On the Linear Partial Differential Equation of the First Order

By Takashi Kasuga

Introduction

In this paper, we shall treat the following partial differential equation

$$
\frac{\partial z}{\partial x}+f(x, y, z) \frac{\partial z}{\partial y}=g(x, y, z)
$$

without the usual condition of the total differentiability on the solution $z(x, y)$. (For the simpler equation

$$
\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} f(x, y)=0
$$

see our previous paper, Kasuga [2]).
In the following, we shall denote by D a fixed open set in R^{3} (Euclidean space defined by the three coordinates x, y, z), by G its projection on the (x, y)-plane, by $f(x, y, z), g(x, y, z)$ two fixed continuous functions defined on D, which have continuous $f_{y}, f_{z}, g_{y}, g_{z}$. Evidently G is open in the (x, y)-plane.

We shall consider the partial differential equation

$$
\begin{equation*}
\frac{\partial z}{\partial x}+f(x, y, z) \frac{\partial z}{\partial y}=g(x, y, z) \tag{1}
\end{equation*}
$$

With (1) we shall associate the simultaneous ordinary differential equations

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=f(x, y, z) \tag{2}\\
\frac{d z}{d x}=g(x, y, z)
\end{array}\right.
$$

The curves representing the solutions of (2), (3) which are prolonged as far as possible on both sides in an open subset D_{1} of D, will be called characteristic curves (of (1)) in D_{1}. Through any point (x_{0}, y_{0}, z_{0})
in D_{1}, there passes one and only one characteristic curve in $D_{1} .{ }^{1)}$ We represent it by

$$
\begin{gathered}
y=\phi\left(x, x_{0}, y_{0}, z_{0}, D_{1}\right) \quad z=\psi\left(x, x_{0}, y_{0}, z_{0}, D_{1}\right) \\
\alpha\left(x_{0}, y_{0}, z_{0}, D_{1}\right)<x<\beta\left(x_{0}, y_{0}, z_{0}, D_{1}\right)
\end{gathered}
$$

($\alpha\left(x_{0}, y_{0}, z_{0}, D_{1}\right), \beta\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$ may be $-\infty,+\infty$ respectively). Sometimes we abbreviate it as $C\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$. Evidently $C\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$ $\supset C\left(x_{0}, y_{0}, z_{0}, D_{2}\right)$, if D_{1}, D_{2} are two open subsets of D such that $D_{1} \supset D_{2}$ and $\left(x_{0}, y_{0}, z_{0}\right) \in D_{2}$. In the following, if an interval (open, closed, or halfopen) is contained in the interval $\alpha\left(x_{0}, y_{0}, z_{0}, D_{1}\right)<x<\beta\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$, then we say that the characteristic curve $C\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$ and its projection on the (x, y)-plane, $y=\phi\left(x, x_{0}, y_{0}, z_{0}, D_{1}\right)$, are defined for that interval.

Let us consider a continuous function $z(x, y)$ defined on G, which has $\partial z / \partial x$ and $\partial z / \partial y$ (not necessarily continuous), except at most at the points of an enumerable set, in G (in the following we suppose always that the above conditions are satisfied by $z(x, y)$). We denote by S the surface represented by $z=z(x, y)$. Then we obtain the following two theorems.

Theorem 1. If $S \subset D$, and $z(x, y)$ satisfies (1) almost everywhere in G, then any characteristic curve in D which has a point in common with the surface S, is totally contained in S.

Theorem 2. If $S \subset D$, and $z(x, y)$ satisfies (1) almost everywhere in G and moreover if $z(x, y)$ has $\partial z / \partial y$ (not necesaarily continuous) everywhere in G, then $z(x, y)$ is totally differentiable and satisfies (1) everywhere in G.

Remark 1. If the domain G, where $z(x, y)$ is defined, is not the projection of D on the (x, y)-plane but is only a part of the projection, theorem 1,2 hold, if we substitute D by the set of the points of D whose projections on the (x, y)-plane are contained in G.

Remark 2. In the premises of Theorem 2, the condition that $z(x, y)$ has $\partial z / \partial y$ everywhere in G, can not be omitted, as the following example shows it.

Example. $D=R^{3}, G=$ the whole (x, y)-plane, the differential equation is

$$
\frac{\partial z}{\partial x}+z x \frac{\partial z}{\partial y}=0
$$

[^0]and a solution $z(x, y)$ is implicitly defined by
$$
y=\frac{1}{2} z x^{2}+z^{3}
$$
$z(x, y)$ is one-valued, continuous and has $\partial z / \partial x$ in the whole (x, y)-plane, but has $\partial z / \partial y$ except at $(0,0)$ and also satisfies (1) except at (0,0). For this example, the premises of Theorem 1 are fulfilled, but those of Theorem 2 are not fulfilled.

§ 1. Some lemmas

In this chapter, the notations are the same as in the introduction and we assume that $z(x, y)$ satisfies the premises of Theorem 1.

1. Let us denote by K the set of the points $\left(x_{0}, y_{0}\right)$ of G such that the characteristic curve $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ is contained in S, in a neighbourhood of $\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right)\right\}$. We denote by F the set $\overline{G-K} \cdot G$ (by $\overline{G-K}$ we denote the closure of $G-K$ in the (x, y)-plane). Evidently F is closed in G.

We shall often use the following lemmas.
Lemma 1. If the characteristic curve $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ is defined for $\alpha_{0} \leqq x \leqq x_{0}$ (or $\left.x_{0} \leqq x \leqq \alpha_{0}\right)\left(\alpha_{0} \neq x_{0}\right)$ and its projection on the (x, y)-plane, $y=\varphi\left\{x, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ is contained in K for $\alpha_{0}<x \leqq x_{0}$ (or $\left.x_{0} \leqq x<\alpha_{0}\right)$, then $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ is contained in S for $\alpha_{0} \leqq x \leqq x_{0}$ (or $x_{0} \leqq x \leqq \alpha_{0}$).

Proof. We denote by ξ_{0} the nearest point to α_{0} among the points ξ in the interval $\alpha_{0} \leqq x \leqq x_{0}$ (or $x_{0} \leqq x \leqq \alpha_{0}$) such that $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ is contained in S for $\xi \leqq x \leqq x_{0}$ (or $x_{0} \leqq x \leqq \xi$). Such ξ_{0} exists by the continuity of $\varphi\left\{x, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ and $\psi\left\{x, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ as functions of x and by the continuity of $z(x, y)$. If the lemma were false, then $\xi_{0} \neq \alpha_{0}$. We put $\eta_{0}=\varphi\left\{\xi_{0}, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$. Then $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), D\right\}$ passes through $\left\{\xi_{0}, \eta_{0}, z\left(\xi_{0}, \eta_{0}\right)\right\}$ and is contained in S in some neighbourhood of the point $\left\{\xi_{0}, \eta_{0}, z\left(\xi_{0}, \eta_{0}\right)\right\}$, since $\left(\xi_{0}, \eta_{0}\right) \in K$. This is inconsistent with the definition of ξ_{0} and the lemma is proved.

Lemma 2. Let us denote by D_{i} an open subset of D. We denote by F^{\prime} the set of the points $\left(x_{0}, y_{0}, z_{0}\right)(\in D)$ such that $C\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$ is totally contained in S. Then F^{\prime} is closed in $D_{\text {. }}$.

