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The Space of Pseudo-Metrics on a Complete Uniform Space

By Taira SHIROTA

1. In a paper, B. H. Arnoldυ considered the class of all upper semi-
continuous decompositions of a Tλ space and showed that it is possible
to construct a space homeomorphic to the given space from the partially
ordered set of decompositions. In another paper2), M. E. Shanks obtained
results on the semi-linear space of all metrics compatible with the
topology on a compactum.

In this paper we will show that the complete metric space as well
as the lattice ordered semi-additive-group of all bounded pseudo-metries
compatible with the uniformity on a complete uniform space determine
the given uniform space.

2. Let X3) be a uniform space. Then the set @2JΪ(JY) of all bounded
pseudo-metrics4) compatible with its uniformity for X is a complete
metric space with the distance (p, σ)=sup\p(x, y)—σ(x, y)\ and it is a

χ,yζx

lattice ordered semi-group5) with the ordinary addition and order consi-
dered as a subsystem of the system of all continuous functions from the
product space XxX into the reals.

Moreover for p e ©SHCX") let JCCpl be a metrizable uniform space whose
points are equivalence classes [α?]p with respect to the equivalence relation
p(x9 y} = 0 and whose metric is defined by the distance dp([x~]p, |j/]P) —
p(x, y). Then we write X^ ^ XM when the mapping F^9 w: [>]p ->
[#]σ is uniformly continuous from JΓ(PD onto -X"C(n, and X^ > X^ if Xtn

:> X^ but not XM :> X^ and we denote by ®(Jf) the partially ordered
set of all such metrizable uniform space Xtn with the above order.

1) Cf. B.H.Arnold: Decompositions of a Tl space, Bull. Amer. Math. Soc., 46(1943).
2) Cf. M. E. Shanks: The space of metrics on a compact metrizable space, Amer. Jour.

Math., 66 (1944).
3) In the present note we may assume that the potency of X is greater than 4, since

otherweise our results are trivial.
4) We say that p is a pseudo-metric compatible with the uniformity for X if it satisfies

the following conditions, i) />(Λ;,Λ:)=O, ii) p(χ, y} = p(y,x), iii) p(x, y)-{-p(y,z)^p(x,z) and
iv) for any ζ>0 there exists a neighbourhood V such that p(x, y)<^ε for x£ V(y).

5) We say that S is a lattice ordered semi-group if it satisfies the following conditions
i) S is a lattice and semi-group and ii) ayb-\-c=(a-\-c)V(bi-c) for any a, b and c e S. Cf.
G. Birkhoff, Lattice theory, (1949), p. 201.
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3. The partially ordered set ® (X). In this section we will show
that ®(JY") determines the space X whenever X is a complete uniform
space. For this purpose we shall prove the following lemmas.

Lemma 1. For two X^Pl^ and X^P2^ of a uniform space X the follow-
ing conditions are equivalent :

( ί ) Xtfi ) ̂  Xt.P21

(ii) for two disjoint subsets A and B of X, pι(A, β)6) = 0 implies
P2(A, Br = 0.

Proof. Since obviously ( i ) implies (ii), we only prove that (ii)
implies ( i ). Suppose that X^ and Xt^ satisfy the condition (ii). Then
evidently FC/ΊH/^} is a continuous mapping from Xtp^ onto X^^ . Now
we assume that there exist subsets \xn\ and \yn\ such that pι(xn>yn)<^

-and p2(xn, yn} I> 8 ^> 0. If {[α?n]p2} contains a Cauchy subsequence
n
\Lxn~]p2] whose limit point in the completion X^i is x, then pι(A, B} = 0

and P2(A,5)^-|, where A ={a?|[α?]P2 6 {[»„']«} ΛS/>2

7)(*, £/4)} and B

= ί 2/1 [2/]p2^ {tJΛ Ίw} & [>»Ίp2€ 5^,6/4) i. Hence we see that both
{[a?n]p2}

 and f [2/^1^2! contain no Cauchy subsequences, so that there
exists subsets {[a?,/],*} and {[yn']p2} of ίlXW and ίC^]/>2} respectively
such that for some S '̂ 2([a?n']P2 f [αw']P2)>δ and ώP2([^']p2 , [^w']P2)>δ
if mΦTt. Then we car^ construct two infinite subsets A and B such
that A C ί C^Ί/>2} and β C ί C^Ί^I and dP2(A, B) > 0. Let A = jo; | [x~}p2

G A } and let 5 = \y\\_y~}P2 eB\. Then /o1(A,B) = 0 and /o2(A,β)>0.
Hence we see that FW,^ is uniformly continuous.

