Relations between Homotopy and Homology. I.

By Atuo Komatu.

1. Introduction.

This paper is a continuation of the author's earlier investigation [1], studying the problem of essential dimensions ${ }^{1}$) of continuous transformations using the method of homology with local coefficients [2]. The exact homology sequence, recently clarified by J. L. Kelley and E. Pitcher [3], can be applied to this method and give many new results some of which are already obtained by S. Eilenberg and S. Mac Lane [4], L. Pontrjagin [5] and G. W. Whitehead [6].

Let K^{n} be the n-section of a complex K, then we have the following exact sequence with respect to the homotopy groups

$$
\begin{aligned}
& \pi_{m}\left(K^{n-1}\right) \xrightarrow{i} \pi_{m}\left(K^{n}\right) \xrightarrow{r} \pi_{m}\left(K^{n} \bmod K^{n-1}\right) \xrightarrow{\partial_{t}} \\
& \pi_{m-1}\left(K^{n-1}\right) \xrightarrow{i} \pi_{m-1}\left(K^{n}\right)
\end{aligned}
$$

The kernel-images in $\pi_{m}\left(K^{n}\right), \pi_{m}\left(K^{n} \bmod K^{n-1}\right), \pi_{m-1}\left(K^{n-1}\right)$ of this sequence are essentially the same as the groups $\nu_{m}\left(K^{n}\right), \mu_{m}\left(K^{n}\right), \lambda_{m-1}$ $\left(K^{n-1}\right)$, respectively, which were introduced by the author in [1].
2. The Case of Simply Connected Complex.

Theorem 1. Let α_{n} be the number of n-simplexes of a simply connected complex K. Then the relative homotopy group $\pi_{n}\left(K^{n} \bmod K^{n-1}\right)$ ($n>2$) is isomorphic with the weak direct sum $\left(I, \alpha_{n}\right)$ of α_{n} integer. groups.

Proof. The proof is similar to that of theorem 2.1, [1].
Corollary 1.1.

$$
\boldsymbol{\pi}_{n}\left(\boldsymbol{K}^{\prime \prime \prime}\right) \approx \boldsymbol{\mu}_{n}\left(\boldsymbol{K}^{\prime \prime \prime}\right)+\nu_{n}\left(\boldsymbol{K}^{n}\right) .
$$

Proof. The group $\mu_{n}\left(K^{n}\right) \approx \pi_{n}\left(K^{n}\right) / \nu_{n}\left(K^{n}\right)$ is a subgroup of the

[^0]free abelian group $\pi_{n}\left(K^{n} \bmod K^{n-1}\right)$, therefore $\mu_{n}\left(K^{n}\right)$ is a direct component of $\pi_{n}\left(K^{n}\right)$.

Corollary 1.2. $\lambda_{n i}\left(K^{\prime \prime}\right)$ is isomorphic with the direct sum of the subgroup $\lambda_{n}\left(K^{n}\right) \cap \nu_{n}\left(K^{n}\right)$ and the subgroup isomorphic with $\lambda_{n}\left(K^{n}\right) / \lambda_{n}$ $\left(K^{\prime \prime}\right) \cap \nu_{n}\left(K^{\prime \prime}\right)$.

For $\lambda_{i n}\left(K^{n}\right) / \lambda_{n}\left(K^{\prime \prime}\right) \cap \nu_{n}\left(K^{n}\right)$ is a module, being isomorphic with a subgroup of $\pi_{n}\left(K^{n} \bmod K^{n-1}\right)$.

Corollary 1.3. The n-chain group with integer ceffficients L^{n} (K, I) of K is isomorphic with $\pi_{n}\left(K^{n} \bmod K^{n-1}\right)$.

Theorem. 2. Let ∂_{l} be the homology boundary orerator of $L^{n}(K, 1)$ $(n>3)$, and ∂_{t} the homotory boundayy operator, then there holds the relation

$$
\partial_{\imath}=r \cdot \partial_{t}
$$

Proof. It is sufficient to prove the case of one simplex 1. $\sigma^{n} \in L^{n}$ (K, I), for $\partial_{l}, r, \partial_{t}$ are all homomorphic mappings of abelian groups.

