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INTRODUCTION

Let G be a group and L (G) be the lattice formed of all subgroups

of G. We say L (G) belongs to G. G is called modular if L (G) is modu-

lar, while if L (G) is upper or lower semi-modular we call G upper or

lower semi-modular respectively. The structure of modular groups was

studied by K. IWASAWA. He gave necessary and sufficient conditions for

a group to be modular when it is a finite group *) or it is such infinite

group as has at least one element of infinite order2), while he showed the

structure of such modular groups as have no element of infinite order3)

under the following condition : any factor-group of any subgroup of them

is a finite group if the lattice belonging to the factor-group is of finite

dimensions. Let us say a group satisfies the condition (A) if it satisfies

the above condition. In this paper we call a lattice L of infinite dimen-

sions upper semi-modular (=u. s. modular) as well as in the case of finite

dimensions if it satisfies the following condition : If α, 6 e L and a covers

a f\b, that is, dim (a/a f\b) = l, then a\J b covers 6. The lower semi-

modularity (=l.s. modularity) is defined as a dualism to it.

The purpose of this paper is to study the structure of infinite u. s.

modular groups under similar principles as IWASAWA'S in the case of

modular groups. It is shown that an u. s. modular group whose elements

are all of finite order has similar structure as that of finite one if it.v:>*.
satisfies (A) (Chapter I), and that such u. s. modular group as has at least

one element of infinite order is nothing but a modular group if it has no

perfect subgroup and satisfies (A) (Chapter II).

l) K. IWAS\WA(1), Uber die endlichen Gruppen und die Verb'άnde ihrer Unter-
gruppen, Journal of the Faculty of Science, Imperial University of Tokyo, Vol. 4 (1941).

•2) K. IWASAWA(2), On groups and the lattices of their subgroups, (in Japanese)
III, Zenkoku Sizyό Sύgaku-Danwa-Kai No. 225 (1941).

3) K. IWASAWA(S), On groups and the lattices of their subgroups, (in Japanese)
II, Isu-Sύgaku Vol. 4-1 (1942)
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In the first place we notice that the following Theorem holds.

THEOREM 1. A group G of finite order is u. s. modular if and only

if it has such structure as follows :

G — AI x A x ... x Ar x R, x R2 x ... x Rs,

where the orders of any two direct factors are relatively prime, and R.

are Sylow-subgroups of G and are u. s. modular, (hence they are

modular since a nilpotent group is always I s. modular, therefore their

structure is well known), and At are non-nilpotent directly indecompo-

sable u. s. modular groups. A non-nilpotent directly indecomposable

u. s. modular group A of finite order has such structure as follows:

A = (P1 x P2 x . .. x P.) \J Q ,

where Pt and Q are the Sylow-subgroups of A of order pt and q respec-

tively, and Pt > q i = 1,..., ί, and

1) every Pt is an elementary abelian group,

2) Q is cyclic: Q = { b },

3) every Pt\J Q is non-nilpotent and Pt is normal in it, and fur-

thermore, to every PI correspond two numbers rt and βι such that ?%φ

1 mod p^ batb~l = a** for any aL G Pt, rfl ΞΞΞ 1 mod pL and 1 <: βt <:

β, if q^ is the order of Q, and

4) any two βt in 3) are distinct.

This is obtained by a slight modification of the theorem which is

given in IWASAWA (1) in the case of modular groups.

DEFINITION. We say that the groups, the non-nilpotent directly

indecomposable u. s. modular groups that were given in Theorem 1, have

J-type.

DEFINITION. If an element in a group is of infinite order or is of

finite order, we call it U-element or E-element respectively.

In this paper \aιy α.,,... j with elements at in a group denotes the

subgroup generated by them, while { {α j f α 2 , . . . } } denotes the least normal

subgroup that contains them. When there occurs no confusion we denote

atjtimes by A/B with two subgroups A, B of a group G such that A ̂  B

a quotient in L (G), and by dim (A/B} its dimension.
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CHAPTER I. U. S. MODULAR GROUPS WITH NO U-ELEMENT

1. In this chapter we determine the type of such u.s. modular in-

finite groups as have no U-e!ement and satisfy the condition (A).

Let G be such, then we have

LEMMA 1. If for a prime p, every element of p-power order in G

is commutative with any element of order prime to p in G, then all

elements of p-power order in G form a characteristic subgroup of G.