Lemma 2. For ίwo -X"cpiί an^ ^cp2D ^^^^ ί̂ t* -^CPID ̂ -^c :̂ > ^e follow-
ing conditions are equivalent :

( i ) ^CPU covers XCP2D

(ii) a) ύ/zere exists a unique pair of different points x and y of the
completion X^Pn such that dp2 (x, y} — 0, where dP2 is an extension of the
pseudo metric dpz : dP2({x~\n, \_y~\n} = p2(x, y\ and b) if, for three subsets
A!, A2 and B of X, pι(Alt A2)>0 and pι(Al\JA29 jB)>0, then either

or

Proof, we show that ( i ) implies (ii). Let X^^ cover XtP2^
Now suppose that there exist three subsets A19 A2 and B such that they
do not satisfy b). Then there exists a continuous function / of X such
that /(A^β) = 0 and /(A2) = 1 and such that for any β > 0 Pl(x, ?/)< δ

6) P(A,B) = iΏf p(X)y}

7) Sp(*,e)



The Space of Pseudo-Metrics on a Complete Uniform Space 149

implies | /(a?)—f(y) \ <£ for some δ. Let pr be a pseudo-metric of X
such that p/a?, #) = | /(#)—/(τ/)| and let τ = σ 2-fp / . Then obviously for
£>0 there exists δ such that p ^x, y)<^<$ implies τ(x,y)<^8 and hence
XtPii^Xn and in fact X^^X^ since τ(A1? 5) = 0 and pλ(Al9 B)>0.
On the other hand ZσD ;> -X^ and moreover J£cr;j > Xιm, since /o2(A2,
Z?) = 0 and τ(A2, F)>0. Hence J^C/,1D and XCP23 satisfy b). Furthermore

If dP2(x, ?/) = 0 implies x — y for any ά? and y in J?CP13, since dp2 is not
a metric of XtPΏ and since ZCPlD is a complete metrizable, by the same
method used in the proof of Lemma 1, there exists three subsets A/,

A2' and B' of ZCP13 such that ^(A/, Aa')>0, ^(A/^A/, B')> 0, 3,2

(A/,B') = 0 and dP2(Aa', B') - 0. Let A,= {a?|[α?]Pleσ(Λ/)AXCω} and
β= {a IM^e^BO/Λ-X'cpiDlf where Z7(44') and C7(βr) are suitable neigh-
bourhoods of AS and Br respectively. Then At and B do not satisfy b).
Hence there exists a pair of different points x and y of J?c/>ι:j such that

'dp2(&> y} — 0. Furthermore we easily see that such pair of points is
uniquely determined.

The proof of the converse will be omitted, as it can be done by
the method used above.

DEFINITION. We say that a proper ideal I of ®CX") is p-ideal if it
satisfies the following property : for any X^ there exists an JCt/D such
that Xζf/} € / and J?C/B3 = -X"c//3 or JPc/,3 covers -XV3, ^nd if -X"C/>D ̂  -^0023»
-X'cP^lD ̂  -^CP2/D

Lemma 3. Lei X 6e α complete uniform space and let I be a p-ideal.
Then there exists a unique pair of different points x and y of X such that

/={*c*IKα.y) = 0}.
Proof. First of all we remark that if Xtp^ <£ I then Xtfa e / is uniquely

determined. For if two different elements XlPl^ and Xζpfo € / are covered
by Xiv , since / is an ideal, Xm^ v Xc/)/D e /, but XCP3 = Z^/^ v χtp^ y

which is a contradiction. Now let XPO£l be fixed and let xpo and yPQ

be two points of XtP^ such that dp^χPQ, T//^) = 0. Moreover let xλ and

fcτ2 be two points of X^ such that ~dp'(x1, x2) — 0, where XrpD ]> ^CPOD-
Then F^tP0^(\Xι9x2})= \xpo, ypo] where Fc^,c/>o: is a mapping from XCPD

into Xtm such that it is an extension of Fcw, c />0 3. For if ^P0(^ι» ^2)== 0>
by Lemma 1 and 2 we see that X^m < Xrf) and Xtpo:ί G /, which is a

contradiction. Hence cZj0o(^1, £2) Φ 0, accordingly dPΌ(FtP^ w^ι\ ^CPD.CPOI

(^2))ΦO, but eζ/(£lf£2) = 0 and X^^Xm^9 hence c^0<Fc^, c/>0ί(£ι),
FΓp3, C/JOD^)) = 0. By the uniquenss of such pair of points we see that