Proof. We take a point $\left(\xi_{0}, \eta_{0}, \zeta_{0}\right) \in \bar{F}^{\prime} \cdot D_{1}$ (here we denote by \bar{F}^{\prime}
the closure of F^{\prime} in $\left.R^{3}\right)$. Then if $C\left(\xi_{0}, \eta_{0}, \varsigma_{0}, D_{1}\right)$ is defined for $\alpha_{0} \leqq x \leqq \beta_{0}, C\left(x_{0}, y_{0}, z_{0}, D_{1}\right)$ is defined for $\alpha_{0} \leqq x \leqq \beta_{0}$, for any point $\left(x_{0}, y_{0}, z_{0}\right)\left(\in F^{\prime}\right)$ in a neighbourhood of the point $\left(\xi_{0}, \eta_{0}, \zeta_{0}\right)$ and

$$
\begin{aligned}
& \varphi\left(x, x_{0}, y_{0}, z_{0}, D_{1}\right) \longrightarrow \varphi\left(x, \xi_{0}, \eta_{0}, \varsigma_{0}, D_{1}\right) \\
& \psi\left(x, x_{0}, y_{0}, z_{0}, D_{1}\right) \longrightarrow \psi\left(x, \xi_{0}, \eta_{0}, \varsigma_{0}, D_{1}\right)
\end{aligned}
$$

uniformly in the interval $\alpha_{0} \leqq x \leqq \beta_{0}$, as $\left(x_{0}, y_{0}, z_{0}\right) \rightarrow\left(\xi_{0}, \eta_{0}, 丂_{0}\right) .{ }^{2}$ From this and by the continuity of $z(x, y), C\left(\xi_{0}, \eta_{0}, \varsigma_{0}, D_{1}\right)$ is totally contained in S, that is, $\left(\xi_{0}, \eta_{0}, \zeta_{0}\right) \in F^{\prime}$, q. e. d.

$\S 2 . \quad$ Proof of Theorem 1.

In this chapter, the notations are the same as in the introduction and $\S 1$, and we assume that $z(x, y)$ satisfies the premises of Theorem 1.
2. Domain Q. If F is empty, that is, if $G=K$, we can conclude by Lemma 1 that the characteristic curve in D passing through any point of S is totally contained in S and the theorem is established. Suppose therefore, if possible, that $F \neq 0$. We denote by H the enumerable set consisting of the points of G at which $z(x, y)$ is not derivable with respect to x and with respect to y simultaneously. If we denote by F_{n}, for each positive integer n, the set of the points (x, y) of G such that

$$
\begin{aligned}
& |z(x+h, y)-z(x, y)| \leqq|h| n \\
& |z(x, y+k)-z(x, y)| \leqq|k| n
\end{aligned}
$$

whenever $|h|,|k| \leqq 1 / n,(x+h, y),(x, y+k) \in G$, then the sets F_{n} cover $G-H$ and each of the sets F_{n} is closed in G by dint of the continuity of $z(x, y)$.

If a point $\left(x_{0}, y_{0}\right)$ of G has an open neighbourhood V in G such that every point of V belongs to K except $\left(x_{0}, y_{0}\right)$, then by Lemma 1 , $C\left\{x_{0}, y_{0}{ }^{\prime}, z\left(x_{0}, y_{0}{ }^{\prime}\right),(V \times R) \cdot D\right\}$ (we denote by $V \times R$ the set of the points of R^{3} whose projections on the (x, y)-plane belong to V) is totally contained in S, when $\left(x_{0}, y_{0}{ }^{\prime}\right) \in V$ and $y_{0} \neq y_{0}{ }^{\prime}$. Hence by Lemma 2, $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right),(V \times R) \cdot D\right\}$ is totally contained in S, since $\left\{x_{0}, y_{0}{ }^{\prime}, z\left(x_{0}, y_{0}{ }^{\prime}\right)\right\} \rightarrow\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right)\right\}$ (as $y_{0}{ }^{\prime} \rightarrow y_{0}$) by the continuity of $z(x, y)$. Therefore also (x_{0}, y_{0}) belongs to K, that is, F can contain no isolated point, F is perfect in G.

Thus $F-H$ is not empty and of the second category in itself as it

[^1]is a G_{δ} set in R^{2}. Therefore there must exist a positive integer N and an open square $Q:|x-a|<L,|y-b|<L$ such that $0<L<1 /(2 N)$, $\bar{Q} \subset G,(a, b) \in(F-H) \cdot Q \subset F_{N}$ (\bar{Q} is the closure of Q in the (x, y)-plane). Then $(a, b) \in F \cdot Q \subset F_{N}$, since the closure of $F-H$ in G is F by the perfectness of F in G and the enumerability of H. Hence if $(x, y) \in F \cdot Q$ and $(x+h, y),(x, y+k) \in Q$,
\[

\left\{$$
\begin{array}{l}
|z(x+h, y)-z(x, y)| \leqq|h| N \\
|z(x, y+k)-z(x, y)| \leqq|k| N, \tag{4}
\end{array}
$$\right.
\]

by the definition of F_{N} and Q.
3. Domains Q_{1}, Q_{2}, Q_{3}. We take an open cube $Q_{1}:|x-a|<L_{1}$, $|y-b|<L_{1},|z-z(a, b)|<L_{1}$ such that $0<L_{1} \leqq L$ and $\bar{Q}_{1} \subset D$ (by \bar{Q}_{1} we denote the closure of Q_{1} in R^{3}). Then by the continuity of f_{y}, f_{z}, g_{v}, g_{z}, there is a positive number M_{1} such that

$$
\left|f_{y}\right|,\left|f_{z}\right|,\left|g_{y}\right|,\left|g_{z}\right|<M_{1} \quad \text { in } Q_{1} .
$$

Again we take a parallelepiped $Q_{2}:|x-a|<L_{2},|y-b|<L_{2}$, $|z-z(a, b)|<L_{3}$, which satisfies the following conditions:
i) $0<L_{2}, L_{3} \leqq L_{1}$, that is, $Q_{2} \subset Q_{1}$,
ii) $|z(x, y)-z(a, b)|<L_{3}$ for $|x-a|<L_{2},|y-b|<L_{2}$, that is, S is contained in Q_{2} for $|x-a|<L_{2},|y-b|<L_{2}$,
iii) any characteristic curve $C\left(x_{0}, y_{0}, z_{0}, Q_{1}\right)$ where $\left(x_{0}, y_{0}, z_{0}\right) \in Q_{2}$ is defined for $|x-a|<L_{2}$,
iv)

$$
\begin{align*}
& \frac{\exp \left(4 M_{1} L_{2}\right)+2 N\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}}{2 N\left\{2-\exp \left(4 M_{1} L_{2}\right)\right\}-\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}} \leqq \frac{2}{3 N} \tag{5}\\
& 2 N\left\{2-\exp \left(4 M_{1} L_{2}\right)\right\}-\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}>0
\end{align*}
$$

The conditions i), iii), iv) can be realized, if we take L_{2}, L_{3} sufficiently small (iii) by the boundedness of f, g in \bar{Q}) and the condition ii) can be realized if we take L_{2} still smaller (by the continuity of $z(x, y)$).

We denote by Q_{3} the open square: $|x-a|<L_{2},|y-b|<L_{2}$. Evidently $Q_{3} \subset Q$. If we take any point (x_{0}, y_{0}) belonging to Q_{3}, $\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right)\right\}$ belongs to Q_{2} and $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{1}\right\}$ is defined for $|x-a|<L_{2}$, by the conditions ii), iii) on Q_{2}. We denote by K_{1} the set of the points $\left(x_{0}, y_{0}\right)$ of Q_{3} such that the curve $y=\varphi\left\{x, x_{0}, y_{0}, z\left(x_{0}, x_{0}\right), Q_{2}\right\}$ has no point in common with $F \cdot Q_{3}$. We denote by E the set $\bar{K}_{1} \cdot Q_{3}(\bar{K}$! is the closure of K_{1} in the (x, y)-plane). If ($\left.x_{0}, y_{0}\right) \in K_{1}$, then by Lemma 1 , $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\}$ is totally contained in S. Therefore, by Lemma 2 and by the continuity of $z(x, y), C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\}$ is totally contained
in S, if $\left(x_{0}, y_{0}\right) \in E$. Hence, $(a, b) \notin F$, if $E=Q_{3}$. But since $(a, b) \in F$, so $Q_{3}-E$ is not empty. Evidently $Q_{3}-E$ is open.