PROOF. Let α, b be any two elements of p-power order in G. Ac-

cording to (A), Jα, 6} is a finite group and either is a p-group or has

J-type. In our case the p-Syiow-subgroup of it is necessarily normal in

it. hence contains a and b. Then {α, b\ is a p-group. Therefore, our

assertion is obvious, q. e. d.

LEMMA 2. If there exist in G some two elements a, bf of prime-

power order p1

Λ

9 gρ/ respectively that are not commutative, and if pl ^> q,

then there exist such (finite or infinite) elementary abelian normal ?vsub-

groups Pi, i = l,...n that (PA \J ... \J PJ \J [b\ contains any element

whose order has no other prime factor than Pvp_9...pn, Q, where {6} is

a maximal cyclic g-group containing \b'\. Furthermore, any finite sub-

group of (PA \J ... \J PJ \J \b} containing {6} has J-type. Hence of

course (Px \J ... \J PJ = Pλ x ... x PM, and for every Pt a positive

integer rt is uniquely determined such that b^Zr 1 = atn for any 'at£Pi9

and n β if the order of 6 is QP.

PROOF. According to (A), {α,, 6'} has J-type, hence the order of al

is pL and br a^bf~ =α/ι/. For any element α/ of ^-power order f^/,

a 1 9 b f \ has also J-type. Since #-Sylow-subgroup is not normal in it, we

can see ?vSylow-subgroup of it is normal in it, and so contains both α lf

α/, whence c^α/ — α/αA, and the order of α/ is pr Then all elements

of ίvpower order in G form an elementary abelian zvgroup P/, and any

finite subgroup of P/V7 (6'i ^at contains {&'} has J-type.

'Now, if another element α, of ί>2-power order with p, Φ ί>A is not

commutative v/ith 6', then {αA, α2, 6'} has J-type. Since tf-Sylow-subgroup

is not normal in it, aλaz = cto^ and p2 > g. Then we can conclude as

above that all elements of p2-power order in G form an elementary abelian
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p2-group P,/, and that P/ V P./ = P/ x P,'. Continuing this considera-

tion we obtain such group (P1

/ x ... x P/) as is the minimal one of

those subgroups of G that contain all elemets ot order prime to q that

are not commutative with &', where s <L βf (cf. the condition about βt

in Theorem 1).

Now suppose that there exists an element b" of #-power order which

is not contained in (P/ x ... x P/) \J {&'} . Let α be any element (=)= 1)

in P/, then \a,b',b!f\ has J-type and is greater than \a>br\. Hence

there exists such 6A that \a, b}} 3 6" and 6^ε = 6' for some 6 > 0. Further-

more, there exists a number 7Ί and ft^"1 = an, r φ 1, ? 1<?pι = 1 mod

Pi, where we take for βL the least value that satisfies the above condition.

Since rλ attains at most pL — 2 values, the values of βL cannot exceed a

sufficiently large constant for any b" and &, in G. But a^f = babr~λ =

bfl-afo^tf = a,rιql and r/φ 1 mod pl9 hence r^ φ 1 mod pλ. This shows

that & ^</5 j , i.e., <? is bounded. Hence there exists a maximal finite

cyclic tf-group {6} containing {&'}. Then considering about 6 instead of

bf we have as above the desired group (Px x ... x PJ \J \b\> q. e. d.

For brevity we say also that the infinite group given in Lemma 2 has

J-type. Then from Lemma 1, Lemma 2 we have

THEOREM 2. G is a direct product (containing finite or infinite

number of factors) of u. s. modular p-groups satisfying (A) (cf. the next

remark} and J-type groups, where any of these factors may be of finite

or infinite order and any two elements from different factors have

relatively prime orders. Conversely such direct product of groups is

always u. s. modular and satisfies (A).

PROOF. A direct product of u. s. modular factors is again u. s.

modular if any pair of elements from different factors have always rela-

tively prime orders. And that a J-type group is u. s. modular is quite

obvious, q. e. d.

REMARK. Infinite u. s. modular p-groups satisfying (A) are always

modular. This is obvious, because K. IWASAWA determined the structure

of infinite modular p-groups satisfying (A) using only the property that

every finite factor-group of any subgroup is modular, which property have

our u.s. modular p-groups also. (cf. IWASAWA C 3 ))
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CHAPTER II. U. S. MODULAR GROUPS CONTAINING U-ELEMENTS

2. In this chapter we study the structure of such u. s. modular groups

as contain at least one U-element and satisfy (A).

LEMMA 3. An u. s. (1. s.) modular lattice of infinite dimensions has

no composition series of finite length that combines / and O.
PROOF. Trivial.

