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Abstract
By a Frobenius system on a finite groupG, we mean the data, for each maximal

solvable subgroupM of G, of a normal subgroupF (M) of M, satisfying some of
the properties of a Frobenius kernel, and subject to certainadditional conditions. We
prove that a finite group with a Frobenius system is either solvable (in which case
we get a complete description), or isomorphic toSL2(K ) (for K a finite field of
characteristic 2) or to a Suzuki group. The respective possibilities for the mapping
F are then determined. This extends a previous result of ours (Nagoya Math.
J. 165 (2002), 117–121) by removing the condition that eachM=F (M) be abelian.
Curiously enough, the Feit-Thompson Theorem is used in the proof.

0. Introduction

In this paper, we shall classify all Frobenius systems on finite groups, modulo a
very weak (and natural) nondegeneracy hypothesis (condition (FS4

0
) below). Our result

contains as a particular case Theorem 0.1 of [4]. The possibility of such a generaliza-
tion was suggested to the author by Arad and Herfort’s paper ([1]), in which are stud-
ied finite groups possessing at least oneCC-subgroup, i.e. a nontrivial proper subgroup
that contains the centralizer of each of its nonidentity elements.

In fact, we only need a particular case of Arad and Herfort’s result (Theorem A,
(ii), p.2089 in [1]), that is due to Suzuki ([6], Theorem 1; see also [2]); in particular
we do not need the full Classification of the Finite Simple Groups, butonly Suzuki’s
classification ofZT-groups (see [6]). We also use the Brauer-Suzuki Theorem on finite
groups with a generalized quaternion Sylow subgroup and theFeit-Thompson Theorem
in order to deal with a particularly troublesome configuration.

We shall keep, unless the contrary be mentioned, the notations used in [3] and [4].

1. Definitions and statement of the result

By a Frobenius system(kernel systemin [3]) on the finite groupG, we shall mean,
as in [4], p.117, a mappingF from the setMS(G) of maximal solvable subgroups
of G to the power setP(G) of G, such that the following axioms are satisfied, for all
M 2MS(G):
(FS1) F (M) is a normal subgroup ofM;
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(FS2) 8a 2 M n F (M), CF(M)(a) = f1g;
(FS3) 8g 2 G n M, F (M) \ F (M)g = f1g.
(cf. axioms (1), (2), (3) of Definition 1.1 in [3], p.72).

There is a natural notion of isomorphism for groups with a Frobenius system (see
[4], p.118). In addition, two families of Lie-type groups over fields of characteristic
two do possess a canonical Frobenius system: the Suzuki groups Sz(22n+1) (n� 1), and
the special linear groupsSL2(F2n) (n � 2); the respective Frobenius systems (defined in
[4], p.118) will be denoted byF(n) (resp.FF2n ).

We can now state our main result:

Theorem 1.1. Let F be a Frobenius system on the finite group G, such that the
following condition hold:
(FS4

0
) For each M2MS(G), F (M) 6= f1g or M is abelian.

Then one(and, of course, only one) of the following holds:
(1) G is abelian andF (G) = f1g;
(2) G is a nonidentity solvable group andF (G) = G;
(3) G is a solvable Frobenius group, and F (G) is the Frobenius kernel of G;
(4) (G, F ) is isomorphic to(SL2(F2n), FF2n ), for some n� 2;
(5) (G, F ) is isomorphic to(Sz(22n+1), F(n)), for some n� 1.
Conversely, each of the possibilities(1), : : : ,(5) gives rise to a Frobenius system satis-
fying (FS4

0
).

Clearly, axiom (FS4
0
) follows from axiom (FS4) in [4] (and a fortiori from ax-

iom (5) in [3], p.73); therefore, Theorem 0.1 in [4] follows at once from Theorem 1.1
(we only have to consider case (3), when (FS4) yields that the Frobenius complement
in G is abelian, hence cyclic by the same argument as in [4], p.120).

2. Proof of Theorem 1.1

Some parts of our proof will be very close to the corresponding ones in [4].
Let (G,F ) satisfy (FS1), (FS2), (FS3) and (FS4

0
). If, for some M 2MS(G), one

hasF (M) = f1g, then (by (FS4
0
)) M is abelian, whence (by [4], Lemma 1.1, p.118)

G = M, and we obtain (1). Therefore we may assume that:

(2.1) For each M 2MS(G), F (M) 6= f1g.
Let us now assume that, for someM 2MS(G), F (M) = M. If M = G, then G

is solvable,F (G) = G and we are in case (2); ifM 6= G, it follows from (FS3) that
M is a solvable Frobenius complement inG, and we reach a contradiction as in [4],
p.120, l.6. Therefore, we may assume that:

(2.2) 8M 2MS(G), f1g 6= F (M) 6= M.
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As in [4], p.120, it now follows from [3], Proposition 1.5, p.73, that:

(2.3) For each M 2MS(G), F (M) is nilpotent.

