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Abstract
We discuss some estimates of the tail distributions of theresoum and the
quadratic variation of a local martingale. The assumptioadenso far in the
literature on exponential moments involving a quasi lefitewous local martingale
is improved.

1. Introduction and main result

There have been a number of works on tail distributions ofsingremum and the
guadratic variation of a local martingale. On the other haindthe paper [7] Kotani
gave a necessary and sufficient condition for one-dimeaskidiffusion processes to
be martingales. In Azéma, Gundy, and Yor [1], the uniformegnability of a con-
tinuous martingale in terms of tails of its supremum and qaiéa variation was first
characterized. The existence of the limits of the tails wass@ered by Galtchouk and
Novikov [5] (for a discrete time martingale), Novikov [10EIworthy, Li, and Yor [2],
[3], Madan and Yor [9] (for a continuous local martingale) ptser and Novikov [8],
and Kaiji [6] (for a cadlag local martingale) by using the Tetiéan theorem. In the
statements on the quadratic variation of a local martingdde existence of some ex-
ponential moments involving a local martingale is assunad, Takaoka [11] relaxed
its assumption for a continuous local martingale. In thipgrawe also do so for a
cadlag local martingale.

Let (, F, {Fiher., P) be a filtered probability space with usual conditions, veher
R+ = [0, o0), and M = {M}ter, is a cadlag local martingale witMg = O defined on
it. We denote byu the random measure dR: x X such that for allt € R, and Borel
subsetdU of X

M(,(O,t] X U): Z 1U(AMS)y

O<s<t

whereX =R — {0} and AM; = M; — M;_, t > 0. That is, « is the counting measure
of jumps of M. Then we denote by its predictable compensator. M is a locally
square integrable martingale, then it is well-known that vesm define a predictable
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guadratic variation procesdM) = {{M);}icr, and an optional quadratic variation pro-
cess M] = {[M]i}ter, @nd the canonical decomposition

M =M°®+ M

holds, whereM¢® is a continuous local martingale withlS = 0 andM¢ is a stochastic
integral process with respect fo— 4 defined as

M;‘=/ X{u(-, ds d¥ — (-, ds dy), teR..
(0,t]xX
Moreover recall that
(Md)t=f x2i(-,dsd®, teR;.
0,t] xX
First, we recall the result by Liptser and Novikov [8].

Theorem 1.1. Assume that M is a locally square integrable martingdlel) ., =
liMisoo(M); < 00 as., and {M}},c7 is uniformly integrable where 7 is the set of
stopping timesc. Then
(i) 0<E[My] < E[M]] < oo,

Besides
(iiy if {AM;}.e7 is uniformly integrable then

lim AP(sup(Mt) > A) = E[My];
A—>00 teRs

(i) if |AM| < K and HeM~] < oo for some K> 0, and € > 0, then

Jim AP(/(M)c > 2) = lim AP(/[M]w > 2) = \EE[MOO].

Here we notice that the uniform boundedness for jumps isnasdun the above result.
But Kaji [6] gave the following improvement.

Theorem 1.2. Assume the existence of the random variablg, Much that
limi_ M; = My < 00 as. and that{M~},c7 is uniformly integrable Then
(i) —oo<—E[MJ] =E[Mx] =0
holds Besidesif {AM.}.c7 is uniformly integrablethen
(i) im; 00 AP(SURer, Mt > A) = —E[M].
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Theorem 1.3. Assume that M is a locally square integrable martingale amat t
(M)so < 00 as.,, {M_};c7 is uniformly integrable and there exists.; > 0 such that

(1) E[exp{xoM;+fR - |¢A0(x)m(-,dsdx)” < oo

for some K> 0, where ¢, (x) = e — 1 +1x — (A2/2)x2. Then
() Nim; 00 AP(V(M)oo > A) = —/2/7 E[M],
(i) im; 00 AP(V[M]se > A) = —/2/7T E[My].
As a remark, we note that the condition (1) refines the camti{AM| < K and
E[e*M=] < co for somerg, K > 0”.
Finally, we introduce our main result:
Theorem 1.4. Assume that M is a locally square integrable martingale andgj

left continuous (M) < o0 as., {M~ };e7 is uniformly integrable
(i) Assume moreover that there exiats> 0 such that

@ E[/ (I - ds dx)} <
Ry x{|x|>K}
for some K> 0. Then

Jim AP(/ (M) > 2) = —\EE[MOO].

