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INTRODUCTION

Let G be a group and L (G) be the lattice formed of all subgroups
of G. Wesay L (G) belongs to G. G is called modular if L (G) is modu-
lar, while if L (@) is upper or lower semi-modular we call G upper or
lowér semi-modular respectively. The structure of modular groups was
studied by K. IwasawA. He gave necessary and sufficient conditions for
a group to be modular when it is a finite group') or it is such infinite
group as has at least one element of infinite order *), while he showed the
structure of such modular groups as have no element of infinite order*)
under the following condition: any factor-group of any subgroup of them
is a finite group if the lattice belonging to the factor-group is of finite
dimensions. Let us say a group satisfies the condition (A) if it satisfies
the above condition. In this paper wei call a lattice L of infinite dimen-
sions upper semi-modular (=u.s. modular) as well as in the case of finite
dimensiens if it satisfies the following condition ‘: If ¢, beL and « covers
a N\ b that is, dim (a/a N\ b)=1, then a\/b covers b. The lower semi-
modularity (=I.s. modularity) is defined as a dualism to it.

The purpose of this paper is to study the structure of infinite u.s.
modul;ir groups under similar principles as IwAsAwA’s in the case of
modular groups. It is shown that an u.s. modular group whose elements
are all of finite order has similar structure as that of finite ogé if it
satisfies (A) (Chapter I), and that such u.s. modular group as has at least
one element of infinite order is nothing but a modular group if it has no
perfect subgroup and satisfies (A) (Chapter II).
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111, Zenkoku Sizyd Sngaku-Danwa-Kai No. 225 (1941).
3) K. IWASAWA(3), On groups and the lattices of their subgroups, (in Japanese)
11, Isd-Sagaku Vol. 4-1 (1942)
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In the first place we notice that the following Theorem holds.
THEOREM 1. A group G of finite order is w. s. modular if and only
if it has such structure as follows:

G=A xA, x...xA, xR xR, x...x R,

where the orders of any two direct factors are relatively prime, and R,
are Sylow-subgroups of G and are u.s. modular, (hence they are
modular since a nilpote'h,t group is elways l. s. modular, therefore their
structure is well known), and A, are non-nilpotent directly indecompo-
sable w.s. modular groups. A mnon-nilpotent directly indecomposable
- . 8. modular group A of finite order has such structure as follows:

A=P, xP,x...xP)\JQ,

where P; and Q are the Sylow-subgroups of A of order p; and q respec-
tively, and p, ~qi=1,...,% and

1) every P, is an elementary abelian group,

2) Q iscyclic: Q@ =10},

3) every P;\J Q is non-nilpotent and P, is normal in it, and fur-
thermore, to every P, correspond two numbers r, and B3; such that r,==
1 mod p, ba, b = al* for any a,€P, 'r:"q’ =1 mod p, and 1< 3 <
B3, if q° is the order of @, and

4) any two B; in 3) are distinct.

This is obtained by a.slight modification of the theorem which is
given in IwAsSAwA (1) in the case of modular groups.

DzriNiTION. We say that the groups, the non-nilpotent directly
indecomposable u.s. modular groups that were given in Theorem 1, have
J-type.

DEFINITION. If an element in a group is of infinite order or is of
finite order, we call it U-element or E-element respectively.

In this paper f{a, @, ...} with elements ¢, in a group denotes the
subgroup generated by them, while {{a,a,...}} denotes the least normal
subgroup that contains them. When there occurs no confusion we denote
at times by A/B with two subgroups A, B of a group G such that A > B
a quotient in L (G), and by dim (A/B) its dimension.
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CuapTER I. U.S. MobuLAR GROUPS WITH NO U-ELEMENT

1. In this chapter we determine the type of such u.s. modular in-
finite groups as have no U-e'ement and satisfy the condition (A).

Let G be such, then we have

LEMMA 1. If for a prime p, every element of p-power order in G
is commutative with any element of order prime to p in G, then all
elements of p-power order in G form a characteristic subgroup of G.

ProofF. Let «,b be any two elements of p-power order in G. Ac-
cording to (A), {a, b} is a finite group and either is a p-group or has
J-type. In our case the p-Sylow-subgroup of it is necessarily normal in
it, hence contains ¢ and b. Then {a, b} is a p-group. Therefore, our
assertion is obvious, q.e.d.