Let

$$
\begin{aligned}
& \partial_{l}\left(\sigma^{n}\right)=\sum_{i}: \sigma_{\imath}^{n-1} \\
& \partial_{t}\left(\sigma^{n}\right)=\alpha \in \lambda_{n-1}\left(K^{n-1}\right)
\end{aligned}
$$

where α is a homotopy class of the continuous napping of an ($n-1$)-sphere S^{n-1} on the sphere $\partial_{l}\left(\sigma^{n}\right)=\sum_{i} \sigma_{2}^{n-1}$ with mapping-degree +1 . Then

$$
r(\alpha)=\Sigma \sigma_{i}^{n-1}, \text { i. e. } \partial_{l}=r \partial_{t}
$$

A chain $c^{n} \in \pi_{n}\left(K^{n} \bmod K^{n-1}\right)$ is a cycle, when $r \partial_{i}\left(c^{n}\right)=0$, and is a spherical cycle, when $\partial_{t}\left(c^{x}\right)=0$. A homology-boundary is a spherical cycle and the spherical homology group $\Sigma^{n}(K)$ is defined as the factor group of the group $\mu_{n}\left(K^{n}\right)$ of spherical cycles by the homology boundary $r\left(\lambda_{n}\left(K^{n}\right)\right)$.

Corollary 2.1. $\quad \Sigma^{n}(K) \approx \pi_{n}(K) / \nu_{n}(K) \approx \mu_{n}(K)$.
Proof. The group of boundaries is $r\left(\lambda_{n}\left(K^{n}\right)\right) \approx \lambda_{n}\left(K^{n}\right) / \lambda_{n}\left(K^{n}\right) \cap$ $\nu_{n}\left(K^{n}\right)=B^{n}(K)$. Therefore $\Sigma^{n}(K)$ is isomorphic with

$$
\mu_{n}\left(K^{n}\right) / r\left(\lambda_{n}\left(K^{n}\right)\right) \approx \pi_{n}\left(K^{n}\right) / \nu_{n}\left(K^{n}\right) / \lambda_{n}\left(K^{n}\right) / \lambda_{n}\left(K^{n}\right) \cap \nu_{n}\left(K^{n}\right)
$$

The last term of the above sequence of groups is easily verified to be isomorphic with $\pi_{n}(K) / \nu_{n}(K) \approx \mu_{n}(K)$.

Corollary 2.2. $H^{n}(K) / \Sigma^{n}(K) \approx \lambda_{n-1}\left(K^{k-1}\right) \cap \nu_{n-1}\left(K^{n-1}\right)$.

Lemma 2.1. $\nu_{n}\left(K^{n}\right) \approx \pi_{n}\left(K^{n-1}\right) / \lambda_{n}\left(K^{n-1}\right)$.
Corollary 2.3. If $\pi_{i}(K)=0(0 \leqq i<n)$, then

$$
\begin{aligned}
& H^{n}(K, I) \approx \Sigma^{n}(K) \approx \pi_{n}(K) \\
& H^{n+1}(K, I) \approx \Sigma^{n+1}(K) \approx \pi_{n+1}(K) / \nu_{n+1}(K)
\end{aligned}
$$

Proof. By the result of W. Hurewicz any compact set of K^{n-1} is homotopic to zero in K^{n}. Therefore $\pi_{n}\left(K^{n-1}\right) \approx \lambda_{n}\left(K^{n-1}\right)$. And so by Lemma 2.1, $\nu_{n}\left(K^{n}\right)=0$, i. e. $\nu_{n}(K)=0$. This proves the theorem by Corollaries 2.1, 2. 2.