(i) On the other hangdif we assume that there exists > O such that

2+a
E[{f ore dsdx)} ] < o0
R.x{Ix|>K)

for some K> 0, « > 0. Then

Jim 2P(/[MIx > 2) = —\EE[MOO].

The proof of the above shall be divided in three steps. As adiep, we will relax the
assumption involving the finiteness of some exponential erdnof a local martingale
in Theorem 1.3, but we assume its quasi left continuity:
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Theorem 1.5. Assume that M is a locally square integrable martingale andgj

left continuous (M), < 0o as., {M-};c7 is uniformly integrable and there exists
Ao > 0 such that

@) E[exp{ aoMt [0l ds dya” <o

for some K> 0. Then

Jim 2P/ (Moo > 2) = —\EE[MOO].

As a second step, in Subsection 3.2 we will describe the pobdf) from Theo-
rem 1.5 by Takaoka's method [10]. Finally, we can obtain ffigm (i). This proof is
the same as in Subsection 6.4 of Kaji [6] and is omitted.

2. Proof of Theorem 1.5

2.1. Two lemmas. First, it is known that

4) /R y |5, (X)|a(-,dsdX) < oo as.
and
(5) [ WA dsdy < oo as,

where ¥, (x) = e ** — 1 +Ax. See Subsection 5.1 in Kaiji [6].
Lemma 2.1.

Efe M0/ ) o iR = 1 0 < Vi < Ao,

Proof. According to Lemma 5.2 of Kaji [6], the conditida[e**M>] < co implies
the desired conclusion. In fact, we can see

E[eM~] < E[e *M~] +1,
where the right hand side is co by the assumption (3). O
Lemma 2.2.

1 2 C n 2
lim = (Ele*Me=(*?/2)(M)oc= fg,x V2 (2(+.dsdR] _ £~ (*2/DM)x1) = _EIM.].
1—0 A( [e ] [e ]) [ 00]
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Proof. First, we will show

© lm % [ M2/ e, Vi WAC IS g 0HDMIx) = M as.
A—>

Observe the equality

}{e—AMw—(xz/zxmwm—fmx BOOR( IS0 _ g (2/2)M) )

A

_1 (@M mG/2M e VAR ST M2/ )M
Py
1

+ 2@ PMem(2 DM _ g=G2/2M) )

Py
o M (2/2)M)x }{e— frox 0O 0599 _ 1)
X
st Trgame gy
Py

where the last “=" holds by the fa¢tM)y, = (M) +fR+xX x?f(-,ds d®. Since it is
clear that

—AM
e Mo — ]
= _My as.

lim

A—0
holds, the second term of the right-hand side of the obdervatonverges to—M,,
a.s. Therefore, to get (6), it is sufficient to show that thetfierm of the right-
hand side of the observation converges to 0 a.s. Accordintpgodominated conver-
gence theorem with respect o -, ds d¥, Lemma 4.1 of Kaji [6], (4), and the fact

lim; o0 ¢1/2 = 0 imply

@ LY

On the other hand, by using the inequality

$5.(x)
A

a(-,dsdX® =0 as.

ex -1
< |x|e"™, v>o0,

we have
‘%{e Jrixx @200+, dsd® __ 1}‘
8) < / ¢’A§X)[L(- ,ds d® exp{ / G ()a( -, ds dx)”
R+ xX RoxX

#1(X)

S /
Ry xX

A, ds dyoexp{fR B IA( ds dx)},
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where the last line holds, since — |¢,(x)| is increasing for eachkx € X. By (7)
and (8) the left-hand side of the last inequality converge8 &.s. as. — 0. Hence (6)
holds.

Next, we show that for all &< A < Ag A 1/(2¢0K)

}{e—/xMm—(x2/2><M°>oo—fR+xX BOR( I5B _ g=(2/2)M) |
A
9) < @ oMost o, s k) 1920 I+ ds A +/ ¢)\0_(X) a(-,dsdy
Rex{x>K}| Ao

+ ML +1+2x9Ke™,

where the positive constap is such that for alllx| < AoK

2

X
(10) eX—1+x— Pk colx /3.

