Osaka Mathematical Journal Vol. 6, No. 1, June, 1954.

An Example of a Null-Boundary Riemann Surface

By Zenjiro KURAMOCHI

We have proved that the Green's function is not¹⁾ uniquely determined, when its pole is at an ideal boundary point of a null-boundary Riemann surface. M. Heins introduced²⁾ the notion of the minimal function due to R. S. Martin³⁾ and constructed a boundary point of dimension of preassigned number and conjectured that there would exist a boundary point of dimension infinity. We show by an example that his conjecture holds good.

1) Example. We denote by G the domain bounded by straight lines L_1 , L_2 and the semi-circle C such that

 $L_1: 1 \leq |z| < \infty$, arg z = 0, $L_2: 1 \leq |z| < \infty$, arg $z = \pi$ C: |z| = 1, $0 \leq \arg z \leq \pi$.

On G we define a sequence of slits such that

$$\begin{split} I_1^i: 2^{i-1} \leq |z| \leq 2^i - \frac{1}{2^{i4}}, & \arg z = \frac{\pi}{2}: i = 2, 3, 4, \dots \\ I_2^i: 2^{i-1} \leq |z| \leq 2^i - \frac{1}{2^{2i4}}, & \arg = \frac{\pi}{4}: i = 3, 4, 5, \dots \\ & \dots \\ I_n^i: 2^{i-1} \leq |z| \leq 2^i - \frac{1}{2^{ni4}}, & \arg z = \frac{\pi}{2^n}: i = n+1, n+2, \dots \\ & \dots \\ & n = 1, 2, 3, \dots \end{split}$$

Let G^1 and G^2 be the same examplars with the same boundary and connect G^1 with G^2 by identifying L_1 , L_2 and $\{I_j^i\}$ of them, to con-

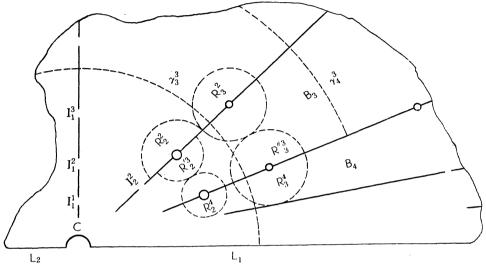
¹⁾ Z. Kuramochi: Potential theory and its applications, I, Osaka Math. J. 3 (1951), 123-174.

²⁾ M. Heins: Riemann surfaces of infinite genus, Annals of Math. 55 (1952), 296-317.

³⁾ R. S. Martin: Minimal positive harmonic functions, Trans. Amer. Math. Soc. 19 (1941), 137-172.

Z. KURAMOCHI

struct the symmetric surface with respect to $L_1 + L_2 + \{I_j^i\}$. We denote such a Riemann surface by F; then F has only one compact relative boundary lying on C and is of infinite genus and further has it one ideal boundary point at $z = \infty$, and it is clear that F has a null ideal boundary.



2) Let B_n be the subsurface of F with projection on the part $\frac{\pi}{2^n} \leq \arg z \leq \frac{\pi}{2^{n-1}}$. Then B_n has boundary on |z| = 1, $\frac{\pi}{2^n} \leq \arg z \leq \frac{\pi}{2^{n-1}}$ and

$$\overline{J}_n^1$$
: $1 \le |z| \le 2^{n-1}$, $\arg z = \frac{\pi}{2^{n-1}}$, \overline{J}_n^1 : $1 \le |z| \le 2^n$, $\arg z = \frac{\pi}{2^n}$

and

$$\bar{J}_{n}^{i}: 2^{i} \ge |z| \ge 2^{i} - \delta_{n}^{i}, \text{ arg } z = \frac{\pi}{2^{n-1}}: \delta_{n}^{i} = \frac{1}{2^{n+i}}: i = n+1, n+2, \dots$$

$$\bar{J}_{n+1}^{i}: 2^{i} \ge |z| \ge 2 - \delta_{n+1}^{i}, \text{ arg } z = \frac{\pi}{2^{n}}: \delta_{n+1}^{i} = \frac{2}{2^{(n+1)i}}: i = n+2, n+3, \dots$$

