
Kaji, S.
Osaka J. Math.
44 (2007), 893–907

THE TAIL ESTIMATION OF THE QUADRATIC VARIATION OF
A QUASI LEFT CONTINUOUS LOCAL MARTINGALE

SHUNSUKE KAJI

(Received February 24, 2006, revised November 29, 2006)

Abstract
We discuss some estimates of the tail distributions of the supremum and the

quadratic variation of a local martingale. The assumption made so far in the
literature on exponential moments involving a quasi left continuous local martingale
is improved.

1. Introduction and main result

There have been a number of works on tail distributions of thesupremum and the
quadratic variation of a local martingale. On the other hand, in the paper [7] Kotani
gave a necessary and sufficient condition for one-dimensional diffusion processes to
be martingales. In Azéma, Gundy, and Yor [1], the uniform integrability of a con-
tinuous martingale in terms of tails of its supremum and quadratic variation was first
characterized. The existence of the limits of the tails was considered by Galtchouk and
Novikov [5] (for a discrete time martingale), Novikov [10],Elworthy, Li, and Yor [2],
[3], Madan and Yor [9] (for a continuous local martingale), Liptser and Novikov [8],
and Kaji [6] (for a càdlàg local martingale) by using the Tauberian theorem. In the
statements on the quadratic variation of a local martingale, the existence of some ex-
ponential moments involving a local martingale is assumed,but Takaoka [11] relaxed
its assumption for a continuous local martingale. In this paper we also do so for a
càdlàg local martingale.

Let (�,F , fFt gt2R+ , P) be a filtered probability space with usual conditions, where
R+ = [0, 1), and M = fMt gt2R+ is a càdlàg local martingale withM0 = 0 defined on
it. We denote by� the random measure onR+�X such that for allt 2 R+ and Borel
subsetsU of X

�( � , (0, t ] �U ) =
X

0<s�t

1U (1Ms),

whereX = R � f0g and1Mt = Mt � Mt�, t > 0. That is,� is the counting measure
of jumps of M. Then we denote by ˆ� its predictable compensator. IfM is a locally
square integrable martingale, then it is well-known that wecan define a predictable
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quadratic variation processhMi = fhMit gt2R+ and an optional quadratic variation pro-
cess [M] = f[M]t gt2R+ and the canonical decomposition

M = Mc + Md

holds, whereMc is a continuous local martingale withMc
0 = 0 and Md is a stochastic

integral process with respect to�� �̂ defined as

Md
t =

Z
(0,t ]�X

xf�( � , ds dx)� �̂( � , ds dx)g, t 2 R+.

Moreover recall that

hMdit =
Z

(0,t ]�X
x2�̂( � , ds dx), t 2 R+.

First, we recall the result by Liptser and Novikov [8].

Theorem 1.1. Assume that M is a locally square integrable martingale, hMi1 =
limt!1hMit < 1 a.s., and fM+� g�2T is uniformly integrable, where T is the set of
stopping times� . Then
(i) 0 � E[M1] � E[M+1] <1.
Besides,
(ii) if f1M� g�2T is uniformly integrable, then

lim�!1 �P

�
sup
t2R+

(M�
t ) > �� = E[M1];

(iii) if j1Mj � K and E[e�M1 ] <1 for some K> 0, and � > 0, then

lim�!1 �P(
phMi1 > �) = lim�!1 �P(

p
[M]1 > �) =

r
2� E[M1].

Here we notice that the uniform boundedness for jumps is assumed in the above result.
But Kaji [6] gave the following improvement.

Theorem 1.2. Assume the existence of the random variable M1 such that
limt!1 Mt = M1 <1 a.s. and that fM�� g�2T is uniformly integrable. Then
(i) �1 < �E[M�1] � E[M1] � 0
holds. Besides, if f1M� g�2T is uniformly integrable, then
(ii) lim �!1 �P(supt2R+

Mt > �) = �E[M1].
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Theorem 1.3. Assume that M is a locally square integrable martingale and thathMi1 <1 a.s., fM�� g�2T is uniformly integrable, and there exists�0 > 0 such that

(1) E

�
exp

��0M�1 +
Z

R+�fjxj>K g j��0(x)j�̂( � , ds dx)

�� <1
for some K> 0, where��(x) = e��x � 1 +�x � (�2=2)x2. Then
(i) lim�!1 �P(

phMi1 > �) = �p2=�E[M1],
(ii) lim �!1 �P(

p
[M]1 > �) = �p2=�E[M1].

