 0, and
«=oo
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Let VM(p™} be a neighbourhood with compact boundaries such that

W is ". Then since N^ £ J G(M ̂ ^ ds ,

there exists at least one point qό on C*'—(C*r\VM(p}) for every
? such that Inn G(qίyp

co] ^2N for every M, whence
Cf

(IimG'(p, p00}} is free from the minimal functions G\p9 p"3). If GN =
Σ^f is not compact, there exists a sequence r1 ? r2, ..., ri^GN

9 and
i

there exists at least one general Green's function G(p, r°°), but G(p, r°°)
must be expressed by a linear form of Gl(p, p°°), G 2 ( p y p°°) ••• , which
contradicts the preceding assertion.

Since at any point p there exists a constant £(/>) such that
U ( p ) < ^ k ( p ) for any positive harmonic function U ( p ) satisfying

= Q, we have
Γ0

 P ζ Γo
If ωNn(p] denotes the harmonic measure of the boundary GNn with

respect to the domain F — GNn, then NnωnN(p] is a monotonously

increasing function. Hence if Nn J ω;f ̂  ds<^ooy then lim ωnN(p] =
r0

 w

ω*(^) is harmonic and lim ω*(p) — c>o. Then as a special case we have

Corollary. If' pj* is finite dimensional, then the solution of Evans9s7)

problem exists.

(Received Ma* ch 16, 1954)

6) See 2).
7) See 1) and 2).