We transform B_n by the mapping $w = \pm (ze^{-\frac{w}{2^n}})^{2^n}$, where \pm corresponds to the mapping of upper or lower exemplars respectively, then B_n is mapped onto the *w*-plane slits ${}^+J_w^i$, ${}^-J_w^i$ lying on arg w = 0, or arg $w = \pi$ and having the boundary on |w| = 1, and ${}^-J_n^1$, ${}^+J_n^1$,

Then we have

$${}^{+}J_{w}^{i}: \quad 2^{i\alpha} - \overset{w_{i}}{\delta_{n}^{i}} \leq |w| \leq 2^{i\alpha}, \quad \frac{2^{n}}{2^{i+1}} \delta_{i}^{n} \leq \overset{w_{i}}{\delta_{n}^{i}} \leq \frac{2^{n}}{2^{i}} \delta_{i}^{n}$$

$${}^{-}J_{w}^{i}: \quad 2^{i\alpha} - \overset{w_{i}}{\delta_{n+1}^{i}} \leq |w| \leq 2^{i\alpha}, \quad \frac{2^{n}}{2^{i+1}} \delta_{i}^{n+1} \leq \overset{w_{i}}{\delta_{n+1}^{i}} \leq \frac{2^{n}}{2^{i}} \delta_{i}^{n+1}.$$

Denote by $\omega^{+i}(w)$ the harmonic measure of ${}^{+}J_{w}^{i}$ with respect to the domain |w| > 1. Then we have by elementary calculation the following inequality

$$\omega_i^+(w) \leq rac{\log\left|rac{1-ar{a}w}{a-w}
ight|}{\log\left|rac{a^2-1}{\delta_i^w}-a
ight|}: \quad a=(2^i)^{\omega}.$$

On the other hand, denote by $U_n^j(p)$ the harmonic function on F in the part $|z| < \gamma_j^n : \gamma_j^n = \left(\frac{2^{j\sigma} + 2^{(j+1)\sigma}}{2}\right)^{\frac{1}{\sigma}}$, such that $U_n^j(p) = \log|z|$, when $|z| = \gamma_j^n$, $\frac{\pi}{2^n} \leq \arg z \leq \frac{\pi}{2^{n+1}}$ and $U_n^j(p) = 0$, when $|z| = \gamma_j^n$, $\pi \geq \arg z \geq \frac{\pi}{2^{n-1}}$ or $\frac{\pi}{2^n} \geq \arg z \geq 0$ and further $U_n^j(p) = 0$, when |z| = 1. Since $U_n^j(p) \geq 0$, we define $U_n(p)$ by a uniformly convergent subsequence $\{U_n^j(p)\}$; then it is clear $U_n(p) \leq \log|z|$. On the other hand, let $V_n^j(p)$ be a harmonic function such that $V_n^j(p)$ is harmonic in $B_n \cap \{|z| < \gamma_n^j\}$, $V_j^n(p) = \log|z|$ on $\gamma_j^n \cap B_m$, $V_n^j(p) = 0$ on $2^i - \delta_n^i \leq |z| \leq 2^i$, $\arg z = \frac{\pi}{2^{n-1}}$ or and $2^i - \delta_{n+1}^i \leq |z| \leq 2^i$, $\arg z = \frac{\pi}{2^n}$ and on $\overline{f_n}^1$, $+f_n^1$ and consider $V^*(z) = \log |z| - \sum_{i=n}^{\infty} \log 2^i \omega^{+i}(z) - \sum_{i=n}^{\infty} \log 2^i \omega^{-i}(z)$, where $\omega^{+i}(z) (\omega^{-i}(z))$ is the harmonic measure of the boundary of B_n lying on $\{f_n^i\}, \{f_{n+1}^i\}$. Then we have $V^*(z) \leq 0, z \in \sum_{i=n}^{\infty} \{I_n^i, I_{n+1}^i\}$. Consider $\omega^{+i}(z)$: $|z^j| = \gamma_n^j$, arg $z_j = \frac{3\pi}{2^{n+1}}$, i.e. the value of $\omega^{+i}(w)$ at $w = e^{\pm \frac{\pi}{2}}$ $r : r = \frac{2^{j\alpha} + 2^{(j+1)\alpha}}{2}$.