We shall prove that $\left(Q_{3}-E\right) \cdot F$ is also not empty. We take a point $(c, d) \in Q_{3}-E$, If $(c, d) \in F$, the proposition is already proved. Therefore we assume that $(c, d) \notin F$. The curve $y=\varphi\left\{x, c, d, z(c, d), Q_{2}\right\}$ has at least a point in common with $F \cdot Q_{3}$, by the definition of E, and obviously

$$
L_{2}+a \geqq \beta\left\{c, d, z(c, d), Q_{2}\right\}>c>\alpha\left\{c, d, z(c, d), Q_{2}\right\} \geqq L_{2}-a .
$$

Hence, as $F \cdot Q$ is closed in Q, there is the nearest point of F to (c, d) on the portion of the curve $y=\varnothing\left\{x, c, d, z(c, d), Q_{2}\right\}$ for $\alpha\left\{c, d, z(c, d), Q_{2}\right\}$ $<x \leqq c$ or for $c \leqq x<\beta\left\{c, d, z(c, d), Q_{2}\right\}$. We denote it by (a_{1}, b_{1}). If $\left(a_{1}, b_{1}\right) \notin E$, then $\left(a_{1}, b_{1}\right) \in\left(Q_{3}-E\right) \cdot F$ and the above proposition is established. Suppose therefore that $\left(a_{1}, b_{1}\right) \in E$.

Again by Lemma 1, $C\left\{c, d, z(c, d), Q_{2}\right\}$ is contained in S for the interval $a_{1} \leqq x \leqq c$ or $c \leqq x \leqq a_{1}$ and so $C\left\{c, d, z(c, d), Q_{2}\right\}$ $=C\left\{a_{1}, b_{1}, z\left(a_{1}, b_{1}\right), Q_{2}\right\}$. On the other hand, we assume that $\left(a_{1}, b_{1}\right) \in E$, so in any neighbourhood of the point $\left(a_{1}, b_{1}\right)$, there is a point $\left(x_{0}, y_{0}\right)$ which belongs to K_{1}. As $C\left\{a_{1}, b_{1}, z\left(a_{1}, b_{1}\right), Q_{2}\right\}$ ($\left.=C\left\{c, d, z(c, d), Q_{2}\right\}\right)$ is defined for $a_{1} \leqq x \leqq c$ or $c \leqq x \leqq a_{1}, C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\}$ is also defined for $a_{1} \leqq x \leqq c$ or $c \leqq x \leqq a_{1}$ if $\left(x_{0}, y_{0}\right)\left(\in K_{1}\right)$ belongs to a neighbourhood of (a_{1}, b_{1}), and $\varphi\left\{x, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\} \rightarrow \varphi\left\{x, c, d, z(c, d), Q_{2}\right\}$ $\left(=\varphi\left\{x, a_{1}, b_{1}, z\left(a_{1}, b_{1}\right), Q_{2}\right\}\right)$ uniformly in the interval $a_{1} \leqq x \leqq c$ or $c \leqq x \leqq a_{1}, \quad$ as $\quad\left(x_{0}, y_{0}\right)\left(\in K_{1}\right) \rightarrow\left(a_{1}, b_{1}\right)^{3)} \quad$ (since $\quad\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right)\right\}$ $\rightarrow\left\{a_{1}, b_{1}, z\left(a_{1}, b_{1}\right)\right\}$ as $\left(x_{0}, y_{0}\right) \rightarrow\left(a_{1}, b_{1}\right)$ by the continuity of $\left.z(x, y)\right)$. On the other hand, as it is proved before, $C\left\{x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\}$ is totally contained in S, if $\left(x_{0}, y_{0}\right) \in K_{1}$. From this and by the definition of K_{1}, the curve $y=\varphi\left\{x, x_{0}, y_{0}, z\left(x_{0}, y_{0}\right), Q_{2}\right\}$ is totally contained in K_{1}, if $\left(x_{0}, y_{0}\right) \in K_{1}$. Therefore there is a point which belongs to K_{1} in any neighbourhood of (c, d), that is, $(c, d) \in E$. But this is a contradiction, since $(c, d) \in Q_{3}-E$. Thus in any case, $F \cdot\left(Q_{3}-E\right)$ is not empty and there is at least one point $\left(a_{1}, b_{1}\right) \in F \cdot\left(Q_{3}-E\right)$.
4. Domain Q_{4}. As $Q_{3}-E$ is open and $F^{\prime} \cdot\left(Q_{3}-E\right)$ is not empty, we can take an open square $Q_{4}:\left|x-a_{1}\right|<L_{4},\left|y-b_{1}\right|<L_{4}$ such that $Q_{4} \subset Q_{3}-E$ and $\left(a_{1}, b_{1}\right) \in F \cdot Q_{4}$. Obviously $Q_{4} \subset Q_{3} \subset Q$.

We take any pair of points $\left(x_{1}, \bar{y}_{1}\right),\left(x_{1}, y_{1}\right)$ with the same x coordinate, in Q_{4}. We shall prove

$$
\left|z\left(x_{1}, \bar{y}_{1}\right)-z\left(x_{1}, y_{1}\right)\right| \leqq 2 N\left|\bar{y}_{1}-y_{1}\right| .
$$

[^2]Suppose, if possible, that

$$
\begin{equation*}
\left|z\left(x_{1}, \bar{y}_{1}\right)-z\left(x_{1}, y_{1}\right)\right|>2 N\left|\bar{y}_{1}-y_{1}\right| \tag{6}
\end{equation*}
$$

If $\left(x_{1}, \bar{y}_{1}\right) \in F$ or $\left(x_{1}, y_{1}\right) \in F$, then $\left|z\left(x_{1}, \bar{y}_{1}\right)-z\left(x_{1}, y_{1}\right)\right| \leqq N\left|\bar{y}_{1}-y_{1}\right|$, by (4) and as $Q_{4} \subset Q$. So we may assume that $\left(x_{1}, \bar{y}_{1}\right) \notin F,\left(x_{1}, y_{1}\right) \notin F$ and $y_{1}<\bar{y}_{1}$.

By the way of the construction of $Q_{1}, Q_{2}, Q_{3}, Q_{4}$, the characteristic curves $C\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\}$ and $C\left\{x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\}$ are defined for $|x-a|<L_{2}$. So their projection on the (x, y)-plane $y=\varphi\left\{x, x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\} \quad$ and $\quad y=\phi\left\{x, x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\} \quad$ are defined for $|x-a|<L_{2}$ and contained in Q.

As $\left(x_{1}, y_{1}\right),\left(x_{1}, \bar{y}_{1}\right) \in Q_{4} \subset Q_{3}-E$, and $F \cdot Q$ is closed in Q, on either side of x_{1} there is the nearest x to x_{1} in the interval $|x-a|<L_{2}$ such that either $\left(x, \varphi\left\{x, x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\}\right) \in F \cdot Q$ or $\left(x, \varphi\left\{x, x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\}\right)$ $\in F \cdot Q$ is satisfied. We denote it by x_{2} and $\varphi\left\{x_{2}, x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\}$, $\mathcal{P}\left\{x_{2}, x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\}, \psi\left\{x_{2}, x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\}, \psi\left\{x_{2}, x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\}$ respectively by $y_{2}, \bar{y}_{2}, z_{2}$ and \bar{z}_{2}. Then by Lemma $1, C\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right), Q_{1}\right\}$, $C\left\{x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right), Q_{1}\right\}$ are contained in S for the interval $x_{1} \leqq x \leqq x_{2}$ or $x_{2} \leqq x \leqq x_{1}$. Hence $z_{2}=z\left(x_{2}, y_{2}\right), \bar{z}_{2}=z\left(x_{2}, \bar{y}_{2}\right)$. Moreover $\left|x_{2}-a\right|$ $<L_{2},\left(x_{2}, y_{2}\right),\left(x_{2}, \bar{y}_{2}\right) \in Q$ and either $\left(x_{2}, y_{2}\right) \in F \cdot Q$ or $\left(x_{2}, \bar{y}_{2}\right) \in F \cdot Q$.