^c/υ, c/>oί ( ί*ι > ^2! ) = \Bpo9 ypo\ - Let ^ be the P°int such that XP e ί^i > ^2)
and Pc/0,POJ](^) = Xpj and let ^P be the other point of \Xι,x2}. More-
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1
over let Ap,n = |a?]ώXM/,, ά,) ̂  ~ |̂ and β f ) 'w = ^x'^M?»2//0 ̂  g^l

Then {4P,J and {#P,J are both Cauchy closed family of X. Since X
is complete, there exists a pair of points #0 and yQ of X such that x0

=/JAp)n and ?/0 =//5P,w Then obviously [>0]P = xp and [>0]p = yp for
-Yp :> Zpo. Furthermore if p(x0, y0) = 0, then X^ £ /, for let Xσ^ — X^
vXtpr^ then ZCrD>^c^ and dp(xτ, yr} — 0, hence X^^X^, which implies
XI P J e /. Since evidently p(#0, ?/0)>0 implies X^ £ 7, /= \X^ \p(x0, y0)=Q\

Theorem 1. If X is a complete uniform space, the partially ordered
set 25 (JC) determines the uniform space X.

Proof (1). Let /{#, #} be the p-ideal which corresponds to a pair
of points x and y of -X" as in Lemma 3. Moreover for two p-ideals Iλ

72 we denote by /!~/2 the relation : 7X = /2 or IlΛI2ζ^ I3 for some 73.
Then by the triangle axiom of pseudo-metrics, I\x,y] and 7{w, v} are
equivalent if and only if \x,y}n\u,v}=%=φ. Furthermore we say that
a subset P of the set of all p-ideals is a maximal collection if it satisfies
the following conditions : i) P contains at least four p-ideals, ϋ) any two
p-ideals e P are equivalent and iii) it is maximal with respect to i) and
ii). Then for a maximal collection P there exists a unique point x of
X such that P — \I\x, y\ \y 6 X & y Φ x ] , which is denoted by P(a?). Con-
versely any JP(#) is a maximal collection. Let X be the set of all
maximal collections. Then we see that the correspondence : x —> P(x) is

a one-to-one mapping from X to X. Furthermore let A — {P(X)|#eA\.

(II) We say that a subset A with potency ;> 2 is basic-closed if there
exists a XC/3JG®(Z) such that for any P^A9A = \Q\Q^P^l3X^}^

\P}. Then a subset Λ of X is basic-closed if and only if A is a closed
Gδ-set which is a zero-set of a uniformly continuous function of X and

the potency | A \ > 2. Let the set of all basic-closed sets of X be a closed

basis for X. Then we see that X is a topological space which is home-
omorphic to X by the mapping P.

(III) Now we define the uniformity for X by pseudo-metrics. For

this purpose we define the uniformity for X by pseudo-me tries. For this
purpose we say that two disjoint basic-closed subsets Άi: (i — 1, 2) are
p-separated if there exists XCpn<^Xcp:s such that At= \Q\QrλPί3l3
Xtpii] w \Pi\ for any P^Ai and that two subsets £t are p-separated if
they are contained respectively in two p -separated disjoint basic-closed

subsets. Furthermore we define that a pseudo-metric p of X is compatible

with the uniformity for X if there exists X^ G 3XJ?) such that if p(A9 B}

A and B are p -separated.
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Now let p be compatible with the uniformity for X and let pτ be a
pseudo-metric of X such that p^x, y) = p(P(x), P(yJ) Then if pλ(Al9 Az}
}>0, then p(Alf ^2)>Ό, hence -Ϊ4(i — 1, 2) are p-separated, accordingly
there exists subsets At'(i — 1, 2) and J£Cσ:, <; X^ such that -ί/ = { Q | Q Λ P4