$$\omega_i^+(z_j) \leq \frac{\log \sqrt{\frac{1+a^2r^2}{a^2+r^2}}}{\log \left| \left(\frac{a^2-1}{\sqrt[w]{\delta_i^n}} - a \right) \right|}$$

$$\leq \frac{\frac{1}{2} \log 2a^2}{\log \left(\frac{a^2}{2\delta_i}\right)} \leq \frac{\frac{1}{2} (\log 2) (1+i\alpha)}{i\alpha \log 2 - \log 2 + i^4 n \log 2} \leq \frac{1+i\alpha}{2i^4 n}, \quad a = (2^i)^a.$$

Thus

$$\sum_{i=n}^{\infty} \log 2^{i} \omega_{n}^{+i}(z) + \sum_{i=n} \log 2^{i} \omega_{n}^{-i}(z) \text{ at } z_{j} (j = n, n+1, ...)$$

Z. KURAMOCHI

$$\leq \log 2 \left(\sum_{i=n}^{\infty} \frac{i(1+i\alpha)}{2i^4 n} + \sum_{i=n}^{\infty} \frac{i(1+i\alpha)}{2i^4 (n+1)} \right) + k_1 < k_2 < +\infty ,$$

where k_i is a finite constant, from which follows the unboundedness of $V^*(z)$ at $z_j (j=1, 2, ...)$, and hence $U_n(p) \ge V_n^j(p) \ge V^*(p)$ yields the non-constancy of $U_n(p)$.

3) Next we consider the Dirichlet integral of $U_n(p)$ on F. In B_{n-1} and B_{n+1} and we denote by R_j^{n-1} and R_j^{n+1} , the ring-domains contained in $F-B_n$ with projection such that

$$R_{j}^{n-1}: \frac{\delta_{j}^{n-1}}{2} \leq |z - p_{j}^{n-1}| \leq 2^{j} \sin \frac{\pi}{2^{n+2}}: 0 \leq \arg z - p_{j}^{n-1} \leq \pi$$
$$R_{j}^{n+1}: \frac{\delta_{j}^{n}}{2} \leq |z - p_{j}^{n+1}| \leq 2^{j} \sin \frac{\pi}{2^{n+3}}: 0 \leq \arg z - p_{j}^{n+1} \leq \pi$$

respectively where

$$p_{j}^{n-1}: \arg z = \frac{\pi}{2^{n-1}}, \quad |z| = \left(2^{j} - \frac{\delta_{j}^{n}}{2}\right)$$
$$p_{j}^{n+1}: \arg z = \frac{\pi}{2^{n}}, \quad |z| = \left(2 - \frac{\delta_{j}^{n+1}}{2}\right).$$

Then we have

$$\mathfrak{M}_{j}^{n-1} = \text{module of } R_{j}^{n-1} = \log \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2 \ 2^{nj_{4}}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2 \ 2^{nj_{4}}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2 \ 2^{nj_{4}}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2 \ 2^{nj_{4}}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2^{n+2}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2^{n+2}}} \ge (j^{4}n + j - n - 2) \log 2 + \log \pi \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2}{2^{n+2}}} \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}} \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}} \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}}} \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}}} \ge \frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}{\frac{2^{j} \sin \frac{\pi}{2^{n+2}}}}$$

$$(j^4n + j + n - 2) \log 2$$
 and
 $\mathfrak{M}_j^{n+1} =$ module of $R_j^{n+1} \ge (j^4(n + 1) + j - n - 3) \log 2$.