THEOREM 3., Let G be any u. s. modular group, then all E-elements

in G form a characteristic subgroup of G.

•PROOF. Let α, b be E-elements in G and A ~ \a\,B.— { & } . Then

the quotient A/A f\B is of finite dimensions. Let one of its lattice-

theoretical composition series be A ^> A ^ A« ̂  ... ̂ > Ar ^> A f\ B. Then

A\J B^A^ B^.. .^Ar\J B^B contains a composition series of

A \J B/B. Hence A \J B/B and therefore A \J B/l itself is of finite

dimensions (Lemma 1). Hence every element in A \J B is E-element.

Then our assertion is obvious, q. e. d.

REMARK. In this proof (A) is not used.

LEMMA 4. Let G be u. s, modular and satisfy (A), and let α, b e G,

a be U-element and b be E-element. Then all E-e!ements in {αj \J \b\

are contained in {6}, i.e., j & j is normal in it. If further G is 1. s.

modular as well as u. s. modular, then the same assertion holds without (A).

PROOF. We can assume that the order of ί & J is a prime number

without loss -of generality. Suppose that E — \b> aba~l, a~lba, a~ba-",

a~['ba~, ... } -4. { & } .

1) If E is a finite p-group, then E is an elementary abelian group,

because in an u. s. modular p-group, any two elements of prime order are

commutative. Let r be the minimal number ( 0) such that arba~re \b\.

Then
\<f\\JE> \ar\\J {b}>\aT\, (1)

for f b j is normal in \ar\ \J E. Since E f\\a] =1 and E is normal in

\a\ \J \b\, we have

dim(\a\ \JE/{ar\ \J E) = dim ( { α j / { α r } ) . . (2)

According to the u. s. modularity dim (\a\\J E/\a}} =•-!, because \a\\J

E ^ \a\\J \b\. Then we have by (2)
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dίm(\a}-\J E/\ar\) = dim ({a} \J E/{CL\} + dii

But by (1) dim ({oT \ \J &/{ar}) ^2, then we have

dim C f α } \7 #/ Kj);- 'dιm(\a\\JΉ/\ar\ \J #) + dim(\ar

in contradiction with above. Hence £7 is not a finite group.

2) Let E be an infinite p-groiip. As above E is also an elementary

abelian group. Put E1 = {&, a"ba-~, α--feα2, . . . , α2fl6α"2n, a~*nba°n, . . .} .

Then Eί^E, (and of course 22^ is normal in {α2} V7 {&})• To see this,

assume E = JF,. Then for some integer w {6, α26α2, a~2ba?, ....... ,

a2nba~2n\ 3 aba~l. If the above group is the minimal one of those that

are of above quality, then E0 — {b, aba,-1, a~lba, α26α~2, α^2 b α2, ____ . ,

άmba~m\ 3 a*nba~zn, where m j = - (2 w - 1) if n > 0

• (= 2 j w I *7 ?ι< 0. •

Then JF0 = #, i. e., £" is of finite order in contradiction with the hypo

thesis. Hence E^Et. According to the u. s. modularity dim (\a\\J

{ 6 } / { α 2 j ) = dim(\a\ \J {6}/[α}) -f dim ( {α j/ {α 2 } ) =2, but since dim ({a-}

\J ί & i / ί α 3 } ) = 1, we conclude dim (\a\ \J \b}/\a?'\ \J \b}} =1. Then since

{α2} \7 {6} $aba-l£E, must hold {α} \7 {6} = ί^2} \J ί & l \J {aba-1} C

{α2} V7 E. But the converse is obvious, therefore we have [a] \J {b\ = f α j

V7 J? = ' \ά*} Λ7 ̂  But this is impossible because ί7 is normal in {a} \J

{ δ j and \a\ f~\E = {a2} f\E — 1. Hence E is not a p-group.

3) Suppose that E has a J-type group as one of its direct factors.

Then we can find always a characteristic subgroup El of E such that E =4=

#A =4= 1. Then since El is normal in {6} \J \a\ and # A \al = E, f\ \a]

= 1, necessarily {α} V/^O f α ! \J Et^> \a\. But this is a contradiction,

because d i ra( fα) V y ^ / f α j ) = ώ i m ( { α j V7 { & } / { < & } ) = 1- Hence the first

part of the theorem is proved.