3/3 X^ } w { Pi } and Ά^Άi. This means that 4, C { » I ̂ O, #) = 0 for
a fixed 2//| and [2/1},. Φ [2/2]σ- » so that pCA^ A,) >0. Thus we see by
Lemma 1 that pλ 6 ©aWCX") and Xtί>^ < X^. Conversely for any p e SJIf (X)

let p be a pseudo-metric of X such that p(P(x), P(y}) = p(x, y). Then
p(Ά, S)>0 if and only if p(A, B)^>0, i.e., A and B are p-separated.
Thus we see that the mapping P is a uniform homeomorphism.

REMARK. Let £/(̂ 0 be the partially ordered set whose elements are
equivalence relations on X : p(x, y} = 0, p e ©2K(J£). Then if X is a com-
plete uniform space, ®'(X) determined the given topological space X, but
does not determine the uniform space X.

For example we consider the space X = \J Xn where Xn are mutually
n = l

disjoint the %-dimentional cubes and whose relative topology on Xn is
a usual one. Let Xτ be the coarsest uniform space8) over X for which
all continuous functions are uniformly continuous and let X2 be the
uniform space9) over X with the uniformity made up of all countable
normal coverings. Then two space are complete and ®'(<XΊ) = ®'(X2)
For there exists pr G ®SSl(X^ for any p e @2Jί(Z£) such that p(x, y} = Q and
p'(x, y) — 0 are the same equivalence relation on X and is totally bounded,
and so 3>'(-XΊ) and ®'(Xj) are determined by the totally bounded-pseudo
metrics which are identical on both X^ and X2 . But Xτ and X2 are not
uniformly homeomorphic. For let %$n be the finite open covering of Xn

such that any refinement of ?&n has order ^w + 1 and let tt = {U\Ue%$n

for some n}9 then U is contained in the uniformity for Xz. Suppose
that there exists a uniform homeomorphism F from X1 onto X2 . Then
F~l(U) is contained in the uniformity for X19 hence there must exist a
finite number of continuous functions { fI , /2 , . . . , /„ } and a real number
6>0 such that

U 1 ={{yI |Λ(«)-Λ(2/) |<6 for any i\ x£X\

is a refinement of F-1(U). But since the mapping / from X into the
^-dimensional Euclidean space E : f(x) = \fi(x)\i — i, 2, ... n\ is continu-
ous, by the extended Lebesgue's covering theorem10) Hi has a refinement

8) Cf. E. Hewitt : Rings of real valued continuous functions, Trans. Amer. Math. Soc
64 (1948).

9) Cf. T. Shirota: A class of topological spaces, Osaka Math. J. 4 (1952).
10) C. H. Dowker: Lebesgue dimension of a normal space, Bull, of Amer. Math. Soc.

52 (1946). K. Morita: On the dimension theory of normal space I, Japanese Journ. Math.
20 (1950).
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U2 with order <^ + 2. Hence F(U2) ̂  U and the order of F(U2) is
^™ + 2. Accordingly the order of ^(U2)|^41 is ^n-ί-2 and F(
^ SSn+1 . But by the property of 93n41 the order of F(U2)|^Γn+1 is
which is a contradiction.

4. The complete metric space @3Jί(-X"). We remark first that the
zero 0 of the semi-linear space @2Jί(Λ") is determined by the property
that it can not be the middle pointn:> of two different points. Accordingly
we can characterize the norm of an element p of @3JΪ(^") as (0, p) and we
write it by [| p \\ .