As a remark, we note that the condition (1) refines the conditions “j1Mj � K and
E[e�0M�1 ] <1 for some�0, K > 0”.

Finally, we introduce our main result:

Theorem 1.4. Assume that M is a locally square integrable martingale and quasi
left continuous, hMi1 <1 a.s., fM�� g�2T is uniformly integrable.
(i) Assume moreover that there exists�0 > 0 such that

(2) E

�Z
R+�fjxj>K g j��0(x)j�̂( � , ds dx)

� <1
for some K> 0. Then

lim�!1 �P(
phMi1 > �) = �

r
2� E[M1].

(ii) On the other hand, if we assume that there exists�0 > 0 such that

E

��Z
R+�fjxj>K g j��0(x)j�̂( � , ds dx)

�2+�� <1
for some K> 0, � > 0. Then

lim�!1 �P(
p

[M]1 > �) = �
r

2� E[M1].

The proof of the above shall be divided in three steps. As a first step, we will relax the
assumption involving the finiteness of some exponential moment of a local martingale
in Theorem 1.3, but we assume its quasi left continuity:



896 S. KAJI

Theorem 1.5. Assume that M is a locally square integrable martingale and quasi
left continuous, hMi1 < 1 a.s., fM�� g�2T is uniformly integrable, and there exists�0 > 0 such that

(3) E

�
exp

�� �0M1 +
Z

R+�fjxj>K g j��0(x)j�̂( � , ds dx)

�� <1
for some K> 0. Then

lim�!1 �P(
phMi1 > �) = �

r
2� E[M1].

As a second step, in Subsection 3.2 we will describe the proofof (i) from Theo-
rem 1.5 by Takaoka’s method [10]. Finally, we can obtain (ii)from (i). This proof is
the same as in Subsection 6.4 of Kaji [6] and is omitted.

2. Proof of Theorem 1.5

2.1. Two lemmas. First, it is known thatZ
R+�X

j��0(x)j�̂( � , ds dx) <1 a.s.(4)

and

Z
R+�X

j �0(x)j�̂( � , ds dx) <1 a.s.,(5)

where �(x) = e��x � 1 +�x. See Subsection 5.1 in Kaji [6].

Lemma 2.1.

E
�
e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx)� = 1, 0< 8� < �0.

Proof. According to Lemma 5.2 of Kaji [6], the conditionE[e�0M�1 ] <1 implies
the desired conclusion. In fact, we can see

E[e�0M�1 ] � E[e��0M1 ] + 1,

where the right hand side is<1 by the assumption (3).

Lemma 2.2.

lim�!0

1�
�
E
�
e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx)�� E[e�(�2=2)hMi1 ]

�
= �E[M1].
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Proof. First, we will show

(6) lim�!0

1��e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx) � e�(�2=2)hMi1	 = �M1 a.s.

Observe the equality

1��e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx) � e�(�2=2)hMi1	
=

1�
�
e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx) � e��M1�(�2=2)hMi1	

+
1�
�
e��M1�(�2=2)hMi1 � e�(�2=2)hMi1	

= e��M1�(�2=2)hMi1 � 1�
�
e� RR+�X ��(x)�̂(� ,dsdx) � 1

	
+ e�(�2=2)hMi1 � 1�

�
e��M1 � 1

	
,

where the last “=” holds by the facthMi1 = hMci1 +
R

R+�X x2�̂( � , ds dx). Since it is
clear that

lim�!0

e��M1 � 1� = �M1 a.s.

holds, the second term of the right-hand side of the observation converges to�M1
a.s. Therefore, to get (6), it is sufficient to show that the first term of the right-
hand side of the observation converges to 0 a.s. According tothe dominated conver-
gence theorem with respect to ˆ�( � , ds dx), Lemma 4.1 of Kaji [6], (4), and the fact
lim�!0 ��=� = 0 imply

(7) lim�!0

Z
R+�X

������(x)�
�����̂( � , ds dx) = 0 a.s.