If G is 1. s. modular then dim(E/[a\ f\E) = 1, because c Z i m ( f α } V7

E/\a\} = 1. But f α j Λ# = 1» th^n ^ust E = \b\. This complete the

proof of the second part of our theorem, q. e. d.

REMARK. The second part of this theorem shows the reason why

we can determine the structure of modular groups containing U-elements
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without using (A).

THEOREM 4. Let G be u. s. modular and satisfy (A). If G Φ E>

then E is abelian, where E is the characteristic subgroup of G formed

of all E-elements.

PROOF, Now that Lemma 4 is proved, the proof in IWASAWA (2) in

case where G is modular remains valid term by term in our case, q. e. d.

Now we have seen the structure of E, then we shall study the struc-

ture of G/E and G itself in the rest of this paper. Hereafter, throughout

coming paragraphs, E preserves the same significance as in Theorem 4,

if no other mention is made.

3. We shall study the u. s. modular groups in the following two

cases:

I) when for any two elements α, b in G/E, [a\ f\ \b] φϊ, and

II) when there are a pair of elements α, b in G/E such that \a\ f\

i f} - I-
The purpose of this paragraph is to show that in the case I) G/E

is abelian, and that G is modular if it satisfies (A). According to IWA-

SAWA (2) the following lemma holds.

LEMMA 5. Let G be any group, α, & e G, and a be U-element. If

{α} f\ \b] Φ 1 and baab~J = αp for some α, β, then a = β, i. e., ba*• =

αβ&.

The proof is very easy and omitted (see the first part of the proof

of Lemma 2 in IWASAWA (2)).

THEOREM 5. Let G be u. s. modular and have no other E-element

than the unit. If α, 6 6 G and \a\ /°\ {6} Φ 1, then [a] \J \b\ is a cyclic

group.

PROOF. If we can prove [a] \J {b{ is abelian, then it is quite obvious

that it is cyclic, for according to our hypothesis \a\ \J \b\ is free * abelian.

Hence we shall prove bob'1 ~ a. To see this suppose that bab~l Φ a.

Put {αμ j = [a\ f\ { b } . Then \aμ] is contained in the center of \a}\J

{&}, therefore (bab~1^ = αμ. This shows we can put {c\ = {a} f\ {bab~Γ\,

and {c} Φ 1. If a" = 6ap6-1"= c, then according to Lemma 3 c = αα —

ba"b~\ Let p be a prime number and p \ a. Put t^ = aa/p, and a2 =

(bab~ly/p, then a? = α/ = c, and {αj A ί<y = f c l - According to the
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u.s. modularity £αj \J. \at\/\c\ contains no U-element. Hence for some

V Φ O (afl^γk\c\. Now put (a1a,-lγ = cr. But ata,-1 Φ 1, hence it

is a U-elemnent, whence cr ̂  1, i. e.,. 7 ~\ - 0. (We can assume there 7 >

0, taking cw1 instead of ά^Γ1 if necessary.) Put A={aic
r},:B =

\a£c
r\. Then A A B = K^cTI = {(atrγ\, To see this suppose

(c&yyi = (αX)'MΦ 1 obviously). Then α^c^i = αΛcrί)

2, hence c0 =

α^iicr/po-.v _ α/2+ί)r Γ*2-V. Thus we εee pA fr>^> according to the defini-

tion of p. But of course (aλc
rγeAf\B. Hence our assertion is true.

This shows dim(A/Af\B) = dim(B/A f\B} = 1. On the other hand,

A \J B 3 (αAcr) (αAcr)-! = a^r1, hence of course A \J B 3 (aμ-1^ = cr.

Thus we have A\J B = ϊaλc
r, a,cr,cτ] = \aί9 a.Λ = \a{\ \J \a*\. But {αj

-!--- A, for dfr = α/*^, p Φ 0, 7 > 0. Hence

dim(A\J B/A) = dim(\aΛ\ ^/ fα,}/4)'= d i w C f α J \J { α j / f α j

But this is a contradiction, because G is u.s. modular and dim (A /A A

J5) = 1, q, e. d.

By Theorem 3 we. εee G/E is an abelian group of rank 1 if G has

the quality in case I). Now we determine the structure of such groups.