In the following we denote by P_{x}, the plane parallel to the (y, z) plane which cuts the x-axis at the point whose 2 coordinate is x.

By the way of the construction of Q_{1}, Q_{2} and by the continuity of f_{y}, f_{z}, g_{y}, and $g_{z}, y=\varphi\left(x, x_{1}, \eta, \varsigma, Q_{1}\right)$ and $z=\psi\left(x, x_{1}, \eta, \varsigma, Q_{1}\right)$ define a bicontinuous one to one mapping $A_{x}:(\eta, \zeta) \rightarrow(y, z)$ of the domain $|\eta-b|<L_{2},|\varsigma-z(a, b)|<L_{3}$ on the plane $P_{x_{1}}$ (its y, z coordinates we denote by η, ς respectively), onto some domain on the plane P_{x}, for any fixed x in the interval $|x-a|<L_{2}^{4}$ (in the following, ($\eta, 5$) will always belong to the domain: $\left.|\eta-b|<L_{2},|\varsigma-z(a, b)|<L_{3}\right)$. Moreover this domain on P_{x} is contained in Q_{1} and continuous $\partial y / \partial \eta, \partial y / \partial \varsigma$, $\partial z / \partial \eta, \partial z / \partial \varsigma$ exist. ${ }^{5}$) From (2), (3) we have ${ }^{6)}$

$$
\begin{array}{rlrl}
\frac{d}{d x}\left(\frac{\partial y}{\partial \eta}\right) & =f_{y} \frac{\partial y}{\partial \eta}+f_{z} \frac{\partial z}{\partial \eta} & \frac{d}{d x}\left(\frac{\partial z}{\partial \eta}\right)=g_{y} \frac{\partial y}{\partial \eta}+g_{z} \frac{\partial z}{\partial \eta} \\
\frac{d}{d x}\left(\frac{\partial y}{\partial \varsigma}\right)=f_{y} \frac{\partial y}{\partial \varsigma}+f_{z} \frac{\partial z}{\partial \varsigma} & \frac{d}{d x}\left(\frac{\partial z}{\partial \varsigma}\right)=g_{y} \frac{\partial y}{\partial \varsigma}+g_{z} \frac{\partial z}{\partial \varsigma}
\end{array}
$$

for $|x-a|<L_{2}$. In $Q_{1},\left|f_{y}\right|,\left|f_{z}\right|,\left|g_{y}\right|,\left|g_{z}\right|<M$, so
4) Cf. Kamke, $\S 17$, Nr. 84, Satz 3.
5),6) Cf. Kamke, $\S 18, \mathrm{Nr} .87$, Satz 1 and its "zusatz".

$$
\begin{aligned}
& \left|\frac{d}{d x}\left(\frac{\partial y}{\partial \eta}-1\right)\right|+\left|\frac{d}{d x}\left(\frac{\partial z}{\partial \eta}\right)\right| \leqq 2 M_{1}\left(\left|\frac{\partial y}{\partial \eta}-1\right|+\left|\frac{\partial z}{\partial \eta}\right|+1\right) \\
& \left|\frac{d}{d x}\left(\frac{\partial y}{\partial \varsigma}\right)\right|+\left|\frac{d}{d x}\left(\frac{\partial z}{\partial \varsigma}-1\right)\right| \leqq 2 M_{1}\left(\left|\frac{\partial y}{\partial \varsigma}\right|+\left|\frac{\partial z}{\partial \varsigma}-1\right|+1\right)
\end{aligned}
$$

for $|x-a|<L_{2}$. Hence ${ }^{7)}$

$$
\begin{aligned}
& \left|\frac{\partial y}{\partial \eta}-1\right|+\left|\frac{\partial z}{\partial \eta}\right| \leqq \exp \left(2 M_{1}\left|x-x_{1}\right|\right)-1 \\
& \left|\frac{\partial y}{\partial \varsigma}\right|+\left|\frac{\partial z}{\partial \varsigma}-1\right| \leqq \exp \left(2 M_{1}\left|x-x_{1}\right|\right)-1
\end{aligned}
$$

for $|x-a|<L_{2}$, as $\partial y / \partial \eta-1, \partial z / \partial \eta, \partial y / \partial \varsigma, \partial z / \partial \varsigma-1$ vanish at $x=x_{1}$. As $\left|x_{2}-a\right|<L_{2}$, the above inequalities subsist for $x=x_{2}$. Hence as $\left|x_{1}-a\right|<L_{2},\left|x_{2}-a\right|<L_{2}$ and by (5) $2-\exp \left(4 M_{1} L_{2}\right)>0$,

$$
\left\{\begin{array}{l}
\left|\frac{\partial z}{\partial \eta}\right|,\left|\frac{\partial y}{\partial \varsigma}\right| \leqq \exp \left(4 M_{1} L_{2}\right)-1 \\
0<2-\exp \left(4 M_{1} L_{2}\right) \leqq \frac{\partial z}{\partial \varsigma}, \frac{\partial y}{\partial \eta} \leqq \exp \left(4 M_{1} L_{2}\right) \tag{7}
\end{array}\right.
$$

for $x=x_{2}$.
By the way of the construction of Q_{2}, the segment T of straight line on the plane $P_{x_{1}}$:
where

$$
\begin{gathered}
5-z\left(x_{1}, y_{1}\right)=t\left(\eta-y_{1}\right) \quad y_{1} \leqq \eta \leqq \bar{y}_{1} \\
t=\frac{z\left(x_{1}, \bar{y}_{1}\right)-z\left(x_{1}, y_{1}\right)}{\bar{y}_{1}-y_{1}}
\end{gathered}
$$

which joins the points $\left\{y_{1}, z\left(x_{1}, y_{1}\right)\right\}$ and $\left\{\bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right)\right\}$ is totally contained in the domain $|\eta-b|<L_{2},|\varsigma-z(a, b)|<L_{3}$ on the plane $P_{x_{1}}$. By (6)

$$
\begin{equation*}
|t|>2 N \tag{8}
\end{equation*}
$$

We denote by T^{\prime} the image of T on the plane $P_{x_{2}}$ by the mapping $A_{x_{2}}$. $T^{\prime \prime}$ is represented by

$$
\begin{gathered}
y=\phi\left\{x_{2}, x_{1}, \eta, z\left(x_{1}, y_{1}\right)+t\left(\eta-y_{1}\right), Q_{1}\right\}=\lambda(\eta) \\
z=\psi\left\{x_{2}, x_{1}, \eta, z\left(x_{1}, y_{1}\right)+t\left(\eta-y_{1}\right), Q_{1}\right\}=\mu(\eta) \\
\bar{y}_{1} \geqq \eta \geqq y_{1} \quad(\eta \text { is taken as parameter })
\end{gathered}
$$

and $y_{2}=\lambda\left(y_{1}\right), z_{2}=\mu\left(y_{1}\right), \bar{y}_{2}=\lambda\left(\bar{y}_{1}\right), \bar{z}_{2}=\mu\left(\bar{y}_{1}\right)$. As it can be shown