We denote by $w_n^i(p)$ the harmonic function such that

$$\begin{split} w_n^i(p) &\text{ is harmonic in } (F - B_n) \cap \{ |z| < \frac{1}{2} (2^i + 2^{i+1}) \} \\ w_n^i(p) &= 0 \colon |z| = \frac{1}{2} (2^i + 2^{i+1}), \ z \in \{C_i \cap (F - B_n)\} \colon C_r = |z| = \frac{2^i + 2^{i+1}}{2} \\ w_n^i(p) &= \log 2^j \colon 2^j - \delta_n^j \le |z| \le 2^j, \ \arg z = \frac{\pi}{2^{n-1}} \colon j = n, \ n+1, \ \dots, \\ w_n^i(p) &= \log 2 \colon 2^j - \delta_{n+1}^j |z| \le 2^j, \ \arg z = \frac{\pi}{2^n} \colon j = n+1; \ n+2, \ \dots. \end{split}$$

Then

$$D_{{\scriptscriptstyle F}-B_n}(U^i_n(p)) \leq D_{{\scriptscriptstyle F}-B_n}(w^i_n(p))$$
 ,

and further $\tilde{w}_n^i(p)$ is a continuous function such that

86

$$\tilde{w}_{n}^{i}(p) = \log 2^{j}: |z - p_{n}^{j}| \leq \frac{\delta_{n}^{i}}{2}, \quad z \in B_{n-1}: j = n, \dots$$

$$\tilde{w}_{n}^{i}(p) = \log 2^{j}: |z - p_{n+1}^{j}| \leq \frac{\delta_{n+1}^{i}}{2}, \quad z \in B_{n+1}: j = n + 1, \dots$$

In R_{j}^{n-1} and R_{j}^{n+1} and $\tilde{w}_{n}^{i}(p)$ is harmonic and

$$\begin{split} \tilde{w}_n^i(p) &= \log 2^j : \quad |z - p| = \frac{\delta_j^n}{2}, \\ \tilde{w}_n^i(p) &= 0 \quad : \quad |z - p| = \sin \frac{\pi}{2^n}, \\ \tilde{w}_n^i(p) &= \log 2^j : \quad |z - p_j^{n+1}| = \frac{\delta_j^{n+1}}{2}, \\ \tilde{w}_n^i(p) &= 0 \quad : \quad |z - p_j^{n+1}| = 2^j \sin \frac{\pi}{2^{n+1}}, \\ \tilde{w}_n^i(p) &= 0 \quad : \quad p \in F - B_n - (\sum_j R_j^{n-1} + \sum_j R_j^{n+1}). \end{split}$$

Then by Dirichlet principle

$$D_{{}^{F-B_n}}(w^i_n(p)) \leq \sum_{{}^{F-B_n}} (\tilde{w}^i_n(p)) \leq \sum_j \frac{(\log 2^j)^2}{\mathfrak{M}_j^{n-1}} + \sum_j \frac{(\log 2^j)^2}{\mathfrak{M}_j^{n+1}} + A,$$

for every *i*, where $A < \infty$.

Thus

$$D_{\mathbf{F}-\mathbf{B}_n}(U_n(\mathbf{p})) \leq D_{\mathbf{f}=\infty \atop \mathbf{F}-\mathbf{B}_n}(U_n^i(\mathbf{p})) \leq D_{\mathbf{f}=\infty \atop \mathbf{F}-\mathbf{B}_n}(\tilde{w}_n^i(\mathbf{p}))) < +\infty \ .$$

4) Since F has a null-boundary, $D_F(U_n(p)) = \infty$, because if $D_F(U_n(p)) < \infty$, it follows $U_n(p) = 0$, whence

$$D_{\scriptscriptstyle B_n}(U_n(p)) = \infty \; .$$
 Since
$$D_{\scriptscriptstyle B_n}(U_m(p)) < \infty \; , \quad \text{if} \quad m \neq n \; ,$$

all $U_n(p)$ are linearly independent.

We show in reality that 1°) $U_n(p)$ are all minimal functions, and 2°) each B_n has only one minimal function.

We denote by B_j^n the ring-domain $2^j \leq |z| \leq 2^{j+1} - \delta_n^{j+1}$, $\frac{\pi}{2^n} \leq \arg z \leq \frac{\pi}{2^{n-1}}$ contained in B_n , and denote by $\max U_{p \in \gamma}(p)$ the maximum when p is on $B_n \cap C_j$: $C_j = \{|z| = \gamma_n^j\}$. If there exists at least a Jordan curve J in B_j^n starting from p_0 , which is on C_j , and reaching at least one boundary component of the ring $2^j \leq |z| \leq 2^{j+1} - \delta_n^{j+1}$, $\frac{\pi}{2^n} \leq \arg z \leq \frac{\pi}{2^{n-1}}$,