LEMMA 6. Let G be a non-abelian u. s. modular group satisfying

(A). If G/E = \z\ is free cyclic, then G has such structure as follows:

zaz~ =

holds for all a e P, where P is the maximal ̂ -subgroup of E, therefore of

course a direct factor of E (observe that E is abelian), and a (p) is a

p-adic number satisfying a (p) ~ 1 mod p (but if p = 2 especially, then

a (2) ΞΞ 1 mod 4), and is uniquely determined mod pn except its inverse,

where pn is the highest one of all orders of elements in P. (pn may be

infinite, but the meaning of our assertion is obvious.) Conversely if we

extend an abelian group containing only ^-elements by a free cyclic group

with (*), then we have a quasi-Hamiltonean group, i. e., any two sub-

groups of which are commutative, and therefore it is a modular group.

PROOF. The proof in IWASAWA (2) in case where G is modular

remains valid in our case with natural modifications of terminologies, if
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we observe that an u. s. modular group of order p°- q with prime p, q such

that p > q, is modular, q. e. d.

By Lemma 6 we are lead to the following theorem about the desired

general case.

THEOREM 6. Lei G be a non-abelian it. s. modular group satisfying

(A). // G/E is abelian and of rank 1, then it has such structure as

follows : -

Let P be the p-component of E, i.e., the largest p-subgroup of E,

(which is a direct factor of course), and let G = \E, zv z», . . . }, where

zt are all U -elements. Then for any α(-[ l)eP holds

• ziaet-
1= aΛt(^

where at(p) are p-adίc numbers that have the same property as a ( p )

in lemma 6. Furthermore,

tf<+i(P)p* ΞΞ ott(p) mod pn (as to the significance of pn see Lemma 6)

where pt are prime numbers determined only depending on i, and ςt e E,

and αί+1 are such numbers that z<+1 et zr+\ = e?+1. Conversely if we

extend an abelian group E without U-elements with above relations for a

sequence \pt} of prime numbers and a sequence [e^ of elements of E

and a set of systems \ a t ( p ) \ i = 1 ,2 . . . . } . of p-adίc numbers corres-

ponding to each prime component of E, we have always a quasi-Hamil-

tonean group, i. e., have a modular group.

PROOF. The proof in I WASAWA (2) in case where G is modular re-

mains valid exactly term by term in this case, q. e. d.

4. In the following we study the structure of such u. s. modular

groups as have the property in case II) (see the remark at the beginning

of paragraph 3). In this case it seems to be difficult to determine the

structure of them if there is no other assumption about it. However, for

example, under the assumption that they have no perfect subgroups,. -we

can prove they are necessarily abelian. In the following we shall show it.

In case where the group is modular it was shown in IWASAWA (2) that

the same is true without the assumption about perfect subgroups, (and of
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course -without (A)). Now we proceed step by step.

LEMMA 7. Let G ~ {a} \J {b} be u. s. modular and E . = 1, i.e., let

G have no other jE7-element than the unit. If baβb~l ~a^a

y then must

hold bob"1 = α, i. e., G is abelian.
PROOF. If {α} f\ {6| Φ 1, then the assertion is obvious according to

Theorem 5, Hence assume [a] f\ \b\ — 1.

1) Firstly we show bab~ = a". Since {bab-1} f\ {a} Φ 1 and E = 1,

we see \bab~ } \J \a\ is cyclic (Theorem 5). Then it is obvious.

2) a -μ — 1. Otherwise, bob*1 = cr1. Then b2αίr2 = α, i.e., 62

belongs to the center of G. But since {α4} is normal in G, we see G~

\a\ \J \b\/\a'\ \J j b 2 } is of order 8. Obviously CΓis not u. s. modular,

and it is a contradiction. Hence α Φ — 1.

3) By 1), 2) it suffices £o show that never j a \ > 1. Suppose , α ,

>1. Put A = \ab\\J \bmp\, where p is a prime number and m is a posi-

tive integer. Put H = \jy^ {fr'W}, then it is the least normal sub-

group of G that contains α. Furthermore, H f\ A is also normal in G,

because \J^0b-nr (A f~\H) bnr = \jy^b~* (Af\H)bn for any number

r >> 0, and this is normal in G, where if we put r — mp, then it coincides

with 4 Λ -ff Now put B - _(Λ A #) W {6wi - Then J? Λ ̂  = ̂  A H and

dim (jB/A /°\ 5) = 1. We shall show that if we take suitable p, m, then

dim (A V/ B/A) > 1 in contradiction with the u. s. modularity. To see

this it suffices to show there exists such normal subgroup 2V of G that

Af\HCN(^(A\J B)/r\HJ for it implies obviously A C AN C A \J B.