[^3]easily, $d \lambda / d_{\eta}, d \mu / d_{\eta}$ exist and are continuous, and by (7), (8), (5)
\[

$$
\begin{aligned}
& t \neq 0,\left|\frac{1}{t} \frac{d \mu}{d \eta}\right|=\left|\frac{\partial z}{\partial \eta} \frac{1}{t}+\frac{\partial z}{\partial \varsigma}\right| \geqq\left|\frac{\partial z}{\partial \varsigma}\right|-\left|\frac{1}{t} \frac{\partial z}{\partial \eta}\right| \geq 2-\exp \left(4 M_{2} L_{2}\right) \\
&-\frac{\exp \left(4 M_{1} L_{2}\right)-1}{2 N}=\frac{2 N\left\{2-\exp \left(4 M_{1} L_{2}\right)\right\}-\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}}{2 N}>0, \\
&\left|\frac{1}{t} \frac{d \lambda}{d \eta}\right|=\left|\frac{\partial y}{\partial \eta} \frac{1}{t}+\frac{\partial y}{\partial \varsigma}\right| \leqq \frac{\exp \left(4 M_{1} L_{2}\right)}{2 N}+\exp \left(4 M_{1} L_{2}\right)-1 \\
&=\frac{\exp \left(4 M_{1} L_{2}\right)+2 N\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}}{2 N}
\end{aligned}
$$
\]

Hence by (5)

$$
\begin{aligned}
\frac{d}{d} \frac{\mu}{\eta} & \neq 0, \left.\left|\frac{d \lambda}{d \eta}\right| \frac{d}{d} \underline{\mu} \right\rvert\, \\
& \leqq \frac{\exp \left(4 M_{1} L_{2}\right)+2 N\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}}{2 N\left\{2-\exp \left(4 M_{1} L_{2}\right)\right\}-\left\{\exp \left(4 M_{1} L_{2}\right)-1\right\}} \leqq \frac{2}{3 N}
\end{aligned}
$$

Therefore we can represent T^{\prime} as

$$
y=\gamma(z) \quad z_{2} \geqq z \geqq \bar{z}_{2} \quad \text { or } \quad \bar{z}_{2} \geqq z \geqq z_{2}
$$

($z_{2} \neq \bar{z}_{2}$ as $d \mu / d \eta \neq 0$) and $\gamma(z)$ satisfies following conditions:
$y_{2}=\gamma\left(z_{2}\right), \bar{y}_{2}=\gamma\left(\bar{z}_{2}\right)$, continuous $d \gamma / d z$ exist and

$$
|d \gamma / d z| \leqq 2 /(3 N) \quad \text { for } \quad z_{2} \geqq z \geqq \bar{z}_{2} \quad \text { or } \quad \bar{z}_{2} \geqq z \geqq z_{2} .
$$

Hence

$$
\left|\frac{\bar{y}_{2}-y_{2}}{\bar{z}_{2}-z_{2}}\right| \leqq \frac{2}{3 N} \quad \bar{z}_{2} \neq z_{2} .
$$

As it is proved before, $\bar{z}_{2}=z\left(x_{2}, \bar{y}_{2}\right)$ and $z_{2}=z\left(x_{2}, y_{2}\right)$. So

$$
\left|\frac{z\left(x_{2}, \bar{y}_{2}\right)-z\left(x_{2}, y_{2}\right)}{\bar{y}_{2}-y_{2}}\right| \geq \frac{3 N}{2}, \quad \bar{y}_{2} \neq y_{2} .
$$

But $\left(x_{2}, \bar{y}_{2}\right),\left(x_{2}, y_{2}\right) \in Q$ and either $\left(x_{2}, \bar{y}_{2}\right) \in F \cdot Q$ or $\left(x_{2}, y_{2}\right) \in F \cdot Q$. This contradicts (4).

Thus we have proved

$$
\begin{equation*}
\left|z\left(x_{1}, \bar{y}_{1}\right)-z\left(x_{1}, y_{1}\right)\right| \leq 2 N\left|\bar{y}_{1}-y_{1}\right| \tag{9}
\end{equation*}
$$

for any pair of points $\left(x_{1}, \bar{y}_{1}\right),\left(x_{1}, y_{1}\right)$ in Q_{4} with the same x coordinate.
5. Domains Q_{5}, Q_{6}. We now consider the following ordinary differential equation whose right side is defined and continuous on G,

$$
\begin{equation*}
\frac{d y}{d x}=f\{x, y, z(x, y)\} \tag{10}
\end{equation*}
$$

$f\{x, y, z(x, y)\}$ is defined and continuous on $\bar{Q}_{4} \subset \bar{Q} \subset G$, so there is a positive M such that

$$
\begin{equation*}
|f\{x, y, z(x, y)\}|<M \quad \text { in } Q_{4} . \tag{11}
\end{equation*}
$$

In $Q_{1},\left|f_{y}\right|,\left|f_{z}\right|<M_{1}$, so $|f(x, \bar{y}, \bar{z})-f(x, y, z)| \leqq M_{1}(|\bar{y}-y|+|\bar{z}-z|)$ if $(x, \bar{y}, \bar{z}),(x, y, z) \in Q_{1}$. On the other hand $\{x, y, z(x, y)\} \in Q_{2} \subset Q_{1}$, If $(x, y) \in Q_{4} \subset Q_{3}$. Therefore by (9) if (x_{1}, y_{1}), $\left(x_{1}, \bar{y}_{1}\right) \in Q_{4}$,

$$
\begin{align*}
& \left|f\left\{x_{1}, \bar{y}_{1}, z\left(x_{1}, \bar{y}_{1}\right)\right\}-f\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right)\right\}\right| \leqq M_{1}\left(\left|\bar{y}_{1}-y_{1}\right|+\mid z\left(x_{1}, \bar{y}_{1}\right)\right. \\
& \left.-z\left(x_{1}, y_{1}\right) \mid\right) \leqq M_{1}(1+2 N)\left|\bar{y}_{1}-y_{1}\right| . \tag{12}
\end{align*}
$$

Hence the right side of (10) satisfies Lipschitz condition on Q_{4}. Let us write $l=L_{4} /(M+1)$. We denote by η_{1} any number such that $\left|\eta_{1}-b_{1}\right| \leqq l$. Then $\eta_{1}+l M \leqq b_{1}+L_{4}, \eta_{1}-l M \geqq b_{1}-L_{4}$. Thus for any η_{1} there exists a unique solution of (10) defined for $\left|x-a_{1}\right|<l$ which passes through $\left(a_{1}, \eta_{1}\right)$ and lies in $Q_{4} .{ }^{8}$) We denote it by $y=\chi\left(x, \eta_{1}\right)$. Hence if we denote by Q_{5} the domain defined by:

$$
\chi\left(x, b_{1}-l\right)<y<\chi\left(x, b_{1}+l\right) \quad\left|x-a_{1}\right|<l,
$$

the curves $y=\chi\left(x, \eta_{1}\right)$ fill up Q_{5} simple-fold, when η_{1} takes all values in the open interval $\left|\eta_{1}-b_{1}\right|<l,{ }^{9)}$ and $\left(a_{1}, b_{1}\right) \in Q_{5} \subset Q_{4}$.

By (11), (12), for any two $\eta_{1}, \bar{\eta}$ in the interval $\left|\eta_{1}-b_{1}\right|<l$ and any x in the interval $\left|x-a_{1}\right|<l,{ }^{10)}$

$$
\begin{align*}
& \left|\bar{\eta}_{1}-\eta_{1}\right| \leqq\left|\chi\left(x, \bar{\eta}_{1}\right)-\chi\left(x, \eta_{1}\right)\right| \exp \left\{M_{1}(1+2 N)\left|x-a_{1}\right|\right\} \\
& \leqq\left|\chi\left(x, \bar{\eta}_{1}\right)-\chi\left(x, \eta_{1}\right)\right| \exp \left\{M_{1}(1+2 N) l\right\} \tag{13}
\end{align*}
$$

We denote by Q_{6} the open square : $\left|\xi_{1}-a_{1}\right|<l,\left|\eta_{1}-b_{1}\right|<l$ in the $\left(\xi_{1}, \eta_{1}\right)-$ plane. We denote by A the one to one mapping of Q_{6} onto Q_{5} defined by

$$
x=\xi_{1} \quad y=\chi\left(\xi_{1}, \eta_{1}\right)
$$

Then A is bicontinuous ${ }^{11)}$ and by (13) we can easily conclude that A_{1}^{-1} maps any null set in Q_{5} to a null set in Q_{6}.
6. $z(x, y)$ in the domain Q_{5}. We take any pair of points $\left(x_{3}, y_{3}\right)$, $\left(x_{4}, y_{4}\right)$ belonging to Q_{5}. Then $\chi\left(x_{4}, \eta_{4}\right)=y_{4}$ for an η_{4} in the open interval $\left|\eta_{1}-b_{1}\right|<l$. Now we denote by $\left(x_{5}, y_{5}\right)$:

[^4]Case I. The nearest point of F to $\left(x_{4}, y_{4}\right)$ on the portion of the continuous curve $y=\chi\left(x, \eta_{4}\right)$ for $x_{3} \leqq x \leqq x_{4}$ or $x_{4} \leqq x \leqq x_{3}$, if it contains some points of F (such $\left(x_{5}, y_{5}\right)$ exists in this case, as $F \cdot Q$ is closed in Q),

Case II. The point $x_{5}=x_{3}, y_{5}=\chi\left(x_{3}, \eta_{4}\right)$, if that portion contains no point of F.