LEMMA 2. If there exist in G some two elements a,b’ of prime-
power order p,* q* respectively that are not commutative, and if p, >q,
then there exist such (finite or infinite) elementary abelian normal p,-sub-
groups P;,i=1,...n that (P,\J...\J P, \J {b} contains any element
whose order has no other prime factor than p,,p,...p,, ¢, where {b} is
a maximal cyclic ¢-group containing {b’j. Furthermore, any finite sub-
group of (P,\J...\UP,)\U {b} containing {b} has J-type. Hence of
course (P,\/...\/P,) =P, x...x P, and for every P, a positive
integer r, is uniquely determined such that ba, b~ = @,7: for any @, € P,,
and n - 3 if the order of b is q°.

ProoF. According to (A), f{a, b’} has J-type, hence the order of «,
is p, and b a, b~ =an’. For any element ¢’ of p,-power order fa/,
a, b’} has alco J-type. Since ¢-Sylow-subgroup is not normal in it, we
can see p,-Sylow-subgroup of it is normal in it, and so contains both a,,
a,/, whence aq,' = a'e, and the order of @, is p,, Then all elements
of p-power order in G form an elementary abelian p,-group P,’, and any
finite subgroup of P,\/ {b’} that contains {b’}{ has J-type.

Now, if another element a, of p,-power order with p,=-p, is not
commutative with b’, then - {a,, a,, b’} has J-type. S_ince q-Sylow-subgroup
is not normal in it, a0, = a,¢, and p, > ¢. Then we can conclude as
ahove that all elements of p,-power order in G form an elementary abelian
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p,-group P,', and that P/'\/ P,/ =P/ x P,/. Continuing this considera-
tion we obtain such group (P, x ... x P,) as is the minimal one of
those subgroups of G that contain all elemets ot order prime to ¢ that
are not commutative with ', where s < B’ (cf. the condition about g3;
in Theorem 1). ‘

Now suppose that there exists an element b” of q-power order which
is not contained in (P, x ... x P/)\J {b’'}. Let @ be any element (== 1)
in P/, then f{e,b’,b”} has J-type and is greater than {a,b’}. Hence
there exists such b, that {a, b} >b” and b, = b’ for some & > 0. Further-
more, there .exists a number #, and bab,"' = a7, r ==1, 9% =1 mod
p;, where we take for 23, the least value that satisfies the above condition.
Since 7, attains at most p, — 2 values, the values of 3, cannot exceed a
sufficiently large constant for any b” and b, in G. But en’ = bab'' =
b, ab, ¢ = an? and 7/==1 mod p, hence »% = 1 mod p,. This shows
that "¢ < B, i.e., & is bounded. Hence there exists a maximal finite
cyclic g-group {b} containing {b'j. Then considering about b instead of
b’ we have as above the desired group (P, x ... x P,)\J {b}, q.e. d.

For brevity we say also that the infinite group given in Lemma 2 has
J-type. Then from Lemma 1, Lemma 2 we have

THEOREM 2. G is a direct product (containing finite or infinite
number of factors) of u.s. modular p-groups satisfying (A) (cf. the neat
remark) and J-type groups, whéa'e any of these faclors may be of finite
or infinite order and any two elemenls from different factors have
relatively prime orders. Conversely such direct product of groups is
always u.s. modular and satisfies (A).

Proor. A direct product of u.s. modular factors is again u. s.
modular if any pair of elements from different factors have always rela-
tively prime orders. And that a J-type group is u.s. modular is quite
obvious, q.e. d.

REMARK. Infinite u. s. modular p-groups satisfying (A) are always
modular. This is obvious, because K. IwASAWA determined the structure
of infinite modular p-groups satisfying (A) using only the property that
every finite factor-group of any subgroup is modular, which property have
our u.s. modular p-groups also. (cf. IwAsAwA )
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CuapTeR II. U. S. MobuLAR GrOUPS CONTAINING U-ELEMENTS

2. In this chapter we study the structure of such u. s. modular groups
as contain at least one U-element and satisfy (A).

LEMMA 3. An u.s. (l.s.) modular lattice of infinite dimensions has
no composition series of finite length that combines I and O.

Proor. Trivial.

THEQREM 3. Let G be any u.s. modular group, then all E-elements
in G form a characteristic subgroup of G.