If we apply the Freudenthal's theory of "Einhängung" to the group $\nu_{n+1}(K) \approx \nu_{n+1}\left(K^{n+1}\right) / \nu_{n+1}\left(K^{n+1}\right) \cap \lambda_{n+1}\left(K^{n+1}\right)$, we can deduce the results of G. W. Whitehead. For instance we get the following relations :

If

$$
\begin{aligned}
& \pi_{i}(K)=0(0<i<n) \\
& \pi_{n}\left(K^{n}\right) / 2 \pi_{n}\left(K^{n}\right) \approx \pi_{n+1}\left(K^{n}\right), \\
& \pi_{n}\left(K^{n}\right) /\left(\lambda_{n}\left(K^{n}\right), 2 \pi_{n}\left(K^{n}\right)\right) \approx \pi_{n+1}\left(K^{n}\right) / \lambda_{n+1}\left(K^{n}\right), \\
& \pi_{n}(K) / 2 \pi_{n}(K) \approx \nu_{n+1}\left(K^{n+1}\right) .
\end{aligned}
$$

3. Thr Case When K is not Simply Connected.

Let \bar{K} be the universal covering complex of K and \bar{K}^{n} the n-section of \bar{K}. $\bar{K}^{n}(n>1)$ is the universal covering complex of K^{n}. Let $\mathfrak{F}=$ $\left\{x_{\alpha}\right\}$ be the fundamental group of K, then the n-simplex of K are represented in the form $\left\{x_{x} \sigma_{i}{ }^{n}\right\}$, where $\left\{\sigma_{i}{ }^{n}\right\}$ are n-simplexes of K. The mapping $u: x \times \sigma_{2}{ }^{n} \rightarrow \sigma_{2}{ }^{n}$ is the covering mapping of K onto K. Remembering that the homotopy groups of a complex are isomorphic with those of the covering complex, we can easily verify that the following two sequences

$$
\begin{aligned}
& \pi_{n+1}\left(K^{n+1} \bmod K^{n}\right) \rightarrow \pi_{n}\left(K^{n}\right) \rightarrow \pi_{n}\left(K^{n} \bmod \bar{K}^{n-1}\right), \\
& \pi_{n+1}\left(K^{n+1} \bmod K^{n}\right) \rightarrow \pi_{n}\left(K^{n}\right) \rightarrow \pi_{n}\left(K^{n} \bmod K^{n-1}\right)
\end{aligned}
$$

are equivalent as homomorphism sequences. In particular we have

[^1]\[

$$
\begin{aligned}
& \lambda_{n}\left(\boldsymbol{K}^{n}\right) \approx \lambda_{n}\left(\boldsymbol{K}^{n}\right), \\
& \mu_{n}\left(\bar{K}^{n}\right) \approx \mu_{n}\left(\boldsymbol{K}^{n}\right), \\
& \nu_{n}\left(\overline{\boldsymbol{K}^{n}}\right) \approx \nu_{n}\left(\boldsymbol{K}^{n}\right) .
\end{aligned}
$$
\]

As is shown in $\S 2, \pi_{n}\left(\bar{K}^{n} \bmod \bar{K}^{n-1}\right)$ is isomorphic with the chain group $L^{n}(\bar{K}, I)$, and its elements can be represented in the form $\sum a x_{x} \sigma_{i}{ }^{n}$, where $a^{\prime} \mathrm{s}$ are integers. Clearly the elements of the form $\sum 1 a$. $1 \sigma^{n}$, where 1 is the unit element of \mathfrak{F}, form a subgroup of $L^{n}(K, I)$ which is isomorphic with the chain group $L^{n}(K, I)$. We suppose that $L^{n}(K, I)$ is imbedded in $\pi_{n}\left(\bar{K}^{n} \bmod \bar{K}^{n-1}\right) \approx L_{n}(\bar{K}, I)$ by the above isomorphism.

We remark that $L_{n}(K, I)$ is a direct summand of $\pi_{n}\left(\bar{K}^{n} \bmod \bar{K}^{n-1}\right)$ and the natural homomorphism of the latter group onto the former is induced by the covering mapping $u: x_{\alpha} \sigma_{i}{ }^{n} \rightarrow \sigma_{i}{ }^{n}$. We denote by Γ^{n} the kernel of the last homomorphism.