But we can observe for any positive integer n holds (\ab\\J \bn}ϊ f\H =

{{αn «+ + «"" 1 }j = {{α**- 1/*- 1}}. To see this, let w = TΓ(abγ*bnt<*
V = l

(e { α f t j Vy ( f t"}) be contained in ,̂ where sv, ί,|0. Then <w = a,xby,

where

α =.25^(0:%- 1/α - 1) α""ι + + ̂ ι' + fι + + 'v-j

2/ — ̂  (ίj 4- 4- ίv) + »ι + - +s,

But since w e H, necessarily y == 0, hence we can see easily x/an — 1 is

an integer, i.e., we {{α^-1/*-1}}. Thus we have ( { α & j \J \bn\) f\H.^
j ^ α ^ - i / α - i j i But fae converse is obvious, hence we have A f~\H

= Παβ*>l>-1/- lΠ, and (A\J B) f\H - [ab\ \J \bm\ - {\a « w -V-' j j. But
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since

α«W P-l/«-l = (α α™-V α ~S α» f*-l> 4- β »rj»-S) + . . . + α

m ,+ i§

in order to see there exists such ΛΓ that A f\H <^Nζ(A\J B) f\H, it

is sufficient to show that for suitable p and m am(p~l} + am(p~2j + ... +

αm -f 1 is not a prime number. (Observe that this is prime to a). But

it is trivial that we can find such p and m, q. e. d.

* LBMMA 8. Let G = \a\ \J \b\ and have no other ^-element than the

unit. If ba^b'1 = a* with (α, /5) Φ α, /9, then G is not u.s. modular.

PROOF. Assume that G is u.s. modular. Then we can suppose (α,

/9) — 1 without loss of generality (cf. lemma 7 proof 1)). Put \ \ a } } = #.

Then £Γ is an abelian group of rank 1, hence we can write fcαfc-1 = αα/p.

Then we can proceed quite analogously as in Lemma 7, q. e. d.

LEMMA 9. Let G = \a,\ \J \b\ be u.s. giodular, E = 1 and {αj f\

\b\ — 1. If G has an abelian subgroup A whose index in G is finite,

then G is itself abelian.

PROOF. Since G/A is a finite group, tor some number a, /S(ΦO)

αα, 6P e A, i. e., αα6p = 6pαα. Put 6P - 6lf then ffc^r1} Λ l α J Φ 1- Hence

according to Theorem 5 it is a cyclic group. But \blabl~
l}/\at

a} and

[a\/{aa\ have the same order. Hence we have b^b^1 = a,-1. But accor-

ding to Lemma 7 necessarily bjabL'1 = α. Thus we have [aba- } Λ f & } Φ

1. Hence as above we can conclude ob — 6α, q. e. d.

LEMMA 10. Let G be u!s. modular and satisfy (A), and let #Φ 1.

If G//? is an abelian group whose rank is not 1, then G is itself abelian.

PROOF 1) Let \h,a,b\ = G, where let ft^w* = 1 and α, 6 be U-ele-

ments. Suppose that G/\h\ = \a\ x \b\ (i.e. free abelian) and G is not

abelian. Let. G' be the commutator-subgroup of G, then Gr C f A } - There-

fore, we can assume G' = [hpm~l\ without loss of generality, (if necessary,

take some factor-group of G). Then after1 = hrι, bhb~l = feV for some

numbers r,, r« and rl == r, s 1 mod ̂  (cf. Lemma 6).

a) Suppose that r} = r, = 1. Then {A} is contained in the center of

G. But since tα&^α^e \hpm~*\, bapb~* = α*. Thus we see {6,.α*,Λj is

abelian. According to {6} Λ ί^l = 1 we see \b\\j \ap} $ fft^" 1},

hence dim(\b, ap, hpm~'\/\b,ap\) = 1. But since dim(\b,.α}/{6, α1'}) ̂  1
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(u.s. modularity) and {6, a\ ̂  {6, ap, hpm~l\, we see JZ>, a\ = {6, α*,

ft^w~"lj. This shows {6, α| is abelian, and it implies G is itself abelian

in contradiction with the first hypothesis.

b) Suppose that τ2 Φ 1. Since G' — |Λ^~ l j, we can assume r, =

1 -f pw ι~ l (if necessary we take a power of 6 instead of b}. Firstly we

show if we take some ahs — c, then holds c6c~1 b~ = 1. If α&cr Zr* = 1,

then it is trivial. Hence suppose aba^b-1 = hpm~l (if necessary, take, a

power of ft). If 6 (ah8} b~l (aft*)-1 = 1, then sr, (r, - 1) s pm~l mod pw.