PrROOF. Let @,b be E-clements in G and A = {e¢}, B.= {b}. Then
the quotient A/A N\ B is of finite dimensions. Let one of its lattice-
theoretical composition serieshe 4 >4 S A, >... > A, >ANB. Then
A\/BDA\/B>...2A,\/B>B contains a composition series of
A\/B/B. Hence A\/B/B and therefore A\/ B/l itcelf is of finite
dimensions (Lemma 1). Hence every element in A\ /B is E-element.
Then our assertion is obvious, q.e.d.

REMARK. In this proof (A) is not used.

LeMMA 4. Let G be u.s. modular and satisfy (A), and let o, b€ G,
@ be U-element and b be E-element. Then all E-elements in {a} \/ {b}
are contained in {b}, i.e., {b} is normal in it. If further G is Il s.
modular as well as u.s. modular, then the same assertion holds without (A).

ProorF. We can assume that the order of {b} is a prime number
without loss of generality. Suppose that £ = {b, aba™?, ¢ 'ba, ¢*ba ",
a~*ba®, ... } = §b}.

1) If E is a finite p-group, then F is an elementary abelian group,
because in an u.s. modular p-group, any two elements of prime order are
commutative. Let » be the minimal number ( - 0) such that «’ba "€ {bj}.
Then

@i\ E D ey \J by D fay, ... (1)
for {b} is normal in {e¢"}\/ K. Since K N {e¢} =1 and E is normal in
fa} \/ {b}, we have

dim (fa} \J E/{a"} \J E) = dim (fa}/{a"}). ..... (2)
According to the u.s. modularity dim (fe}\/ E/{a}) =1, because {aj\/
E = {a}\J {b}. Then we have by (2)
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(lzm({ag\jE/ )~dz’m({a}\jE'/ ) +dz7
=1+ dzm({a; \J E/{a

But by (1) dim ({a"} \J E/{a ) > 2, then we have

dim (fa} \J E/ {a"}). =dim ({a} \J E/{a"} \J E) + dim ({e \jF/
: codim(fa}\J E/fa"\J E) + 2

in contradiction with above. Hence F is not a finite group.

2) Let E be an infinite p-group. As above F is also an elementary
abelian group. Put E, = {b, a*ba3 a *ba’, . .., a*"ba~*", ¢ *"ba™, .. .}.
Then E, =+ E, (and of course ¥, is normal in {ae’} \/ {b}). To see this,
assume E = FE,. Then for some integer = {b, ¢°ba’ ¢ ba? ....... ,
@*"ba "} 3 aba'.. If the abave group is the minimal one of those that
are of above quality, then E, = {b, aba?, ¢ 'ba, a*ba 2, ¢ *ba’ ..... ,
a™ba""} 3> a*"ba~*", where m f=— 2n—1)if >0

l:2|n| if n<0.

Then E, = E, i.e., E is of finite order in contradiction with the hypo-
thesis. Hence E +- E. According to the u.s. modularity: dim ({a}\/
b} /{a*}) = dim (fa} \J {b}/fa}) + dim ({a}/{a®}) =2, but since dim ({a*}
\J {b}/{e*}) = 1, we conclude dim ({a} \J {b}/{a*} \/ {b}) =1. Then since
“fa*}\J {b} Faba ' ¢ E, must hold f{a}\J {b} = {a*}\J {b}\J faba '}
ta*} \J E. But the converse is obvious, therefore we have {a} \/ {b} = {a}
\JE = {a’}{\J E. But this is impossible because £ is normal in {e} i/
fb} and fe} N\E = {e¢*} /\E = 1. Hence F is not a p-group.

~3) Suppose that E has a J-type group as one of its direct factors.
Then we can find always a characteristic subgroup £, of £ such that £ =-
E,=+=1. Then since E, is normal in {b}\/ {a} and £ N {a} = E, " {a}
=1, necessarily {a}\/E D fa}\/ E > fa}. But this is a contradiction,
because dim ({a}\J E/{a}) = dim ({a}\J {b}/fa}) = 1. Hence the first
part of the theorem is proved.

If G is 1.s. modular then dim (E/{e} N\ E) =1, because dim ({a}\/
E/f{a}) =1. But {e} N\E =1, then must E = {b}. This complete the
proof of the second part of our theorem, q.e.d.