The characteristic curve $C\left\{x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ is defined for $\left|x-a_{1}\right|<l$, as $\left(x_{4}, y_{4}\right) \in Q_{3}$ and the interval $\left|x-a_{1}\right|<l$ is contained in the interval $|x-a|<L_{2}$. We shall prove that in both Cases the portion of the curve $y=\chi\left(x, \eta_{4}\right)$ for the interval $x_{4} \leqq x \leqq x_{5}$ or $x_{5} \leqq x \leqq \lambda_{4}$ is contained in the curve $y=\varnothing\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ and the portion of $C\left\{x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ for the interval $x_{4} \leqq x \leqq x_{5}$ or $x_{5} \leqq x \leqq x_{4}$ is contained S. If $\left(x_{4}, y_{4}\right) \in F \cdot Q_{5}$, then $x_{5}=x_{4}$, so the proposition is obvious. Hence we assume that $\left(x_{4}, y_{4}\right) \notin F \cdot Q_{5}$.

Suppose, if possible, that the proposition were false. We denote by x_{6} the nearest point to x_{5} among the points ξ in the interval $x_{5} \leqq x \leqq x_{4}$ or $x_{4} \leqq x \leqq x_{5}$ such that: the portion of the curve $y=\chi\left(x, \eta_{4}\right)$ for the interval $x_{4} \leqq x \leqq \xi$ or $\xi \leqq x \leqq x_{4}$ is contained in the curve $y=\mathcal{P}\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ and the portion of $C\left\{x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ for the same interval $x_{4} \leqq x \leqq \xi$ or $\xi \leqq x \leqq x_{4}$ is contained in S. Such x_{6} exists by the continuity of $\chi\left(x, \eta_{4}\right), \varphi\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$, $\psi\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ and $z(x, y)$. We denote $\chi\left(x_{6}, \eta_{4}\right)$ by y_{6}. Evidently $x_{5} \neq x_{6}$, as the above proposition is supposed false. By the definition of $\left(x_{5}, y_{5}\right),\left(x_{6}, y_{6}\right), C\left\{x_{4}, y_{4}, z\left(x_{4}, y_{4}\right)\right\}$ passes through the point $\left\{x_{6}, y_{6}, z\left(x_{6}, y_{6}\right)\right\}$ and $\left(x_{6}, y_{6}\right) \notin F$. Hence $C\left\{x_{4}, y_{4}, z\left(x_{4}, y_{4}\right)\right\}$ is contained in S in some neighbourhood of the point $\left\{x_{6}, y_{6}, z\left(x_{6}, y_{6}\right)\right\}$. Also from this, the curve $y=\varphi\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ passes through (x_{6}, y_{6}) and satisfies (10) in some neighbourhood of $x=x_{6}$. Hence, the curve $y=\chi\left(x, \eta_{4}\right)$ is contained in the curve $y=\varphi\left\{x, x_{4}, y_{4}, z\left(x_{4}, y_{4}\right), Q_{1}\right\}$ in some neighbourhood of $\left(x_{6}, y_{6}\right)$, by the uniqueness of the solution in Q_{4} of (10) passing through $\left(x_{6}, y_{6}\right)$. These are inconsistent with the definition of $\left(x_{6}, y_{6}\right)$. The above proposition is thus established.

By the above proposition, the curve $y=\chi\left(x, \eta_{4}\right) z=z\left\{x, \chi\left(x, \eta_{4}\right)\right\}$ satisfies (2), (3) and is contained in Q_{1} for the interval $x_{4} \leqq x \leqq x_{5}$ or $x_{5} \leqq x \leqq x_{4}$ (if $x_{4} \neq x_{5}$). On $\bar{Q}_{1}, g(x, y, z)$ is defined and continuous. Hence there is a positive M_{2} such that $|g(x, y, z)| \leqq M_{2}$ on Q_{1}. Therefore

$$
\frac{d z\left\{x, \chi\left(x, \eta_{4}\right)\right\}}{d x}=\left|g\left[x, \chi\left(x, \eta_{4}\right), z\left\{x, \chi\left(x, \eta_{4}\right)\right\}\right]\right| \leqq M_{2}
$$

for $x_{5} \leqq x \leqq x_{4}$ or $x_{4} \leqq x \leqq x_{5}$.
Thus

$$
\begin{equation*}
\left|z\left(x_{5}, y_{5}\right)-z\left(x_{4}, y_{4}\right)\right| \leqq M_{2}\left|x_{5}-x_{4}\right| \leqq M_{2}\left|x_{3}-x_{4}\right| \tag{14}
\end{equation*}
$$

(if $x_{4}=x_{5}$, this is obvious).
Now $y=\chi\left(x, \eta_{4}\right)$ is a solution of (10) contained in Q_{4} and $|f\{x, y, z(x, y)\}|$ $<M$ on \boldsymbol{Q}_{4}.

Thus $\quad\left|y_{4}-y_{5}\right|=\left|\chi\left(x_{4}, \eta_{4}\right)-\chi\left(x_{5}, \eta_{4}\right)\right| \leqq M\left|x_{4}-x_{5}\right| \leqq M\left|x_{3}-x_{4}\right|$.
Hence $\left|y_{3}-y_{5}\right| \leqq\left|y_{3}-y_{4}\right|+\left|y_{4}-y_{5}\right| \leqq\left|y_{3}-y_{4}\right|+M\left|x_{3}-x_{4}\right|$.
We have

$$
\begin{equation*}
\left|z\left(x_{3}, y_{5}\right)-z\left(x_{5}, y_{5}\right)\right| \leqq N\left|x_{3}-x_{5}\right| \leqq N\left|x_{3}-x_{4}\right| \tag{16}
\end{equation*}
$$

in Case I, by (4) and as $\left(x_{5}, y_{5}\right) \in F \cdot Q,\left(x_{3}, y_{5}\right) \in Q$, and in Case II, simply as $x_{3}=x_{5}$. Also we have by (9)

$$
\begin{equation*}
\left|z\left(x_{3}, y_{3}\right)-z\left(x_{3}, y_{5}\right)\right| \leqq 2 N\left|y_{3}-y_{5}\right| \tag{17}
\end{equation*}
$$

as $\left(x_{3}, y_{3}\right),\left(x_{3}, y_{5}\right) \in Q_{4}$.
By (14), (15), (16), (17),

$$
\begin{aligned}
& \left|z\left(x_{3}, y_{3}\right)-z\left(x_{4}, y_{4}\right)\right| \leqq\left|z\left(x_{3}, y_{3}\right)-z\left(x_{3}, y_{5}\right)\right|+\left|z\left(x_{3}, y_{5}\right)-z\left(x_{5}, y_{5}\right)\right| \\
& \quad \quad \quad\left|z\left(x_{5}, y_{5}\right)-z\left(x_{4}, y_{4}\right)\right| \leqq 2 N\left|y_{3}-y_{5}\right|+N\left|x_{3}-x_{4}\right|+M_{2}\left|x_{3}-x_{4}\right| \\
& \leqq 2 N\left|y_{3}-y_{4}\right|+\left(2 N M+N+M_{2}\right)\left|x_{3}-x_{4}\right| \\
& \leqq\left(2 N+2 N M+M_{2}\right)\left(\left|y_{3}-y_{4}\right|+\left|x_{3}-x_{4}\right|\right) .
\end{aligned}
$$