Fix 0 < A < A9 A 1/(2coK). Observe the inequality
‘ %{e_}‘MOO_()‘Z/Z)(MC)DO_fR+xx Y. (X)A( -, dsdx — ef()lz/z)(M)oo }

- ‘ 1 [l Mo G2/ UM H2/2) o X0 GSO fo VAIR(- 50D _ g 2/2)M)-c )
A
_ e 02 M | %|e—mw—fmx B0 G5 _ ]
= _(Az/z)(M)oo . E |ei)‘M°°7fR+x(0<\x\§K) é.()i( vdeﬁffR_,,x”be) ¢.(x)ia(-,dsd®
A

— & Jrexiocpizk) BLOOAC SR 4 o f s joowe) 91 00R( dsdR) 1|
< @ (/M) [, cocpzk) $100R( dsdX) }|e*)LMoo*fR+xux\>K)¢*(X)ﬁ("d5dx) — 1|
- A
+ 67(12/2)“\/”00 . }|e_ Jrexio<mi=k) P OOR(- dsd® _ l|
A
=11 x I+ 3.
We will estimatel;. By (10) we obtain
|1 < e_()\z/zxM)oo+fR+x(o<\x\§K) [ (¥)a(+,dsdx
< ef()‘z/zxM)OOJ’COK)L3 Jrextoamzk) X2A(- dsdy
< @ (/M) +eoK A3 (M),

<1.
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We will estimatel,. By using the inequality

ex -1
V

<€ Lys0 + X 1<y, v >0,

we have

|2 < e_}‘M"Q_[R”“XbK)%(X)l}'("dsdﬁ1{Moo+fR+X”be)(%(X)/)L)fl(',deX)SO}

$1(X) . -
' (_M“ ) /MM} i A0S D) L0005 03-0)

= e)LO(7MM7IR+X(‘X‘>K)(¢A(X)/)\)’a(.‘deX))1{M90+fR+x(\x\>K)(¢‘A(X)/A)ﬁ(',dsdx)fo}

$1(X) .
' (M°°+/R+x{x|>m 5 IS O TN 000/ dstp=0)

#1.(X)
A

< e—koMx‘*')no fR+><HX\>K) 16 (X)/A| (-, dsdx + M;o +/
R x{|x|>K}

i(-, ds dx.

By Lemma 4.1 of Kaji [6], the right-hand side of the last inafity is

< @ MMt fry ok B2 MIA( dsdY ME + 1 |pr,(X)|22( -, ds dX.
A0 JR.x{Ix|>K]}

We now estimatds. By using the inequality

e -1
V

< € 1ls0) * X Lix<q, v >0,
we have

ls = e(Az/z)(wm{e_fm“k“K)Mx)ﬁ("dsml{k 0ok @ (/1) ds AR <0}

$:(x) . -
+<_/R+x{0<x|<m i SR ) L o000/ 35 9>0)

#.(x)

< o 02/2M) {efqu«,|¢A(x)|ﬁ(-,dsd>o+ /
= Py
R

[L(-,dsdx)}.

+x{0<|x|=K}

Moreover, by (10) the right-hand side of the last inequalgy i

S ef(kz/z)(M)x {eCOK)L3 fR+><(0<\><\SK) sz'("de)o + COK)\,Z/ XZ[:\L( Ty dS d)o}
R

L x{0<|x|<K}
S ef(xz/z)(M)x {ecOK)\s(M)x + COK)"2<M>OO}

2
< /2L ERKD M) 4 96K %<M>ooe—(x2/2)<wl>w

< 1+2Ke™,
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where we can see\/2)(M),e~**/2M)x < e=1 py using the inequalitke™ < e~L.
Hence, the above three estimationslgf I,, and Iz imply (9).

Finally, according to the dominated convergence theord, (9), E[MZ%] < oo,
and the assumption (3) imply the desired conclusion. ]

2.2. A Tauberian theorem.

Theorem 2.1 ([4]). Let X be an R,-valued random variable such that
lim;_o(1/A)(1 — E[e"**/2X]) exists inR, then

\/? lim %(1_ E[e~0*/2X]) = lim AP(WX > ).

7T 2—0

2.3. Proof of Theorem 1.5. According to Lemmas 2.1 and 2.2, we have
lim E(l — E[ef(/\z/2)<l\/l>oo]) = —E[Mu]
A—>0 A ©°

holds. Then, by using the Tauberian theorem the last resydties

Jim 2P(/ (M) > 2) = —\EE[MO@].