ReEMARK. ' The second part of this theorem shows the reason why
we can determine the structure of modular groups containing U-elements
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without using (A).

THEOREM 4. Let G be u.s. modular and -satisfy (A). If G FE,
then K is abelian, where E is the charaeteristic subgroup of G formed
of all _E-eleménts. e ,

ProoF. Now that Lemma 4 is proved, the proof in IV‘VASAWA‘(Z)‘ in
case where G is modular remains valid term by term in our case, q.e. d.

Now we have seen the structure of E, then we shall study the struc-
ture of G/E and G itself in the rest of this paper. Hereafter, throughout
coming paragraphs, FE preserves the same significance as in Theorem 4,
if no other mention is made. o
- 3. We shall study the u.s. modular groups in the following two
cases : | o

I) when for any two elements @, b in G/E, {a} N {b} -- 1, and

_II) when there -are a pair of elements ‘@, b in G/E such that {a} N\
{5y = L. |

The purpose of this paragraph is to show that in the case I) G/F
is abelian, and that G is modular if it satisfies (A). According to IwA-
SAWA (2) the following lemma holds. '

LeMMA 5. Let G be any .group, @, be G, and a be U-element. If
fa} N {b} +=1 and ba*db~ = @ for some «, 3, then a =73, i.e., ba* =
a’b. '

The proof is very easy and omitted (see the first part of the proof
of Lemma 2 in IwAsawA (2)).

THEOREM 5. Let G be u.s. modular and have no other E-element
than the unit. If a,b€ G and {a} "\ {b} 3= 1, then fa} \J {b} is a cyclic
group.

Proor. If we can prove {a} \/ {b{ is abelian, then it is quite obvious
that it is cyclic, for according to our hypothesis {a}\/ {b} is free-abelian.
Hence we shall prove bab~! = a. To see this suppose that bab~!-=: a.
Put f{a*} = {a} N\ {b}. Then {a*} is contained in the center of f{a}\/
ib}, therefore (bab~*)* = a*. This shows we can put {c} = {a} N\ {badb~'},
and {c}==1. If a* =0ba’b~! =¢, then according to Lemma 3 ¢ =a° =
ba*db-'. Let p be a prime number and p | «. Put ¢, =a*/? and @, =
(bab~1)*/*, then @ = a,” =¢, and fa,} N {a,} = {e}. According to the
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u.s. modulavity f{a,}\/ {a.}/{c} contains no U-element. Hence for some
v=+0 (a,0,")€fc}. Now put (a,a, ') =c. But aa -1, hence it
is a U-elemnent, whence ¢" :i: 1, i.e., v +4:0. (We can assume there y >
0, taking «,0,”' instead of a,a,”' if necessary.) Put A = {ac’}, B =
fac’y. Then A N\B = {(ac)} = {(ac”)}, To see this suppose
(@)1 = (a,c")": (4= 1 obviously). Then a%c¢'" = a>¢"”, hence o =
@ 2P = P+ ?" »:?p. Thus we see p, > p according to the defini-
tion of p. But of course (ac"€ AN\ B. Hence our assertion is true.
This shows dim (A/A N\ B) =dim (B/A N\ B)=1. On the other hand,
A\JB>(ac")(ac") =aa,”', hence of course A\/B>(eal,) =c.
Thus we have A\/ B = {a,c", a,c’, ¢’} = {a, a,} = {a,} \J {a,}. But fa}
-- A, for ac” =a,'"?,p+0,vy >0. Hence

dim (A\J B/A) = dim ({a } \/ {a:;/A) =dim ({e,} \J {a.}/{a,)
+ dim (fa,}/A)
=1+ dim ({a,}/A)>1.

But this is a contradiction, because G is u.s. modular and dim (A/A N
B) =1, q.e. d. »
By Theorem 3 we see G/E is an abelian group of rank 1 if G has
the quality in case I). Now we determine the structure of such groups.
LEMMA 6. Let G be a non-abelian u. s. modular group satisfying
(A). I G/E = fz} is free cyclic, then G has such structure as follows :

acp)

zaz- =a*” ..., (*)

holds for all @ € P, where P is the maximal p-subgroup of Z, therefore of
course a -direct factor of £ (observe that £ is abelian), and « (p) is a
p-adic number satisfying « (p) =1 mod p (but if p = 2 especially, then
a(2) =1mod 4), and is uniquely determined mod p” except its inverse,
where  p” is -the highest one of all orders of elements in P. (p" may be
infinite, but the meaning of our assertion is obvious.) Conversely if we
extend an abelian group containing only £ -elements by a free cyclic group
with (*), then we have a quasi-Hamiltonean group, i.e., any two sub-
groups ‘of which are commutative, and therefore it is a modular group.