Then we have the following important
THEOREM 3. The homology boundary operator ∂_{\imath} of $L^{n}(K, I)$ $(n>3)$ can be decomposed into 3 successive operators, i.e.

$$
\partial_{l}=u \boldsymbol{r} \partial_{t} .
$$

Proof. It is sufficient to prove the case of one simplex σ^{n}.
Let

$$
\begin{aligned}
& \partial_{t}\left(\sigma^{n}\right)=\sum \sigma_{i}^{n-1} \\
& \partial_{t}\left(\sigma^{n}\right)=\alpha \in \lambda_{n-1}\left(K^{n-1}\right) \approx \lambda_{n-1}\left(\bar{K}^{n-1}\right)
\end{aligned}
$$

where α is the homotopy class of continuous mapping f of S^{n-1} on the ($n-1$)-sphere $\sum_{i} \sigma_{i}{ }^{n-1}$ of K^{n-1} with mapping degree +1 , or the mapping \bar{f} of S^{n-1} on an ($n-1$)-sphere $\sum_{i} x_{i} \sigma_{2}^{n-1}$ of \bar{K}^{n-1}. The mapping f is equal to the mapping $u \bar{f}$. The image sphere $\sum_{i} x_{\alpha} \sigma_{i}{ }^{n-1}$ is invariant by the reativisation r, as in theorem 2 and by the covering mapping u it reduces to the sphere $\sum_{i} \sigma_{i}^{n-1}$, i. e. $\partial_{l}\left(\sigma^{n}\right)$. Therefore for every chain c^{n} of $L^{n}(K, I)$

$$
\partial_{l}\left(c^{n}\right)=u r \partial_{t}\left(c^{n}\right)
$$

A chain $c^{n} \in L^{n}(K, I) \subset \pi_{n}\left(K^{n} \bmod K^{n-1}\right)$ is called spherical, when it satisfies $\partial_{t}\left(c^{n}+\gamma^{n}\right)=0$ for some $\gamma^{n} \in \Gamma^{n}$, and is called simple, when
it satisfies $r \partial_{t}\left(c^{n}+\gamma^{n}\right)=0$ for some $\gamma^{n} \ni \mathrm{I}^{n 2}$. Then we see easily that $c^{\prime \prime}$ is a spherical cycle or a simple cycle if and only if it is an image under u of a spherical cycle or a cycle of \bar{K}, respectively.

Theorem 4. Homology boundaries are spherical.
Proof. Let c^{n} be the boundary of a chain c^{n+1}, that is, $\partial_{l}\left(c^{n+1}\right)=$ $u \dot{r} \partial_{t}\left(c^{n+1}\right)=\boldsymbol{c}^{n}$ or $\boldsymbol{r} \partial_{t}\left(c^{n+1}\right)=c^{n}+\gamma^{n}$ for some $\gamma^{n} \in \Gamma^{n i}$. Using relation $\partial_{t} r=a$, we have then $\partial_{t}\left(c^{n}+\gamma^{n}\right)=\partial_{t} r \partial_{t}\left(c^{n+1}\right)=0$.

By this theorem we can define the spherical homology group $\Sigma^{n}(K, I)$ and the simple homology group $\Theta^{\prime \prime}(K, I)$ of K as subgroups of $H^{n}(K, I)$.

Theorem 5.

$$
\begin{aligned}
& \sum^{n}(K, I) \approx \Sigma^{n}(\bar{K}, I) / \Sigma^{\prime \prime}(K, I) \cap \mathrm{I}^{n}, \\
& \Theta^{n}(K, I) \approx H^{n}(\bar{K}, I) / H^{n}(K, I) \cap \Gamma^{n} .
\end{aligned}
$$

Proof. We shall prove only the former relation. The proof of the latter is similar.