3. Proof of Theorem 1.4

3.1. The lemma.
Lemma 3.1. Let p be a stopping timeThen it follows that for anf0 <a < 1

lim supAP(/(M)s > 1) < % limsupAP(/(M), > 1)

A—00 A—>00

+

C
SUPE[(Mp+: — M,)7; 0 < 9],
Vg op M = W0 < o)

where C is a positive constant which does not depend qra,Mand p.
Proof. Fix O0<a < 1. We have
P((M)oo > 2%) < P((M), < @®?, (M)oo > A7) + P((M), > a%2?),

and so

lim supAP((M)s > 22) < 1 lim supAP((M), > 2?)
(11) A—00 ad iso00

+SUpAP((M), < a?A?, (M) > A2).
A
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On the other hand, define the procdd$s= {N;}icr, and the filtration{G;}icr, as
Ne=Mpst —M,, Gi=F,, VteR.
Then N is a local martingale with respect {@;}icr, and
(N)oo = (M)oo — (M),
holds. Also, observe
S;JpAP((M),, <a®?, (M)y > A?) < s;JpA P((N)s > 22 — a%1?)

1
= SUPAP((N) s > A2).
— AIO ((N) )

Then, by using the appendix the right-hand side of the lasguality is

(12) sup/\P(sup|Nt| > A),
X

1—a2 teRy

where C is a positive constant which does not depend Mn a, and p. If we let
A >0 and

_[inf{t e Re [ INt| > A} if {} #0
" oo it (=0,

then [N, | > A on {r;, < oo} ={supcg, INi| > A}, and so

AP(sup|Nt| > A) < E[IN[].
teRy

Therefore by the last result we have

(12) <

C
sup E[|IN;]
J1-—a? teT(El) [IN[]

sup 2E[N”
1—a27:€T(E\)I) (N1

2C
= sup {E[(My+; — M) p=00]+ E[(Mys: — M) p < 00
m rgT(pN){ [( 14 p) 14 ] [( 14 P) 14 ]}

IA

2 SUPE[(Myer — M) p < o]
+T T ’ < &},
Vl—a teT r r P

where 7 (N) = {z: stopping tim¢g {N.At}ter, iS uniformly integrabl¢. That is,

N

SUPAP((M), < @?A?, (M)o > A2) < SUPE[(Mpsr — M,)7; p < 00].
A

2C
V11— a2 ceT
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Hence, by the last inequality and (11) we get the desired lasian. ]
3.2. Proof of (). For anyu > 0, introduce the stopping time

C(infit €Ry | —AoMc + A > U} if {} 20
T o it (=0,

where
A= 6 (IA(-, ds d¥, teR.
O,t]x{|x|>K}

Fix u> 0. We consider the procesd® = (M}r, defined asM = M,_.;, t € R..
Then it follows from the assumptions with respecthb that M) is also a quasi left
continuous and locally square integrable martingale wisiatisfingM{" = 0, (M),
(=(M)y) < (M) < 00 a.s., and the uniform integrability ¢{M)~},.7. Moreover,
if we pick the random measurge™ on € x R. x X such that for allt € R, and Borel
subsetdJ of X

pOC, 0, 1] xU)= )" 1,(AMY)

O<s<t
and its compensatqe™, then it follows that for allt € R, and Borel subsetd) of X

O, 0] xU)= Y 1y(AMg)=u(-, (0, uAt] xU) as,

O<s<tgyat

and sout¥ is the random measure di x R; x X such that for allt € R, and Borel
subsetdJ of X

AW, 0,t] xU)=4a(-, 0,7y At] xU)  as.,
and therefore we can have that

E[e oM et 14100010 0]

= E[ef)‘oMnﬁ'Afu]

= E[e *oMutAu: 1 < 0o] + E[e *oMutAu: ¢, = o0]

< E[e"*AMu; 7, < o0] + €' P (1 = o0)

= E[e" %0 1, < o] + €'P(r; =00) (= €"),

where the fourth line of the above holds by the definitionrgfand the last line does
by the quasi left continuity ofM. By applying Theorem 1.5 to the proce$$™,
we have

2
-0 < E[Még)] <0, /\Iim APV (MW) o > 1) = — /_E[Még)],
—00 T
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that is, —oo < E[M,] < 0 and

(13) lim AP(/(M)s, > A) = —\/gE[M,u].