Proor. The proof in IWASAWA (2) in case where G is modular
remains valid in our case with natural modifications of . terminologies, if
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we observe that an u.s. modular group of order p*¢ with prime p, ¢ such
that » > ¢, is modular, q.e.d.

By Lemma 6 we are lead to the following theorem about the desired
general case.

THEOREM 6. Let G be a non-abelian u.s. modular group satisfying
(A). If G/E is abelion and of rank 1, then it has such structure as
follows : )

Let P be the p-component of E, i.e., the largest p-subgroup of -E,
(which is a direct factor of course), and let G = {E,z, %, ...}, where
z; are all U-elements. Then for any a(+ 1)€ P holds

2, 02, = a%'™
where a;(p) are p-adic numbers that have the same property as a (p)
in lemma 6. Furthermore,

a; (D)t = ay(p) mod p” (as to the sigwificance of p" see Lemma 6)
zzp-f-l = Zi€;

Ry =z €' i

where p; are prime numbers determined only depending on i, and ;€ F,
and «a,,, are such numbers thal z;,,e;zi} = ef‘“. Conversely if we
extend an abelian group E without U-elements with above relations for
sequence {p;} of prime numbers and a sequence f{e;} of elements of K
and o set of systems {a,(p); i=1,2...} of p-adic numbers corres-
ponding to each prime component of E, we have always a quasi-Hamil-
tonean group, i.e., have a modular group. ,

Proor. The proof in IWASAWA (2) in case where G is modular re-
mains valid exactly term by term in this case, q.e.d. .

4. In the following we study the structure of such u. s. mddular
groups as have the property in case II) (sce the remark at the beginning
of paragraph 3). 'In this case it scems to be difficult to determine the
structure of them if there is no other assumption ahout it. However, for
example, under the assumption. that they have no perfect subgroups, we
can prove they are necescarily abelian. In the following we shall show it.
In case where the group is modular it was shown in IwAsawA (2) that
the same is true without the assumption about perfect, subgroups, (and of
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course without (A)).- Now -we proceed step by step.

LEMMA 7. Let G = fa}\J {b} be u.s. modular and £ =1, i.e, let
G have no other E-element than the unit. If ba®bd! =a"% then must
hold bab~! = a, i.e., G is abelian.

‘Proor. If {a} N {b} &= 1, then the asserl;ion is obvious according to
Theorem 5. Hence assume {e} N {b} =

1) Firstly we show bab- = a°. Since fbab='} N\ {a} =1 and F =1,
we see {bab- } \/ {a} is cyclic (Theorem 5). Then it is obvious.

2) a--—1. Otherwise, bab!= ¢t Then b%ab>*=a, i.e, b
‘belongs to the center of G. But since {a‘'} is normal in G, we see G =
fa} \J {b}/fa'} \J §b*} is of order 8. Obviously G is not u.s. modular,
and it is a contradiction. Hence «a &4— 1.

3) By 1), 2) it suffices fo show that never | « | > 1. Suppose , «
>1. Put A = {ab} \J {b™"}, where p is a prime number and m is a posi-
tive integer. Put H =\J/g_, {b "ab"}, then it is the least normal sub-
group of G that contains a. Furthermore, H "\ A is also normal in G,
because \ /i.,b™" (AN H) b =\Jpw.,b" (AN H)b" for any number
r >0, and this is normal in G, where if we put » = mp, then it coincides
with A N\ H. Nowput B=(ANH)\J {p"}. Then BN\ H = A\ H and
dim (B/A N\ B) =1. We shall show that if we take suitable p, m, then
dim (A\J B/A) >1 in contradiction with the u.s. modularity. To see
this it suffices to show there exists such normal subgroup N of G that
ANHCNC(A\JB)NH, for it implies obviously A C AN C A\ B.
But we can observe for any positive integer » holds (fab}\J {b"}) N\ H=
ffa' e T = fqa®"-/* 43, To see this, let w:p"(ab)% b"t,
(e fad}\J {b"}) be contained in H, where s, ¢,20. Then w = a®?d?,
where