(As in the argument preciding (2.2), we do not need here Thompson’s Theorem on
the nilpotency of Frobenius kernels, but only the far more elementary fact thatsolvable
Frobenius kernels are nilpotent). IfG is solvable, thenMS(G) = fGg, and Lemma 1.3
from [3] yields thatF (G) is a Frobenius kernel inG, and thence (3) holds. Therefore
we may assume that:

(2.4) G is not solvable.

Let now S 2 Syl2(G), and let M 2 MS(G) contain S. If F (M) has even order,
then, as by [3], Lemma 1.3 and (2.2)F (M) is a CC-subgroup ofG, Theorem 1 of
[6] yields that either:
(1) G is a Frobenius group, andF (M) is its kernel, or
(2) G is a Frobenius group, andF (M) is its complement, or
(3) G is a ZT-group.

But (2) would imply thatF (M) = NG(F (M)) = M (cf. [3], Lemma 2.5 (i), p.75)
contradicting (2.2), and (1) would imply thatG = NG(F (M)) = M would be solvable,
contradicting (2.4). Therefore one has (3), whence, by [6],G ' SL2(F2n) (n � 2) or
G ' Sz(22n+1) (n� 1), and one may conclude as in [4], p.120, that case (4) or case(5)
of Theorem 1.1 holds.

Thus it may be supposed that:

(2.5) F (M) has odd order.

Let us assume thatG possesses a nontrivial normal solvable subgroupN0, and let
N denote a minimal normal subgroup ofG contained inN0; then N is an elementary
abelian p-group for some primep. Let P 2 Sylp(G), and let M1 2MS(G), M1 � P;
then N � P � M1. Therefore

[N, F (M1)] � [N, G] \ [M1, F (M1)]

� N \ F (M1).

If N \ F (M1) = f1g, then N centralizesF (M1); for x 2 F (M1)℄, one has
N � CG(x) � F (M1) (by [3], Lemma 1.3) whenceN = N \F (M1) = f1g, a contradic-
tion. Thus N \ F (M1) 6= f1g; let now x 2 (N \ F (M1))℄. One hasN � CG(x) (as N
is abelian), andCG(x) � F (M1) (as above), whenceN � F (M1). But now, for each
y 2 G, one has

f1g 6= N = N y � F (M1) \ F (M1)y

whence, according to (FS3), y 2 M1; thus G = M1 is solvable, contradicting (2.4).
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Therefore:

(2.6) G has no nontrivial solvable normal subgroup.

In particular, by the Feit-Thompson Theorem:

(2.7) O20 (G) = f1g.
By (2.2), F (M) 6= f1g; let q be a prime factor ofjF (M)j, and let Z(F (M)q) de-

note theq-component (i.e. the subgroup of elements whose order is a power of q)
of the finite abelian group Z(F (M)). Then S acts freely on the elementary abelian
q-group �1(Z(F (M)q)) (as, for eachy 2 �1(Z(F (M)q))℄, one hasCG(y) � F (M),
whenceCS(y) = f1g by (2.5)); thereforeH =def SB= SË B is a Frobenius group with
kernel B and complementS. It now follows from 12.6.15 (ii), p.356 in [5] that either
(1) S is cyclic,
or:
(2) S is a generalized quaternion group.

In case (1),G is 2-nilpotent, hence (by (2.7))G = SO20 (G) = S is solvable, con-
tradicting (2.4). Therefore we have case (2), whence, by theBrauer-Suzuki Theorem,
one has (denoting byt the unique involution inS):

G = CG(t)O20 (G) = CG(t).

But then one hast 2 Z(G), whencehti is a nontrivial solvable normal subgroup ofG,
contradicting (2.6). Thus is the proof concluded.

3. Errata

I am taking the opportunity to correct some misprints in [4]:
• p.117, l.5 of the abstract: instead of “group”, read “groups”;
• p.117, l.4 of the main text: remove “Frobenius”;
• p.117, l.8 of the main text: instead of “1”, read “f1g”;
• p.118, l.3: instead of “2r +1”, read “2n+1”;
• p.120, l.-9: instead of “1440”, read “720”;
• p.120, l.-1: replace the line by “FF2n (resp.F(n))”.
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