Definition. For any real 7 > 0 and p 6 @2JΪ(X) we denote the surface
\pr\(pf

9 p} = 7} by £y(p) and in particular, when p = 0, by Sy . Then for
two p and p2 we write pι>/o2 if £v(pJASv C^SY(p2)ASY whenever

II PI II v II P2 I I

Lemma 4. .For α uniform space X following conditions are equivalent :

( i) Pι>/> 2>
(ii) XWH 2> -X"c/>2:)
Proof. We have only to prove that i) implies ii). Suppose that

there exist two subsets A and B such that pι(A, 5) — 0, but p2(A, B} > 0.
Then for r > || Pl || v || Pz \\ if p = r/p2(A, β) (p2/\p2(A, B}), we see that
\\ p — pι\\=r=\\ p\\ , but that || /o — p2 \\ <^r. For there exists subsets
\xn] and 5^} of A and β respectively such that pλ(xn, 2/w)->0 and pz(xn,
yn) ̂  7, hence (p-pj(xn ,yn*)-^y and so || p — Pl \\ = r. Furthermore for
f < p2(A, β) if p2O, T/) < 6, then j p(x, y)—p2(x, y) \ ^S v &r/p2(A, B)< r and
if /o^a?, y) ̂  5, then |̂ , y)-p2(x, y}\< (r-6) v || P2 ||<r. Thus || p-^ ||
<7, hence Sy(pl)rΛSy^Sy(p2)rλSyt i.e., ̂ j. > p2.

Theorem 2. For α complete uniform space X, the complete metric
space @3JΪ(X) determines the uniform space X.

Proof. Let Pι~p 2 ^ Pι>/°2 an(i f>2^/°ι Then obviously it is an
equivalence relation and we denote by [px] the equivalence class con-
taining P! and let \_p^\ 2> [/o2] if pι>jθ2 Then the partially ordered set
obtained above is isomorphic to ®(Jf) which determines by Theorem 1
the uniform space X.

REMARKS. It will be easily seen by Lemma 1 and 2 that a metri-
zable uniform space X is determined by the semi-linear topological space
@3JίΌ(-X') whose elements are pseudo-metrics compatible with the uniformity
and vanishing only on the diagnol of the product space XxX and that

11) We say that a point x of metric space X is a middle point of y and z of X if (x, y}

= (x, z} = -;r(y, z}. Cf. Menger: Untersuchung iiber allgemeiner Metrik, Math. Ann. 100.
tL
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a completely metrizable uniform space X is determined by the semi-
linear topological space 2Jί(Z) whose elements are metrics compatible with
the uniformity.

5. The lattice orderd semi-additive-group @aJi(-Y).

Lemma 5. For a uniform space X the following conditions are equi-
valent :

( ί ) XζPD 2^ -X"cp2D >

(ii) there exists a sequence \pn

f\n = Q, 1, 2, ...} such that for any n
a) npn <ί po and b) p2 <L pn'

v mnpι for some integer mn.

Proof. Let XtM ^ X^ , PΛ' = Pz Λ ̂  and Po' = Σ (n/>2 Λ )̂. Then

pn

f(n = 0,1, 2, ...) 6 @2Ή(JΓ) and w/),,' = ̂ /?2 Λ —- <: /o0'. Moreover since XCPΏn2 -j
2> XC/,2D, there exists δ ]> 0 such that /o2O% ?/) ̂  —3 implies pτ(x, y) ̂  δ.

7J

Accordingly if Pz(x, y) ̂  Λ, />^«, y) ̂  || /», || ̂  ̂ '̂p/a;, ?j). Hence for

Conversely let there exist a sequence {pn'\ such that it satisfies a)

and b). Then from a) || pn

r ||< — )| p0

f \\ . Furthermoe for any 6 > 0 let

n be an integer such that — || p0' \\<^ε and let δ be a positive number

such that mnδ<8. Then if Pl(x, y}<δ, p2(xt τ/)< — || Po

r \\ vm n8<8,
n

which implies -X^n ̂  Xtp2i
By the same method used in the proof of Theorem 2 we obtain

the following

Theorfm 3. // X is a complete uniform space, the lattice ordered
semi-additive-group @3K(X) determines the uniform space X.

REMARK. By a well known theorem obtained by several authors
and by the method used by the author120 we see easily that for a com-
pletely metrisable uniform space X, the system &U(X} of all (bounded)
uniformly continuous real valued function on X determines the uniform
space X considering (£W(X) as ring, lattice or Banach space.

But for complete uniform spaces we can obtain from KM almost
nothing, even for complete uniform space whose base space is separable
metrizable. For example we consider the space X and X2 of the example
in the section 3. The complete uniform space Xλ and X2 are not uniformly
homeomorphic, but &M(J£ι) and &U(X2) coincide.

(Received September 17, 1953)

12) Cf. T. Shirota: A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952).