x___\‘z 1(“"“1/6(—1) an(t +...+£/__])+s]+...+.{,-v_j

y=n{E +...+1t)+8 +...+s,

But since w € H, necessarily y = 0, hence we can see easily a/a” — 1 is
an integer, i.e, we {{a®""'/*'}}. Thus we have ({ab}\/ {b"}) N\NH <
ffa*-'/*"'}}. But the converse is obvious, hence we have A N\H
= {{a*""""/*'}}, and (A\J B) N\ H = {ab} \J {b™} = {{a“""'/*"}}. But
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since -

. am-l/u-l.)
in order to see there exists such N that ANHCNCA\JB)N\H, it
is sufficient to show that for suitable p and m a™ ™V + a™*™> + ... +

“a™ +1 is not a prime number. (Observe that this is prime to «). But
it is trivial that we can find such p and m, q.e.d. ’
LeMMA 8. Let G = {a}\/ {b} and have no other £-element than the

unit. If ba*b-! = ¢* with (a, B) =+ «, B, then G is not u.s. modular.

aump—l/d—l dMP=1) M (D=2) L L g™
s

_—:(a,

ProoFr. Assume that G is u.s. modular. Then we can 'suppose (a,
B) = 1 without loss of generality (cf. lemma 7 proof 1)). Put {{a}} = H.
Then H is an abelian group of rank 1, hence we can write bab~" = a*/".
Then we can proceed quite analogously as in Lemma 7, q.e. d.

LeMMA 9. Let G = {a}\J {b} be u.s. modular, E =1 and {a} N
{b} =1. If G has an abelian subgroup A whose index in G is finite,
then G is itself abelian. |

Proor. Since G/A is a finite group, tor some number «, 8 (== 0)
a*, b* € 4, i. e, ¢°b® = b%a®. Put b* = b, then {b,ab,~'} N fa} == 1. Hence
according to Theorem 5 it is a cyclic groﬁp. But fblabl;‘}/{a“} and
fa}/{a*} have the same order. Hence we have bab,”! = a~'. But accor-
ding to Lemma 7 necessarily b,ab,”* = ¢. Thus we have {aba~"} N {b} ==
1. Hence as above we can conclude ab = ba, q.e.d. ‘

LeMMA 10. Let G be u.s. modular and satisfy (4), and let & =+ 1.
If G/E is an abelian group whose rank is not 1, then G is itself abelian.

Proor 1) Let {h,a, b} = G, where let 2" =1 and ¢,b be U-ele-
ments. Suppose that G/{h} = {a} x {b} (i.e. free abelian) and G is not
abelian. Let G’ be the commutator-subgroup of G, then G' < {h}. There-
fore, we can assume G' = {h?" '} without loss of generality, (if necessary,
take somé factor-group of G). Then aha' = k"1, bhb~! = k"= for some
numbers 7,7, and 7, = 7, =1 mod p (cf. Lemma: 6).

a) Suppose that , = », = 1. Then {k} is contained in the center of
G. But since bab-'a-'c {h?" '}, ba?b~ = a”. Thus we see {b,a’ h} is
abelian. According to {b} N\ e’} =1 we see {b}\y {a?} > {h2" 7'},
hence dim ({b, a?, k2" "'{/{b,a”}) = 1. But since dim ({b, a}/{b, a*}) < 1

A
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(u.s. modularity) and {b,a} 2 {b,a”, B?" '}, we scee {b,a} = {b,a’,
RP"'y. This shows {b,a} is abelian, and it implies G is itself abelian
in contradiction with the first hypothesis.

b) Suppose that 7,-=1. Since G’ = {R?" '}, we can assume #,=
1 + p™ ' (if necessary we take a power of b instead of b). Firstly we
show if we take some ok’ = c, then holds ¢cbec=' b~ =1. If a¢ba~ b =1,
then it is trivial. Hence suppose aba~'d~' = R?™ 7' (if necessary, take. a
power of k). If b(ak’)b ' (ah®)* =1, then s» (¢, — 1) =p™ "' mod p™.
But since », — 1 = p™', it suffices to solve s», =1 mod p. In any case
we can find desired ¢. Obviously ¢?” = a?”, and this shows {c} N\ {b}= 1.
Hence we have ‘

m = dim (fc}/{c?”, b} N\ fe}) = dim (fa}/{c?”, b} N\ {a}),

while dim ({a, b }/§cpm, b}y < m (u.s. modularity). And obviously dim ({c,
b}/{c?™,b}) = m, for {c,b} is free abelian. But {a, b} > {c, b}, for the
left-hand side is non-abelian. This is a contradiction.