L—00

Now we show

/2
(14) Iixm infAP(v(M)s > A) > —,/ —E[M].
— 00 T
Indeed, the left-hand side of (13) is
< Ii{n inf AP(v/ (M) > A)

and the right-hand side of (13) is

2 2
= —/ =E[Moo; 7y = 00] =/ —E[Mq,; 7y < 7]
T e
2 2 1
z—‘/—E[Moo;ru:oo]+,/—E[£——Aru;l’u<00}
T T X o
2 1 /2
> —/ =E[Mq; 7y = 00] — —,/ =E[A,,; Ty < o],
T AV

where the second line of the above holds by the definition ofAlso, the right-hand side
of the above converges te./2/7 E[My] asu — oo, because by the dominated conver-
gence theorem, the fa&[|My]|] < co we have known and the assumption (2) imply

lim E[My; 7y =00] = E[Ms], lim E[A;; 7y < 00] = 0.
u—o00 u—00

Therefore we can get (14).
On the other hand, we will show

(15) liMmsupAP(/(M)oo > A) < —\/gE[Moo].

A—>00

According to Lemma 3.1, we have for all9a < 1

lim sSupAP((M)s > 12) < g lim inf AP((M)s, > 2?)

A—00

+ SUPE[(My+r — M)ty < 9],

C
Vl—az teT
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where C is a positive constant which does not dependeaoandu. Fix 0 < a < 1.
By (13) the first term on the right-hand side of the last indityds

= §<—\/3E[Mgg>]).

Therefore
. 1 2 v
limsupAP((M)s > 19) < —| —/ —E[MY]
A—00 a T

+

C
SUPE[(M+r — My,) " Ty < o0].
V11— a2 teT * !

By the definition ofr, the second term on the right-hand side of the last inequaity

C u 1 B
< ———5supE| (M +—— —A ;
T J1-a?2 re’]p [( Tk ko TU) = oo:|

1
& ol tron ]

SUPE[M_; 7y < o0] + < iE[Aoo;ru<oo].

C
V1—a2 ceT V1—azlo

By the uniform integrability off M },<7 the first term on the right-hand side of the last
inequality converges to 0 a.s. as—> oo and from the dominated convergence theorem
the assumption (2) implies that the second term of it doestam, Therefore

=<

N

lim supAP((M)ee > 22) < lim supg (_\EE[M(@])'

L—00 u—o00

Moreover, the right-hand side of the last inequality 4s (1/a)(—+/2/7 E[M]) since

liminfy_. E[M]] = E[MZ] holds by the Fatou lemma and since jim, E[M_] =

E[MZ] holds by the uniform integrability ofM~}.c7. Therefore we can get (15).
Hence (14) and (15) imply the desired conclusion.

4. Appendix

Proposition 4.1. Assume that M is a quasi left continuous and locally square
integrable martingale Then

SUpAP(y/(M)s > 1) < C supAP(sup|Mt| > A),
r A t<oo

where C is a universal positive constant
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Proof. Pick any stopping timep and ¢ with p < t. First, it is clear that we
can get

(16) E[(V(M)e. = V(M),_)?] < E[(M); — (M),].

In fact, (M); is continuous, sincéM is quasi left continuous, and the inequalityd —
vb)2 <a—bfor 0<b < a holds. Introduce the local martingals; = M(p+tyar —
M,, t < oo, and then we can se@M), — (M), = (N). Therefore, (16) and the last
result imply

IA

E[(vV(M)r. — (M), )?] < E[(N)o]

- €[ (o) ]

where the last line of the last inequality holds by the propef a local martingale.
By the definision ofN we have

[ -l (o) s ]

< 2E[(sup|Mw|> +M,?% p < r]

t<oo

:2E[<Sup|Mt|> ;p<r:ooi|
t<oo

+2E (sup|MtM|) + Mpz;p <1< oo]

t<oo

|
(18) <4E [(supuvm) p < 7T =00 ]

t<oo

2
+2E [(sup|Mt|> (sup|Mt|> TP <T< oo]

t<t
:4E|:<sup|Mt|> p<T= oo:|
t<oo

+4E (Sup|Mt|) p<T< ooi|

t<t

:4E[<5Up|Mt|> o< T],
t<t

where the eighth line of the last inequality holds by the guef$ continuity of t —

A
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Sup; IMs|. Hence, (17) and (18) imply

E[(V/(M). — (M), )] = 4E[<§3rpllvlt|>2; p < r}.

Then, according to Corollary 6 of Azéma, Gundy, and Yor [Lle above implies the
desired conclusion. O
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