On the other hand, by using the inequality����e�x � 1�
���� � jxje�jxj, � > 0,

we have

(8)

����1�
�
e� RR+�X ��(x)�̂(� ,dsdx) � 1

	����
� ����
Z

R+�X

��(x)� �̂( � , ds dx)

���� exp

�����
Z

R+�X
��(x)�̂( � , ds dx)

����
�

� Z
R+�X

������(x)�
�����̂( � , ds dx) exp

�Z
R+�X

j��0(x)j�̂( � , ds dx)

�
,
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where the last line holds, since� ! j��(x)j is increasing for eachx 2 X. By (7)
and (8) the left-hand side of the last inequality converges to 0 a.s. as�! 0. Hence (6)
holds.

Next, we show that for all 0< � < �0 ^ 1=(2c0K )

(9)

����1��e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx) � e�(�2=2)hMi1	����
� e��0M1+

R
R+�fjxj>K g j��0 (x)j�̂(� ,dsdx) +

Z
R+�fjxj>K g

������0(x)�0

�����̂( � , ds dx)

+ M+1 + 1 + 2c0Ke�1,

where the positive constantc0 is such that for alljxj � �0K

(10)

����e�x � 1 + x � x2

2

���� � c0jxj3.

Fix 0< � < �0 ^ 1=(2c0K ). Observe the inequality����1�
�
e��M1�(�2=2)hMci1�RR+�X  �(x)�̂(� ,dsdx) � e�(�2=2)hMi1	����

=

����1��e��M1�(�2=2)hMi1+(�2=2)
R

R+�X x2�̂(� ,dsdx)�RR+�X  �(x)�̂(� ,dsdx) � e�(�2=2)hMi1	����
= e�(�2=2)hMi1 � 1�

��e��M1�RR+�X ��(x)�̂(� ,dsdx) � 1
��

= e�(�2=2)hMi1 � 1�
��e��M1�RR+�f0<jxj�K g ��(x)�̂(� ,dsdx)�RR+�fjxj>K g ��(x)�̂(� ,dsdx)

� e� RR+�f0<jxj�K g ��(x)�̂(� ,dsdx) + e� RR+�f0<jxj�K g ��(x)�̂(� ,dsdx) � 1
��

� e�(�2=2)hMi1�RR+�f0<jxj�K g ��(x)�̂(� ,dsdx) � 1�
��e��M1�RR+�fjxj>K g ��(x)�̂(� ,dsdx) � 1

��
+ e�(�2=2)hMi1 � 1�

��e� RR+�f0<jxj�K g ��(x)�̂(� ,dsdx) � 1
��

= I1 � I2 + I3.

We will estimateI1. By (10) we obtain

I1 � e�(�2=2)hMi1+
R

R+�f0<jxj�K g j��(x)j�̂(� ,dsdx)

� e�(�2=2)hMi1+c0K�3
R

R+�f0<jxj�K g x2�̂(� ,dsdx)

� e�(�2=2)hMi1+c0K�3hMi1
� 1.
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We will estimateI2. By using the inequality����e�x � 1�
���� � e�x1fx�0g + x�1fx<0g, � > 0,

we have

I2 � e��M1�RR+�fjxj>K g ��(x)�̂(� ,dsdx)1fM1+
R

R+�fjxj>K g(��(x)=�)�̂(� ,dsdx)�0g
+

��M1 � Z
R+�fjxj>K g

��(x)� �̂( � , ds dx)

��
1fM1+

R
R+�fjxj>K g(��(x)=�)�̂(�,ds dx)>0g

� e�0(�M1�RR+�fjxj>K g(��(x)=�)�̂(� ,dsdx))1fM1+
R

R+�fjxj>K g(��(x)=�)�̂(� ,dsdx)�0g
+

�
M1 +

Z
R+�fjxj>K g

��(x)� �̂( � , ds dx)

�
1fM1+

R
R+�fjxj>K g(��(x)=�)�̂(� ,dsdx)>0g

� e��0M1+�0
R

R+�fjxj>K g j��(x)=�j�̂(� ,dsdx) + M+1 +
Z

R+�fjxj>K g
������(x)�

�����̂( � , ds dx).