2) Let G be any group that has properties given in the theorem.
‘According to Lemma 4, Theorem 4, Lemma 6 we can reduce our case to
1), q.e.d.

LemMmA 11. Let G = {a}\/ {b} be u.s. modular and EF =1. If
there exists such normal subgroup B that {bj < B G and B\ fa} =1,
and if G has no perfect subgroup, then G is abelian.

Proor. If B = {b}, then G is abelian according to Lemma 7. Hence
assume B -= {b}.

I) - Let B’ be the commutator-subgroup of B and /B’ be not abelian.

1) Suppose that B’ N {b} = 1.

i) If the rank of B/B’ is not finite, then it is a free abelian group.
To see this put a”be™” =1b,. Let us denote by c¢ the e'ement of B/B’
corresponding to ¢ €.B. Let # he the minimal number such that {b,, b, ..,
b4 N ib,,,3 1. Then f{b,4 N\fb,b,...,b,,,4 +=1. This shows the
rank of B/B’' is not greater than r+1 in contradiction with our hypothesis.
But this is impossible according to Lemma 4, as can easily be seen if
we consider (G/B’)/(B*/B’). with such B*/B’ as formed of all m-power
elements of B/B'.
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ii) Suppose that the rank of B/B’is finite.. Let us denote by B*/B’
the normal subgroup formed of all E-elements in G/B’, where of course
B > B* and {b}j \B*=1. If the rank of B/B* is 1, then according
to Lemma 7, Lemma 8 G/B is abelian, whence the rank of G/B* is 2 and
G/B' is itself abelian according to Lemma 10. But this is a contradic-
tion. Hence we assume the rank of B/B* is not 1. Now we write ¢ if ¢
(€ G) is considered mod B*. Put b, = a"ba™" for n=0. Let G, = {b,
b,...,b, ,} be fres abelian and b,"b .. .5?_]15: =1 with 1-- 0. Put G/
= G\J b4 \J {0} \J {0, \J 10f \J oo \J {03 \J §0,,,) and G, =
G \J b g}, then G, G CG C GG, ..., where every order of
G,/G',_, or G';/G, is a divisor of I or m and \ /i, G; = B. Let B» be
the subgroup of B formed of all such elements as can be expressed in the
form ¢ for some ¢ in B. Then if (m,b) =1 and (I,.p) = 1, we see B --
B?. B/B” is an elementary abelian group and is not cyclic (observe # --
1), but this is a contradiction, because {bj\/ B”/B” is normal in G/B*
according to Lemma 4.

2) Suppose that B’ N {b} ={b™} -=1. In this case B” /\ {b} =1,
where B’ is the commutator-subgroup of B’. To see this suppose B” "\
{b} = {b"} + 1. Let us write ¢, A if an element ¢ in G and a subgroup
A are considered mod B”. Put G = B'\/ {a}. B, = {b™} is normal in
{o™y \J {a} and B, < B'. But since B = {b}\/ B’, B,, is normal both in
B and in G,, therefore is normal in G. Put dim ({b}/{b™}) = « and
dim (§{6™}/1) = $3, then '

dim (‘Z}/{ii;) < dim (G/§0"}\J {a}) < a + B (u.s. modularity).
But since dim (G/{a}) = dim (G/G,) + dim (G /B,,\J {a}) + dim (B,,\/
fa}/fa}) = a + B + dim (G /B, \J {af),

we can conclude dim (G,/B,,\J {a}) =0, whence we have B,, = B’, obser-
ving they are both normal in G. This shows {b} =B in contradiction
with B’ =~ B”.. Thus we see B” " {b} = 1. Let now B*/B” be the group
formed of all E-elements in G/B” then of course B* C B and B* - B'.
Let us write ¢, A if ¢ (¢ G) and A (C C) are considered mod B*. Ac-
cording to 1) {a}\/ {b™} is abelian, then {aba-'} N b} = 1, therefore G
is abelian by Lemma 7 and Lemma 8. But this is a contradiction, for
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B' > B* and G/B’ is not abelian.