Let c^{n} be the homology boundary of c^{n+1} and d^{n}, d^{n+1}, respectively, the image chains $u\left(c^{n}\right), u\left(c^{n+1}\right)$ in K. Then for a suitable element γ^{n+1} $\in \pi_{n+1}\left(\bar{K}^{n+1} \bmod K^{n}\right)$

$$
\begin{gathered}
c^{n+1}=d^{n+1}+\gamma^{n+1}, \\
u \cdot \partial_{t}\left(d^{n+1}\right)=u \cdot \partial_{t}\left(\boldsymbol{c}^{n+1}-\gamma^{n+1}\right) \\
=u r \cdot \partial_{t}\left(\boldsymbol{c}^{n+1}\right)-u r \cdot \partial_{t}\left(\gamma^{n+1}\right)=u\left(c^{n}\right)=d^{n} .
\end{gathered}
$$

Hence the mapping u defines a homomorphism of $\Sigma^{n}(K, I)$ in $\sum^{n}(K, I)$.
Let d^{n} be a spherical cycle in K. With a suitable γ^{n} the sum $\gamma^{\prime \prime}+$ $d^{n}=c^{n}$ is a spherical cycle in K, i. e.

$$
\partial_{t}\left(\gamma^{n}+d^{n}\right)=0,
$$

and $u\left(c^{n}\right)=d^{n}$. Hence $u\left(\Sigma^{n}(K, I)\right)=\Sigma^{n}(K, I)$.
Let d^{n} be a boundary in K and c^{n} the original element $u^{-1}\left(d^{n}\right)$ in $\Sigma^{n}(K, I)$.
These conditions are written

$$
\begin{align*}
& c^{n}=d^{n}+\gamma^{n}, \gamma^{n} \in L\left(K^{n}, I\right), \\
& \partial_{t}\left(c^{n}\right)=0, \\
& u r \partial_{t}\left(d^{n+1}\right)=d^{n}, \quad d^{n+1} \in L^{n+1}\left(K^{n+1}, I\right) \tag{2}
\end{align*}
$$

From (2) for a suitable $\gamma^{\prime n}$

$$
\dot{r} \partial_{t}\left(d^{n+1}\right)=d^{n}+\gamma^{\prime n},
$$

hence
(3) $\partial_{t}\left(d^{n}+\gamma^{\prime n}\right)=0$.

From (1) and (3)

$$
\partial_{t}\left(\gamma^{n}-\gamma^{\prime n}\right)=0 \text {, i. e. } \quad \gamma^{n}-\gamma^{\prime n} \in \Sigma^{n}(\bar{K}, I) \bigcap \Gamma^{n},
$$

and

$$
c^{n}=r \partial_{t}\left(d^{n+1}\right)+\left(\gamma^{n}-\gamma^{\prime n}\right)
$$

Therefore the original element $c^{n}=u^{-1}\left(d^{n}\right)$ is contained in the subgroup $\nu^{\prime \prime}(\bar{K}, I) \cap 1^{n}$ of $\Sigma^{n}(\bar{K}, I)$.

Literature.

1. A. Komatu: Zur Topologie der Abbildungen von Komplexen, Jap. Jour. of Math., vol. 17, 1941.
2. N. E. Steenrod : Homology with local coefficients, Ann. of Math. 44, 1943.
3. J. L. Kelley and E. Pitcher: Exact homomorphism sequences in homology theory, Ann. of Math. 48, 1947.
4. S. Eilenberg and S. Mac Lane: Relations between homology and homotopy groups of spaces, Ann. of Math. 46, 1945.
5. L. Pontrjagin: Mappings of the three dimensional sphere into an n dimensional complex, Comp. Rendus URSS, 34, 1942.
6. G. W. Whitehead: On spaces with vanishing low-dimensional groups, Proc. Nat. Acad. Sci., 1948.

[^0]: ${ }^{1)}$ For this definition see [1]. The essential dimension of a continuous mapping f of M in K is the least dimension of the image sets $g(M)$, where g is any continucus mapping of the sa ne homotopy class with f.

[^1]: 2) After this paper was submitted for publication, I have read G. W. Whitehead's paper [6] that recently came to Japan. Although the procf is only sketched, it seems to me that his methcd is different from that of mine. I could not read the paper of H . HOPF: Über die Bettischen Gruppen, die zu einer beliebigen Gruppen gehören. Comment. Math. Helv, 17, 1944.