Z. KURĄMOCHI

and if we denote by $\omega(p)$ the harmonic measure of J with respect to this ring, then there exists a constant K depending only on the module of this ring such that

$$\min_{\boldsymbol{p} \in c_{j}} U(\boldsymbol{p}) \geq K\omega(\boldsymbol{p}) \quad \max_{\boldsymbol{p} \in c_{j}} U(\boldsymbol{p}) \geq K \, \max \, U_{\boldsymbol{p} \in c_{j}}(\boldsymbol{p}) \,.$$

5) According to R. S. Martin's theorem any positive harmonic function can be expressed uniquely by a linear form of minimal functions, thus

$$U = \int V d\mu$$
 ,

therefore there exists at least a function V such that $KU_n \ge V$: $K \le \infty$.

a) V is unbounded on $|z| = \gamma^j$ in B_n .

Proof. If $V(p) \leq M < \infty$, we define $V_j^1(V_j^2(p))$ such that $V_j^1(p)(V_j^2(p))$ is harmonic in $|z| < \gamma^j$, $V_j^1 = 0$ $(V_j^2 = M) : p \in C_j \cap B_n$ and $V_j^1 = V_j^2 = V :$ $p \in C_j \cap (F - B_n)$, and take $V^1(p)$, $V^2(p)$ from the uniformly convergent sequences $\{V_j^1\}$, $\{V_j^2\}$. Then $0 \leq V_j^2 - V_j^1 \leq M\omega_j(p)$, where $\omega_j(p)$ is the harmonic measure of $C_j \cap B_n$ with respect to domain of F contained in $|z| \leq \gamma^j$. Since F has a null-boundary, we have $V^1(p) = V^2(p)$. On the other hand, let $U_j(p)$ be the harmonic function in $|z| \leq \gamma^j$ such that $U_j(p) = 0 : p \in C_j \cap B_n$, $U_j(p) = U(p) : p \in C_j \cap (F - B_n)$, and let $U^*(p)$ be a harmonic function obtained by taking a uniformly convergent subsequence from $\{U_j(p)\}$. We construct ring-domains contained in B_n such that

$$\begin{split} R_i^{\prime n} &: \ \delta_i^n \leq |z - p_i^n| \leq 2^i \sin \frac{\pi}{2^{n+2}}, \qquad 0 \leq (\arg z - p_i^n) \leq \pi \\ R_i^{\prime \prime n+1} : \ \delta_i^{n+1} \leq |z - p_i^{n+1}| \leq 2^i \sin \frac{\pi}{2^{n+2}}, \quad 0 \leq (\arg z - p_i^{n+1}) \leq \pi \end{split}$$
 Fig. 1.

where

$$|p^{n}| = \frac{1}{2} \left(2^{i} - \frac{1}{2^{(n+1)i^{4}}} \right), \text{ arg } p_{i}^{n} = \frac{\pi}{2^{n-1}},$$
$$|p_{i}^{n+1}| = \frac{1}{2} \left(2^{i} - \frac{2}{2^{(n+1)i^{4}}} \right), \text{ arg } p_{i}^{n+1} = \frac{\pi}{2^{n}},$$

and define a continuous function as in the case (3). Then we have

$$D_{B_n}(U_n^*(p)) < \infty$$
, and $D_F(U_n^*(p)) < \infty$.

This implies that $U_n^*(p) = 0$. By assumption $V \leq U$, $V \leq M$ in B_n ,

we have

 $V = V^1 = V^2$, $V_j^1 \leq U_j(p)$, and it follow that $V^1 \equiv U^*(p) \equiv V \equiv 0$, therefore V is not bounded on $C^j \cap B_n$ and by (4) V(z) is not bounded on the sequence $\{z_i\} : |z_i| = \gamma^i$, arg $z_i = \frac{3\pi}{2^n}$.