But since ? 3 — 1 = p*~l , it suffices to solve sr , == 1 mod p. In any case

we can find desired c. Obviously c^™ = apm, and this shows {c} f\ \b\ = 1.

Hence we have

while dim(\a, b \ / [ c p f * , &}) <i w (ύ.s. modularity). And obviously dim({c,

6}/{c^m, 6}) = m, for {c, 6} is free abelian. But {α, 6] ̂  {c, 6 j , for the

left-hand side is non-abelian. This is a contradiction.

2) Let G be any group that has properties given in the theorem.

According to Lemma 4, Theorem 4, Lemma 6 we can reduce our case to

1), q. e. d.

LEMMA 11. Let G = \a\\J {6} be u. s. modular and E = 1. If

there exists such normal subgroup B that {&} C# C G and B A f α ! = 1>

and if G has no perfect subgroup, then G is abelian.

PROOF. If B = {6}, then G is abeJian according to Lemma 7. Hence

assume B Φ {6 j .

I) Let Bf be the commutator-subgroup of B and G/#' be not abelian.

1) Suppose that Br f\ \b\ - 1.

i) If the rank of B/Br is not finite, then it is a free abelian group.

To see this put anba~n = bn. Let us denote by c the e!ement of B/Bf

corresponding to c&B. Let r he the minimal number εuch that {'6U, b]7 . ... ,

br\ Γ\\br+>\ 4 I- Then {6 υ j f\ \bv b,, . . . , 6r+1 j Φ 1. This shows the

rank of β/S' is not greater than r-f 1 in contradiction with our hypothesis.

But this is impossible according to Lemma 4, as can easily be seen if

we consider (G/Br)/(B*/B'y with such B*/Bf as formed of all ra-power

elements of B/Bf.
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ii) Suppose .that the rank of B/B' is finite. Let us denote by B*/Bf

the normal subgroup formed of all E-elements in G/J5V where of course

B^)B* and {6} f\B* = 1. If the rank of B/B* is 1, then according

to Lemma 7, Lemma 8 G/B is abelian, whence the rank of G/B* is 2 and

G/B' is itself abelian according to Lemma 10. But this is a contradic-

tion. Hence we assume the rank of B/B* is not 1. Now we write c if c

(eG) is considered mod #*. Put bn = anba~n for ?^^0. Let G0 = {&.,

&;, . . . , &,_,! be free abelian and &/V' - - .fc1^ =1 with I Φ 0. Put Gs<

^ G o W ί M W i ^ J W ί f t V i l U f S - s ί W . - ^ ! ^ . ^ ! ^ } and G, =
G'.-iV ίδ-Λ, then G, C <?,/ C ^ C <?/ C G2 C - - - > where every order of

Gί/GV, or G',/G* is a divisor of Z or m and V/Γ=ι G« = B. Let β* be

the subgroup of B formed of all such elements as can be expressed in the

form cp for some c in B. Then if (m, 6) = 1 and (l,.p) = 1, we see B Φ

JB*. .JB/β* is an elementary abelian group and is not cyclic (observe Γ r Φ

1), but this is a contradiction, because {6} \J BP/~B* is normal in G/BP

according to Lemma 4.

2) Suppose that B' f\ \b\ ={6*} Φ 1. In this case B^Λ'W^1'

where β/; is the commutator-subgroup of S'. To see this suppose B1' f\

j b } — \bn\ -1 1. Let us write c, A if an element c in G and a subgroup

A are considered mod B". Put G j = Bf\J \:a). Bm = \bm\ is normal in

\bm\ \J \a,\ and Bm^B'. But since B = \b\\J Br, ~Bm is normal both in

"B and in GA, therefore is normal in G. Put dim (\b\/\bm\}~a and

dim ({6m}/l) = /3, then

dim (G/\a\} - dim (G/\bn\ \J {α}) < α + β (u. s. modularity).

But since dim (G/{αj ) = rfίm (G/Gj) -f dίw (G /£„, \J '{α}) + dim (Bm\J

a + β + dim(G /Bm\J

we can conclude dim(GJBm\J \ά\) =0, whence we have l?w'= B', Obser-

ving they are both normal in G. This shows {6} =~B in contradiction

with Bf Φ B". Thus we see B» .[\ \b\ == 1. Let now B*/B» be the group

formed of all E-elements in G/B" then of course £*C# and JS* φJ?'.