Hence if we denote $2 N M+2 N+M_{2}$ by M_{3},

$$
\begin{equation*}
\limsup _{(x, y) \rightarrow\left(x_{3}, v_{3}\right)} \frac{\left|z(x, y)-z\left(x_{3}, y_{3}\right)\right|}{\left|x-x_{3}\right|+\left|y-y_{3}\right|} \leqq M_{3} \tag{18}
\end{equation*}
$$

whenever $\left(x_{3}, y_{3}\right) \in Q_{5}$.
7. Completion of the proof. From (18), $z(x, y)$ is totally differentiable almost everywhere in Q_{5}, by Stepanoff's theorem on almost everywhere total differentiability. ${ }^{12)}$ Moreover $z(x, y)$ fulfills (1) almost everywhere in G and, as we have seen in section $5, A_{1}^{-1}$ maps any null set in Q_{5} to a null set in Q_{6}. Hence if we write $\zeta_{1}\left(\xi_{1}, \eta_{1}\right)=z\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right)\right\}$ for $\left(\xi_{1}, \eta_{1}\right) \in \boldsymbol{Q}_{6}$,

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial \xi_{1}} \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{\partial \chi}{\partial \xi_{1}} \tag{19}\\
=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} f\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\}=g\left\{\left(\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\}\right.
\end{array}\right.
$$

almost everywhere in \boldsymbol{Q}_{6}.
12) Cf. Saks [3], pp. 238-239.
parallelepiped $R_{2}:\left|x-x_{1}\right|<r_{2},\left|y-y_{1}\right|<r_{2},\left|z-z_{1}\right|<r_{3}$ such that
i) $r_{2}, r_{3} \leqq r_{1}$, that is, $R_{2} \subset R_{1}$,
ii) $\left|z(x, y)-z\left(x, y_{1}\right)\right|<r_{3}$ for $\left|x-x_{1}\right|<r_{2},\left|y-y_{1}\right|<r_{2}$,
iii) $C\left(x_{0}, y_{0}, z_{0}, R_{1}\right)$ is defined for the interval $\left|x-x_{1}\right|<r_{2}$ whenever $\left(x_{0}, y_{0}, z_{0}\right) \in R_{2}$.
i), iii) can be realized if we take r_{2}, r_{3} sufficiently small (iii) by the boundedness of f, g in R_{1}) and ii) can be realized if we take r_{2} still smaller. We denote by R_{3} the open square : $\left|x-x_{1}\right|<r_{2},\left|y-y_{1}\right|<r_{2}$.

If we take any point (x_{2}, y_{2}) which belongs to R_{3} and denote $z\left(x_{2}, y_{2}\right)$ by z_{2}, then by ii) and iii), $\left(x_{2}, y_{2}, z_{2}\right) \in R_{2}$ and $C\left(x_{2}, y_{2}, z_{2}, R_{1}\right)$ is defined for $\left|x-x_{1}\right|<r_{2}$. We denote $q\left(x_{1}, x_{2}, y_{2}, z_{2}, R_{1}\right)$, $\psi\left(x_{1}, x_{2}, y_{2}, z_{2}, R_{1}\right)$ by y_{3}, z_{3} respectively. Then $z_{3}=z\left(x_{1}, y_{3}\right)$, since $C\left(x_{2}, y_{2}, z_{2}, R_{1}\right)$ is totally contained in S by Theorem 1 . By the continuity of $z(x, y)$ and of $\varphi\left(x, x_{0}, y_{0}, z_{0}, R_{1}\right), \psi\left(x, x_{0}, y_{0}, z_{0}, R_{1}\right)$ with respect to all the arguments $2, x_{0}, y_{0}, z_{0},{ }^{13)}$

$$
\begin{align*}
& \varphi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right) \longrightarrow \varphi\left(x_{1}, x_{1}, y_{1}, z_{1}, R_{1}\right)=y_{1} \\
& \psi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right) \longrightarrow \psi\left(x_{1}, x_{1}, y_{1}, z_{1}, R_{1}\right)=z_{1} \tag{23}\\
& \text { as } x \rightarrow x_{1}, x_{2} \rightarrow x_{1}, y_{2} \rightarrow y_{1} .
\end{align*}
$$

Hence by the continuity of $f(x, y, z), g(x, y, z)$,

$$
\begin{aligned}
& f\left\{x, \varphi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right), \psi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right)\right\} \longrightarrow f\left(x_{1}, y_{1}, z_{1}\right), \\
& g\left\{x, \varphi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right), \psi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right)\right\} \longrightarrow g\left(x_{1}, y_{1}, z_{1}\right) \\
& \text { as } x \rightarrow x_{1}, x_{2} \rightarrow x_{1}, y_{2} \rightarrow y_{1} .
\end{aligned}
$$

On the other hand, by (2), (3)

$$
\begin{aligned}
& y_{2}-y_{3}=\int_{x_{1}}^{x_{2}} f\left\{x, \varphi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right), \psi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right)\right\} d x \\
& z_{2}-z_{3}=\int_{x_{1}}^{x_{2}} g\left\{x, \varphi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right), \psi\left(x, x_{2}, y_{2}, z_{2}, R_{1}\right)\right\} d x
\end{aligned}
$$

Therefore we have

$$
\left\{\begin{array}{l}
y_{2}-y_{3}=\left(x_{2}-x_{1}\right)\left\{f\left(x_{1}, y_{1}, z_{1}\right)+\rho_{1}\left(x_{2}, y_{2}\right)\right\} \tag{24}\\
z_{2}-z_{3}=\left(x_{2}-x_{1}\right)\left\{g\left(x_{1}, y_{1}, z_{1}\right)+\rho_{2}\left(x_{2}, y_{2}\right)\right\} \\
\rho_{1}\left(x_{2}, y_{2}\right), \rho_{2}\left(x_{2}, y_{2}\right) \rightarrow 0 \text { as }\left(x_{2}, y_{2}\right) \rightarrow\left(x_{1}, y_{1}\right) .
\end{array}\right.
$$

By the assumption, $z(x, y)$ has $\partial z / \partial y$ at $\left(x_{1}, y_{1}\right)$ and by (23) $y_{3}=\varphi\left(x_{1}, x_{2}, y_{2}, z_{2}, R_{1}\right) \rightarrow y_{1}$ as $\left(x_{2}, y_{2}\right) \rightarrow\left(x_{1}, y_{1}\right)$. Hence we have
13) Cf. Kamke [1], § 17, Nr. 84, Satz 3.