b) V(p) is invariant by generalized extremisation.⁴⁾

Let $V_j(p)$ be harmonic in $F \cap \{|z| < \gamma^j\}$, $V_j(p) = V(p) : p \in C_j \cap B_n V_j(p) = 0$: $p \in C_j \cap (F - B_n)$: From the unboundedness of V(p) on $\{z_i\}$ and from $V(p) \leq U(p)$, we can prove as (2) and (3), that there exists a harmonic function $V^*(p)$ from $\{V_i(p)\}$, such that

$$D_{{\scriptscriptstyle F}-{\scriptscriptstyle B}_{m n}}(V^{m *}(p)) < \infty$$
 , $V^{m *}(p) \equiv {
m const.}$

Since $|V_j(p) - V(p)| \leq 2U(p)$ on $\arg z = \frac{\pi}{2^n}$ or $\arg z = \frac{\pi}{2^{n-1}}$, $V(p) = V(p) : p \in C_j \cap B_n$, and hence we have by the same manner used in (2) (3), $D_F(V^*(p) - V(p)) < \infty$, therefore $V^*(p) = V(p) \{V^*(p) \text{ is obtained by generalized extremisation from } V(p) \}$ and thus, since $U(p) \geq V(p) \geq 0$, it follows that V(p) is invariant by generalized extremisation with respect to B_n .

c) There is only one minimal function smaller than U(p).

Since $V^*(p) \neq 0$, if there are two functions $V_1(p) \geq V_2(p)$ such that $V_i(p) \leq U(p)$, then there are two constants K_1 , K_2 such that

$$\lim_{j} \operatorname{Max} V_{i}|_{p \in c_{j}}(p) = K_{i} \log |z|: i = 1, 2,$$

but from (4) there exist constants K_3 , K_4 , such that

$$V_{_1}(p) \leq K_{_3}V_{_2}(p)$$
 $V_{_1}(p) > K_{_4}V_{_2}(p)$, $p \in C_{_J}$.

Put $\operatorname{Min} \frac{V_{\iota}(z)}{V_{\iota}(z)} = K_{\iota}, \quad z \in C_{\iota} \cap B_{n}.$

Then

$$\lim_{j} K_i = K, \quad K < \infty ,$$

because

$$\max V_1(z) = K'_1 \log |z|: z \in B_n,$$

$$\min V_2(z) = K' \log |z|: z \in B_n,$$

therefore there exists a subsequence

⁴⁾ We such operation generalized extremisation for convenience. This is certainly different from the extremisation.

Z. KURAMOCHÍ

 $\lim_{i} K'_{n} = K$

and

$$0 \leq V_1(z) - K'_i V_2(z) = \mathcal{E}'_i V_2(z)$$
: $\lim_i \mathcal{E}'_i = 0$: $z \in C_i \cap B_n$,

thus

$$\begin{split} V_{1,2}(z) &- K_i V_{2,i}(z) \leq \varepsilon_i V_{i2}(z) \leq \varepsilon_i S \log |z|: \quad S < \infty \\ & \lim_{i = \infty} V_{1,i}(z) - K'_n V_{2,i}(z) = 0 \text{,} \end{split}$$

which implies that

 $V_{\scriptscriptstyle 1}({\boldsymbol{z}}) = K V_{\scriptscriptstyle 2}({\boldsymbol{z}})$,

thus $V_{1,i}(p)$ is a minimal function, and if we compare U(p) with $V_1(p)$ by $\{U_i(p), V_{1,i}(p)\}$ we have $U(p) \leq K'' V_1(p)$, K'' being constant, thus U(p) is a minimal function and we see that on our example there exist exactly enumrable infinity of minimal functions.

6) Positive harmonic function in the neighbourhood of an ideal boundary point.

Let F be a null-boundary Riemann surface with a compact relative boundary Γ_0 and p^{∞} be an ideal boundary point.

We denote by $G^{i}(p, p^{\infty})$ (i = 1, 2, ...), the positive minimal function with a pole at p^{∞} and denote by G_{i}^{N} the domain $E[G^{i} \ge N]$ and by C_{i}^{*N} the niveau curve $E[G^{i} = N]$. Then $\sum_{i} G_{i}^{N}$ is an open set with a compact boundary.