Let us write c, A if c (e.G) and A (CG) are considered mod JB*. Ac-

cording to 1) fα} V -{6™} is abelian, then {αδα-1} Λ f*} Φ 1> therefore G
is abelian by Lemma 7 and Lemma 8. But this is a contradiction, for
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5';>β* and G/B' is not abelian.

II) Suppose G/B' is abelian.

1) If B' ^>\bm\ Φ 1, then as in I) 2) we can see J?" Λ \b\ - 1

G = G/S* is abelian. But this is a contradiction, for j?* C #' = G', where

G' is the commutator-subgroup of G. (As to other notations see I) 2).

2) If B ' A W = l Then G/B' is free abelian and is of rank 2.
In this case cannot hold \aba~1 b~1} f\ B!f Φ 1. To see this assume that the

relation holds, then B'/B" has no U-element, therefore G/B11 is abelian

according to Lemma 10 in contradiction with Bf φβ". Hence \aba~ b'1}

Ά #" = 1- Let £*/#" be the subgroup formed of all E-elements in G/B»,

then JB*C#' Let us write c, A if c (eG) and A (CG) are considered

mod B*. According to I) \aba^b~l\ V7 jα} and \aba,~'ίb-1\ \J [b\ are both

abelian. This shows Br is contained in the center of G. But since

B/Bf •=* \b\, B is itself abelian in contradiction with Bf Φ B*, q. e. d.

LEMMA 12. Let G = {αj V/ \b\ be u. s. modular, E = 1, and j α } Λ

{6} — 1. Let G^Λί^jB^ [b\ be a series of subgroups and B be nor-

mal in G. If G has no perfect subgroup, and

i) if B = {6}, then G is abelian (cf. Lemma 5) and M = [b\ \J \am\

for some mΦ'Ό.

ii) If B h {6}, then B == {6| V7 ίαw}, M - {6j V7 ί<Π for some w,

m ̂  O

PROOF. In case i) the assertion is trivial. In case ii) we have B f\

\a\ Φl according to Lemma 11. Put B f\\a\ — [an\. Let ML be a

maximal subgroup of G containing B, then for some prime p MLf\\a\ =

\ap\. -But according to the u. s. modularity \a>*\\J \b\ is maximal in G,

hence we have ML = \a,p\ \J {6}. Continuing this consideration we see

our assertion is true, q, e. d.

THEOREM 7. Let G be u. s. modular and E = 1. // G feα? no

perfect subgroup, then G is abelian.

PROOF. According to Theorem 5 we are only to prove \a\ f~\ \b\ = 1

implies ab = ba. Hence we can assume G = \a}\J \b\ -without loss of•
generality. Suppose that G is not abelian. Let Gr be the commutator-

subgroup of G, then G Φ G'ΦΊ: We can suppose a £ G', then \a\\J

Gf φ \a\ and \a] \J Gf is normal in G, hence [a] \J Gf = { α j V7 •{&"} .for
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some u Φ 0 according to Lemma 12. Since [a] \J Gr/Gf is cyclic, we can

take such v that av =~bu mod G'. Then 6, == bua~» 6 G' and \a} \J G' =

{α} V7 {6 } > where \a\ f\ \b}\ = 1, because if {<&} /°\ {6A} Φ 1, then accor-

ding to Theorem 5 \a\\J Gf is an abelian group whose index in G is

finite, but this implies, according to Lemma 9, G is itself abelian in con-

tradiction with our first hypothesis. According to Lemma 12 either Gf =

f b j or {&,} \J \aw\ for some w I 0. If G' = {6 }, then {α} V7 ί&J is

abelian according to Lemma 7. But since the index of {a} \J \b } in G

is finite, G is abelian by Lemma 9 in contradiction with our first hypo-

thesis. Hence G' = \aw\ \J"{6J with w Φ 0, and G/G'" is a finite group.

Continuing this consideration we have the commutator-series G"^)G'^

GΌG'" - > where G Φ G' Φ G" Φ G'" and G/G', G'/G", G'yCr"'...

are all finite groups. But this is impossible, because any u.s. modular

group of finite order is meta-abelian. (See Theorem 1). Hence G is

abelian, q. e. d.

Combining Lemma 10, Theorem 7 and Theorem 6 we have

THEOREM 8. Let G be an u. s. modular group satisfying (A\ and

G Φ E. If G has no perfect subgroup, then either G has such structure

as is shown in Theorem 6 or it is abelian. In short the family of all

u. s. modular groups satisfying the above conditions coincides with the

family of all modular groups that have at least one V-element.
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