Also by (18) (if we write $x_{3}=\xi_{3}, y_{3}=\chi\left(\xi_{3}, \eta_{3}\right)$)

$$
\left\{\begin{array}{l}
\quad \limsup _{\xi_{1} \rightarrow \xi_{3}} \frac{\left|\zeta_{1}\left(\xi_{1}, \eta_{3}\right)-\varsigma_{1}\left(\xi_{3}, \eta_{3}\right)\right|}{\left|\xi_{1}-\xi_{3}\right|} \leqq\left(\lim _{(x, y) \rightarrow\left(x_{3}, y_{3}\right)} \frac{\left|z(x, y)-z\left(x_{3}, y_{3}\right)\right|}{\left|x-x_{3}\right|+\left|y-y_{3}\right|}\right) \\
\times\left(\limsup _{\xi_{1} \rightarrow \xi_{3}} \frac{\left|\xi_{1}-\xi_{3}\right|+\left|\chi\left(\xi_{1}, \eta_{3}\right)-\chi\left(\xi_{3}, \eta_{3}\right)\right|}{\left|\xi_{1}-\xi_{3}\right|}\right) \leqq M_{3}\left(1+\left|\frac{\partial \chi}{\partial \xi_{1}}\left(\xi_{3}, \eta_{3}\right)\right|\right) \tag{20}\\
\quad=M_{3}\left[1+\left|f\left\{x_{3}, y_{3}, z\left(x_{3}, y_{3}\right)\right\}\right|\right] \leqq M_{3}(1+M)
\end{array}\right.
$$

for any $\left(\xi_{3}, \eta_{3}\right) \in Q_{6}$. Therefore by Fubini's theorem $\zeta_{1}\left(\xi_{1}, \eta_{1}\right)$ satisfies (19) almost everywhere in the interval $\left|\xi_{1}-a_{1}\right|<l$, as a function of ξ_{1}, for almost all η_{1} in the interval $\left|\eta_{1}-b_{1}\right|<l$ and by (20) $\varsigma_{1}\left(\xi_{1}, \eta_{1}\right)$ is absolutely continuous as a function of ξ_{1} in the interval $\left|\xi_{1}-a_{1}\right|<l$ for all η_{1} in the interval $\left|\eta_{1}-b_{1}\right|<l$. Hence for any ξ_{1} in the interval $\left|\xi_{1}-a_{1}\right|<l$,

$$
\begin{equation*}
\varsigma_{1}\left(\xi_{1}, \eta_{1}\right)-\varsigma_{1}\left(a_{1}, \eta_{1}\right)=\int_{a_{1}}^{\xi_{1}} g\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\} d \xi_{1} \tag{21}
\end{equation*}
$$

for almost all η_{1} in the interval $\left|\eta_{1}-b_{1}\right|<l$. By the continuity of $z(2, y)$, $g(x, y, z), \chi\left(\xi_{1}, \eta_{1}\right)$, accordingly of $\varsigma_{1}\left(\xi_{1}, \eta_{1}\right), g\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\}$, (21) is established for any $\left(\xi_{1}, \eta_{1}\right) \in Q_{6}$. Hence by the continuity of $g\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\}$,

$$
\begin{equation*}
\frac{\partial \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)}{\partial \xi_{1}}=g\left\{\xi_{1}, \chi\left(\xi_{1}, \eta_{1}\right), \varsigma_{1}\left(\xi_{1}, \eta_{1}\right)\right\} \tag{22}
\end{equation*}
$$

for any $\left(\xi_{1}, \eta_{1}\right) \in Q_{6}$.
By the definition of $\chi\left(\xi_{1}, \eta_{1}\right), \zeta_{1}\left(\xi_{1}, \eta_{1}\right)$ and by (22), for any η_{1} in the interval $\left|\eta_{1}-b_{1}\right|<l$, the curve $y=\chi\left(x, \eta_{1}\right), z=\varsigma_{1}\left(x, \eta_{1}\right)$ satisfies (2), (3) in the interval $\left|x-a_{1}\right|<l$, that is, is a characteristic curve in $D \cdot\left(Q_{5} \times R\right)$, and is contained totally in S. On the other hand, the curves $y=\chi\left(x, \eta_{1}\right)$ fill up Q_{5}, when η_{1} takes all values in the open interval $\left|\eta_{1}-b_{1}\right|<l$. This is however excluded, since $\left(a_{1}, b_{1}\right) \in F \cdot Q_{5} \neq 0$. We thus arrive at a contradiction and this completes the proof of Theorem 1.

§ 3. Proof of Theorem 2.

Now we shall prove Theorem 2 by the use of Theorem 1.
In this chaper the notations are the same as in the introduction and we assume that $z(x, y)$ satisfies the premises of Theorem 2.
8. We take an arbitrary but fixed point $\left(x_{1}, y_{1}\right)$ which belongs to G. We denote $z\left(x_{1}, y_{1}\right)$ by z_{1}. We take an open cube $R_{1}:\left|x-x_{1}\right|<r_{1}$, $\left|y-y_{1}\right|<r_{1},\left|z-z_{1}\right|<r_{1}$ such that $\bar{R}_{1} \subset D$. Again we take an open

$$
\left\{\begin{array}{l}
z_{3}-z_{1}=z\left(x_{1}, y_{3}\right)-z\left(x_{1}, y_{1}\right)=\left(y_{3}-y_{1}\right)\left\{\frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}+\rho_{3}\left(x_{2}, y_{2}\right)\right\} \tag{25}\\
\rho_{3}\left(x_{2}, y_{2}\right) \rightarrow 0 \text { as }\left(x_{2}, y_{2}\right) \rightarrow\left(x_{1}, y_{-}\right) .
\end{array}\right.
$$

By (24), (25) we have

$$
\begin{aligned}
& z\left(x_{2}, y_{2}\right)-z\left(x_{1}, y_{1}\right)=z_{2}-z_{1}=\left(z_{2}-z_{3}\right)+\left(z_{3}-z_{1}\right) \\
& =\left(x_{2}-x_{1}\right)\left\{g\left(x_{1}, y_{1}, z_{1}\right)+\rho_{2}\left(x_{2}, y_{2}\right)\right\}+\left(y_{3}-y_{1}\right)\left\{\frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}+\rho_{3}\left(x_{2}, y_{2}\right)\right\} \\
& =\left(x_{2}-x_{1}\right)\left\{g\left(x_{1}, y_{1}, z_{1}\right)-f\left(x_{1}, y_{1}, z_{1}\right) \frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}+\rho_{4}\left(x_{2}, y_{2}\right)\right\} \\
& \quad+\left(y_{2}-y_{1}\right)\left\{\frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}+\rho_{3}\left(x_{2}, y_{2}\right)\right\} \\
& \quad \rho_{3}\left(x_{2}, y_{2}\right), \rho_{4}\left(x_{2}, y_{2}\right) \rightarrow 0 \text { as }\left(x_{2}, y_{2}\right) \rightarrow\left(x_{1}, y_{1}\right) .
\end{aligned}
$$

Thus the total differentiability of $z(x, y)$ at any point $\left(x_{1}, y_{1}\right)$ of G is proved. At the same time, we obtain, as the value of $\partial z / \partial x$ at $\left(x_{1}, y_{1}\right)$,

$$
g\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right)\right\}-f\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right)\right\} \frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}
$$

Hence

$$
\frac{\partial z\left(x_{1}, y_{1}\right)}{\partial x}+f\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right)\right\} \frac{\partial z\left(x_{1}, y_{1}\right)}{\partial y}=g\left\{x_{1}, y_{1}, z\left(x_{1}, y_{1}\right)\right\}
$$

at any point $\left(x_{1}, y_{1}\right)$ of G.
This completes the proof of Theorem 2.

References

[1] E. Kamke, Differentialgleichungen reeller Funktionen, (1930).
[2] T. Kasuga, Generalisation of R. Baire's theorem on differential equation, Proc. Japan. Acad. vol. 27 (1951), no. 3, pp. 117-121.
[3] S. Saks, Théorie de l'intégrale, (1933).
(Received September 21, 1953)

[^0]: 1) Cf. Kamke [1], § 16, Nr. 79, Satz 4.
[^1]: 2) Cf. Kamke, § 17, Nr. 84, Satz 3.
[^2]: 3) Cf. Kamke, $\S 17$, Nr. 84, Satz 3.
[^3]: 7) Cf. Kamke, § 17, Nr. 85, Hilfssatz 3.
[^4]: 8), 9) Cf. Kamke, §6, Nr. 30, Satz 1, § 10, Nr. 47, Satz 4, and § 12, Nr. 54, Satz 3.
 10) Cf. Kamke, $\S 11$, Nr. 51, Satz 1.
 11) Cf. Kamke, § 10, Nr. 47, Satz 4.