By Lemma 4.1 of Kaji [6], the right-hand side of the last inequality is

� e��0M1+
R

R+�fjxj>K g j��0 (x)j�̂(� ,dsdx) + M+1 +
1�0

Z
R+�fjxj>K g j��0(x)j�̂( � , ds dx).

We now estimateI3. By using the inequality����e�x � 1�
���� � e�x1fx�0g + x�1fx<0g, � > 0,

we have

I3 � e�(�2=2)hMi1�e�RR+�f0<jxj�K g ��(x)�̂(�,ds dx)1fRR+�f0<jxj�K g(��(x)=�)�̂(� ,dsdx)�0g
+

��Z
R+�f0<jxj�K g

��(x)� �̂( � , ds dx)

��
1fRR+�f0<jxj�K g(��(x)=�)�̂(�,ds dx)>0g

�

� e�(�2=2)hMi1�e
R

R+�f0<jxj�K g j��(x)j�̂(� ,dsdx) +
Z

R+�f0<jxj�K g
������(x)�

�����̂( � , ds dx)

�
.

Moreover, by (10) the right-hand side of the last inequality is

� e�(�2=2)hMi1�ec0K�3
R

R+�f0<jxj�K g x2�̂(� ,dsdx) + c0K�2
Z

R+�f0<jxj�K g x2�̂( � , ds dx)

�

� e�(�2=2)hMi1�ec0K�3hMi1 + c0K�2hMi1	
� e(�2=2)(�1+2c0K�)hMi1 + 2c0K � �2

2
hMi1e�(�2=2)hMi1

� 1 + 2c0Ke�1,
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where we can see (�2=2)hMi1e�(�2=2)hMi1 � e�1 by using the inequalityxe�x � e�1.
Hence, the above three estimations ofI1, I2, and I3 imply (9).

Finally, according to the dominated convergence theorem, (6), (9), E[M+1] <1,
and the assumption (3) imply the desired conclusion.

2.2. A Tauberian theorem.

Theorem 2.1 ([4]). Let X be an R+-valued random variable such that
lim�!0(1=�)(1� E[e�(�2=2)X ]) exists inR, then

r
2� lim�!0

1� (1� E[e�(�2=2)X ]) = lim�!1 �P(
p

X > �).

2.3. Proof of Theorem 1.5. According to Lemmas 2.1 and 2.2, we have

lim�!0

1� (1� E[e�(�2=2)hMi1 ]) = �E[M1]

holds. Then, by using the Tauberian theorem the last result implies

lim�!1 �P(
phMi1 > �) = �

r
2� E[M1].

3. Proof of Theorem 1.4

3.1. The lemma.

Lemma 3.1. Let � be a stopping time. Then it follows that for any0< a < 1

lim sup�!1 �P(
phMi1 > �) � 1

a
lim sup�!1 �P(

phMi� > �)

+
Cp

1� a2
sup�2T E[(M�+� � M�)�; � <1],

where C is a positive constant which does not depend on M, a, and �.

Proof. Fix 0< a < 1. We have

P(hMi1 > �2) � P(hMi� � a2�2, hMi1 > �2) + P(hMi� > a2�2),

and so

(11)
lim sup�!1 �P(hMi1 > �2) � 1

a
lim sup�!1 �P(hMi� > �2)

+ sup� �P(hMi� � a2�2, hMi1 > �2).
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On the other hand, define the processN = fNt gt2R+ and the filtrationfGt gt2R+ as

Nt = M�+t � M� , Gt = F�+t , 8t 2 R+.

Then N is a local martingale with respect tofGt gt2R+ and

hNi1 = hMi1 � hMi�
holds. Also, observe

sup� �P(hMi� � a2�2, hMi1 > �2) � sup� �P(hNi1 > �2 � a2�2)

=
1p

1� a2
sup� �P(hNi1 > �2).