‘II) Suppose G/B’ is abelian.

1) If B" >.{b"} <=1, then as in I) 2) we can see B” "\ {b} =1 and
G = G/B* is abelian. But this is a contradiction, for B* C B’ = G', where
G’ is the commutator-subgroup of G. (As to other notations sec I) 2).

2) If BN b} =1. Then G/B’ is free abelian and is of rank 2.
In this case cannot hold {aba2b-'} N\ B” &= 1. To see this assume that the
relation holds, then B’/B” has no U-element, therefore G/B’ is abelian
according to Lemma 10 in contradiction with B’ = B”. Hence {aba~ b~}
N\ B" =1. Let B¥/B" be the subgroup formed of all E-elements in G/B”,
then B* < B'. Let us write ¢, A if ¢ (¢ G) and A (Z G) are considered
mod B*. According to I) {aba~'b-'}\/ {a} and jaba-'0-'}\/ {b} are both
abelian. This shows B’ is contained in the center of G. But since
B/B' ~ {b}, B is itself abelian in contradiction with B’ =- B¥, q.e.d.

LemMA 12. Let G = {a}\/ {b} be u. s. modular, £ = 1, and {a} N
{b} =1. Let G O M > B> {b} be a series of subgroups and B be nor-
mal in G. If G has no perfect subgroup, and

i) if B = {b}, then G is abelian (cf. Lemma 5) and- M = {b} \/ {a™}
for some m -+ 0. ;

ii) If B - {b}, then B = {b}\/J {a*}, M = {b}\J {a™} for some =,
m -i= Q.

ProoF. In case i) the assertion is trivial. In case ii) we have B N
fa} -k 1 according to Lemma 11. Put B\ {a} = {a’}. Let M, be a
maximal subgroup of G containing B, then for some prime p M, [\ fa} =
fa”}. But according to the u.s. modularity {e”}\/ {b} is maximal in G,
hence we have M, = {a”}\/ {b}. Continuing this consideration we see
our assertion is true, q.e.d.

THEOREM 7. Let G be u.s. modular and E =1. If G has no
perfect subgroup, then G is abelian. '

ProoF. According to Theorem 5 we are only to prove f{aj N\ {bj=1
implies ab = ba. Hence we can assume G = {a}\/ {b} -without loss of
generality. Suppose that G is hot abelian. Let G’ be the commutator-
subgroup of G, then G -£ G’ +1. We can suppose a ¢ G’, then {a}\/
G' -k {a} and {a}\/ G' is normal in G, hence {a}\/ G' = {a}\/ {0} for
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some u =+ 0 according to Lemma 12. Since {a}\/ G'/G' is cyclic, we can
take such v that ¢’ = b* mod G'. "Then b, =b* "€ G and {a}\J G =
fa} \J {b }, where {a} N\ {b,} = 1, because if {a} N {b,} == 1, then accor-
ding to Theorem 5 {a}\/ G’ is an abelian group whose index in G is
finite, but this implies, according to Lemma 9, G is itself abelian in con-
tradiction with our first hypothesis. According to Lemma 12 either ¢’ =
{b,} or {b,}j\J {e”} for some w - 0. If G'= {b}, then {a}\/ {b} is
abelian according to Lemma 7. But since the index of {a}\/ {b} in G
is finite, G is abelian by Lemma 9 in contradiction with our first hypo-
thesis. Hence G’ = {a®}\J {b,} with w = 0, and G/G' is a finite group.
Continuing this consideration we have the commutator-series G> G'>
G" =G ..., where G+ G'=4 G" 4G and G/G', G'/G", G" /G ...
are all finite groups. But this is impossible, because any u.s. modular
group of finite order is meta-abelian. (See Theorem 1). Hence G is
abelian, qg.e.d.

Combining Lemma 10, Theorem 7 and Theorem 6 we have

THEOREM 8. Let G be an wu.s. moduler group satisfying (A), and
G == E. If G has no perfect subgroup, then either G has such structure
as is shown in Theorem 6 or it is abelian. In short the family of all
u. s. modular groups satisfying the above conditions coincides with the
family of all modular groups that have at least one U-element. '
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