Proof. If $G_i^N \in p_j$: $\lim_{j} p_j = p^{\prime \infty}$ and if $G(p, p_j)$ is the Green's function with its pole at p_j , then since $\frac{\partial G^i(p, p^{\infty})}{\partial n} \ge 0$, $p \in C_i^{\times N}$, we have by Green's formula

$$N \ge G^{i}(p_{j}, p^{\infty}) = \frac{1}{2\pi} \int_{\substack{* \\ C_{i}^{M}}} G(p, p_{j}) \frac{\partial G^{i}(p, p^{\infty})}{\partial n} ds.$$

5)

$$2\pi = \int_{\Gamma_0} \frac{\partial G(z, p_i)}{\partial n} \, ds = \int_{\Gamma_0} \frac{\partial G(z, p^{\infty})}{\partial n} \, ds$$

and

$$D_{F_n\cap (F_n-D_N)}(G(z, p^{\infty})) \leq D_{F\cap (F-D_N)}(G(z, p_m)) \leq 2\pi,$$

for sufficiently large m(n). Let m and $n \to \infty$. We have

$$D_F \cup (F - D_N)(G(z, p^\infty)) \leq 2\pi N_s$$

It follows that

$$\lim_{n \to \infty} \int_{\Gamma_n \cap (F - D_N)} \frac{\partial G(z, \underline{p}^{\infty})}{\partial n} \, ds = 0, \text{ and } \int_{\Gamma_n} \frac{\partial G(z, \underline{p}^{\infty})}{\partial n} \, ds = 2\pi \, .$$

90

Let $V_{\mathfrak{M}}(p^{\infty})$ be a neighbourhood with compact boundaries such that $\int_{\substack{* \\ C_i^{\mathfrak{M}} \cap V_{\mathfrak{M}}}} \frac{\partial G_1^i}{\partial \mathfrak{n}} ds = \pi.$ Then since $N \geq \frac{2}{2\pi} \int_{\substack{* \\ C_i^{\mathfrak{M}} \cap V_{\mathfrak{M}}}} G(p, p_j) \frac{\partial G^i(p, p^{\infty})}{\partial \mathfrak{n}} ds$, there exists at least one point q_j on $C_i^{\mathfrak{M}} - (C_i^{\mathfrak{M}} \cap V_{\mathfrak{M}}(p))$ for every $p_j \in G_i^{\mathfrak{N}}$ such that $\lim_{q_j \in C_i^{\mathfrak{M}}} G(q_j, p^{\infty}) \leq 2N$ for every M, whence $\lim_{j = \infty} G(p, p_j)$ ($\lim G'(p, p^{\infty})$) is free from the minimal functions $G^i(p, p^{\infty})$. If $G^{\mathfrak{N}} = \sum_i G_i^{\mathfrak{N}}$ is not compact, there exists a sequence $r_1, r_2, \ldots, r_i \in G^{\mathfrak{N}}$, and there exists at least one general Green's function $G(p, r^{\infty})$, but $G(p, r^{\infty})$ must be expressed by a linear form of $G^1(p, p^{\infty}), G^2(p, p^{\infty}) \cdots$, which contradicts the preceding assertion.

Since at any point p there exists a constant k(p) such that $U(p) \leq k(p)$ for any positive harmonic function U(p) satisfying $\frac{1}{2\pi} \int_{\Gamma_0} \frac{\partial U}{\partial n} ds = 1, U(p) = 0$, we have $G_N \supset G_{2N} \cdots, \prod_{i=1}^{\infty} \overline{G}_{Ni} = p^{\infty}$.

If $\omega_{Nn}(p)$ denotes the harmonic measure of the boundary G_{Nn} with respect to the domain $F - G_{Nn}$, then $Nn\omega_{nN}(p)$ is a monotonously increasing function. Hence if $Nn \int_{\Gamma_0} \frac{\partial \omega_{nN}(p)}{\partial n} ds < \infty$, then $\lim_{n \to \infty} \omega_{nN}(p) = \omega^*(p)$ is harmonic and $\lim_{n \to \infty} \omega^*(p) = \infty$. Then as a special case we have

Corollary. If p_{∞}^{6} is finite dimensional, then the solution of Evans's⁷ problem exists.

(Received March 16, 1954)

6) See 2).

⁷⁾ See 1) and 2).