Then, by using the appendix the right-hand side of the last inequality is

(12) � Cp
1� a2

sup� �P

�
sup
t2R+

jNt j > ��,

where C is a positive constant which does not depend onM, a, and �. If we let� > 0 and

�� =

�
infft 2 R+ j jNt j > �g if fg 6= ;1 if fg = ;,

then jN�� j � � on f�� <1g = fsupt2R+
jNt j > �g, and so

�P

�
sup
t2R+

jNt j > �� � E[jN�� j].
Therefore by the last result we have

(12)� Cp
1� a2

sup�2T (N)
E[jN� j]

� Cp
1� a2

sup�2T (N)
2E[N�� ]

=
2Cp

1� a2
sup�2T (N)

fE[(M�+� � M�)�; � = 1] + E[(M�+� � M�)�; � <1]g
� 2Cp

1� a2
sup�2T E[(M�+� � M�)�; � <1],

whereT (N) = f� : stopping timej fN�^t gt2R+ is uniformly integrableg. That is,

sup� �P(hMi� � a2�2, hMi1 > �2) � 2Cp
1� a2

sup�2T E[(M�+� � M�)�; � <1].
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Hence, by the last inequality and (11) we get the desired conclusion.

3.2. Proof of (i). For anyu > 0, introduce the stopping time

�u =

�
infft 2 R+ j ��0Mt + At > ug if fg 6= ;1 if fg = ;,

where

At =
Z

(0,t ]�fjxj>K g j��0(x)j�̂( � , ds dx), t 2 R+.

Fix u > 0. We consider the processM (u) = fM (u)
t gt2R+ defined asM (u)

t = M�u^t , t 2 R+.
Then it follows from the assumptions with respect toM that M (u) is also a quasi left
continuous and locally square integrable martingale whichsatisfing M (u)

0 = 0, hM (u)i1
(= hMi�u ) � hMi1 <1 a.s., and the uniform integrability off(M (u)� )�g�2T . Moreover,
if we pick the random measure�(u) on ��R+�X such that for allt 2 R+ and Borel
subsetsU of X

�(u)( � , (0, t ] �U ) =
X

0<s�t

1U (1M (u)
s )

and its compensator ˆ�(u), then it follows that for allt 2 R+ and Borel subsetsU of X

�(u)( � , (0, t ] �U ) =
X

0<s��u^t

1U (1Ms) = �( � , (0, �u ^ t ] �U ) a.s.,

and so�̂(u) is the random measure on��R+ � X such that for allt 2 R+ and Borel
subsetsU of X

�̂(u)( � , (0, t ] �U ) = �̂( � , (0, �u ^ t ] �U ) a.s.,

and therefore we can have that

E
�
e��0M (u)1 +

R
R+�fjxj>K g j��0 (x)j�̂(u)(�,ds dx)�

= E[e��0M�u +A�u ]

= E[e��0M�u +A�u ; �u <1] + E[e��0M�u +A�u ; �u = 1]

� E[eu��01M�u ; �u <1] + eu P(�u = 1)

= E[eu��0�0; �u <1] + eu P(�u = 1) (= eu),

where the fourth line of the above holds by the definition of�u and the last line does
by the quasi left continuity ofM. By applying Theorem 1.5 to the processM (u),
we have

�1 < E[M (u)1 ] � 0, lim�!1 �P(
phM (u)i1 > �) = �

r
2� E[M (u)1 ],
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that is,�1 < E[M�u ] � 0 and

(13) lim�!1 �P(
phMi�u > �) = �

r
2� E[M�u ].

Now we show

(14) lim inf�!1 �P(
phMi1 > �) � �

r
2� E[M1].

Indeed, the left-hand side of (13) is

� lim inf�!1 �P(
phMi1 > �)

and the right-hand side of (13) is

= �
r

2� E[M1; �u = 1] �
r

2� E[M�u ; �u <1]

� �
r

2� E[M1; �u = 1] +

r
2� E

�
u�0
� 1�0

A�u ; �u <1�

� �
r

2� E[M1; �u = 1] � 1�0

r
2� E[ A�u ; �u <1],

where the second line of the above holds by the definition of�u. Also, the right-hand side
of the above converges to�p2=�E[M1] asu !1, because by the dominated conver-
gence theorem, the factE[jM1j] <1 we have known and the assumption (2) imply

lim
u!1 E[M1; �u = 1] = E[M1], lim

u!1 E[ A�u ; �u <1] = 0.

Therefore we can get (14).
On the other hand, we will show

(15) lim sup�!1 �P(
phMi1 > �) � �

r
2� E[M1].

According to Lemma 3.1, we have for all 0< a < 1

lim sup�!1 �P(hMi1 > �2) � 1

a
lim inf�!1 �P(hMi�u > �2)

+
Cp

1� a2
sup�2T E[(M�u+� � M�u)

�; �u <1],
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where C is a positive constant which does not depend ona and u. Fix 0 < a < 1.
By (13) the first term on the right-hand side of the last inequality is

=
1

a

��
r

2� E[M (u)1 ]

�
.

Therefore

lim sup�!1 �P(hMi1 > �2) � 1

a

��
r

2� E[M (u)1 ]

�

+
Cp

1� a2
sup�2T E[(M�u+� � M�u)

�; �u <1].

By the definition of�u the second term on the right-hand side of the last inequalityis

� Cp
1� a2

sup�2T E

��
M�u+� +

u�0
� 1�0

A�u

��
; �u <1�

� Cp
1� a2

sup�2T E

�
M��u+� +

1�0
A�u ; �u <1�

� Cp
1� a2

sup�2T E[M�� ; �u <1] +
Cp

1� a2

1�0
E[ A1; �u <1].

By the uniform integrability offM�� g�2T the first term on the right-hand side of the last
inequality converges to 0 a.s. asu !1 and from the dominated convergence theorem
the assumption (2) implies that the second term of it does so,too. Therefore

lim sup�!1 �P(hMi1 > �2) � lim sup
u!1

1

a

��
r

2� E[M (u)1 ]

�
.

Moreover, the right-hand side of the last inequality is� (1=a)(�p2=�E[M1]) since
lim infu!1 E[M+�u

] � E[M+1] holds by the Fatou lemma and since limu!1 E[M��u
] =

E[M�1] holds by the uniform integrability offM�� g�2T . Therefore we can get (15).
Hence (14) and (15) imply the desired conclusion.

4. Appendix

Proposition 4.1. Assume that M is a quasi left continuous and locally square
integrable martingale. Then

sup� �P(
phMi1 > �) � C sup� �P

�
sup
t<1 jMt j > ��,

where C is a universal positive constant.
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Proof. Pick any stopping times� and � with � � � . First, it is clear that we
can get

(16) E[(
phMi�� �phMi�� )2] � E[hMi� � hMi� ].

In fact, hMit is continuous, sinceM is quasi left continuous, and the inequality (
p

a�p
b)2 � a � b for 0 � b � a holds. Introduce the local martingaleNt = M(�+t)^� �

M� , t <1, and then we can seehMi� � hMi� = hNi1. Therefore, (16) and the last
result imply

(17)

E[(
phMi�� �phMi�� )2] � E[hNi1]

� E

��
sup
t<1 jNt j

�2�
,

where the last line of the last inequality holds by the property of a local martingale.
By the definision ofN we have

(18)

E

��
sup
t<1 jNt j

�2�
= E

��
sup
t<1 jNt j

�2

; � < ��

� 2E

��
sup
t<1 jMt^� j

�2

+ M�2; � < ��

= 2E

��
sup
t<1 jMt j

�2

+ M�2; � < � = 1�

+ 2E

��
sup
t<1 jMt^� j

�2

+ M�2; � < � <1�

� 4E

��
sup
t<1 jMt j

�2

; � < � = 1�

+ 2E

��
sup
t�� jMt j

�2

+

�
sup
t<� jMt j

�2

; � < � <1�

= 4E

��
sup
t<1 jMt j

�2

; � < � = 1�

+ 4E

��
sup
t<� jMt j

�2

; � < � <1�

= 4E

��
sup
t<� jMt j

�2

; � < ��,

where the eighth line of the last inequality holds by the quasi left continuity of t !
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sups�t jMsj. Hence, (17) and (18) imply

E[(
phMi�� �phMi�� )2] = 4E

��
sup
t<� jMt j

�2

; � < ��.

Then, according to Corollary 6 of Azéma, Gundy, and Yor [1], the above implies the
desired conclusion.
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