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Abstract
We first show that homogeneous submanifolds with abelian normal bundle in

a symmetric space of non-compact type occur as principal orbits of complex
hyperpolar actions on the symmetric space. Next we show thatall complex
hyperpolar actions with a reflective orbit are orbit equivalent to Hermann type
actions. Furthermore, we classify complex hyperpolar actions with a totally geodesic
orbit in the case where the ambient symmetric space is irreducible. Also, we list up
the cohomogeneities of Hermann type actions on irreduciblesymmetric spaces.

1. Introduction

A proper isometric actionH (which is automatically compact) on a symmetric
space of compact type is called ahyperpolar actionif there exists a properly embed-
ded complete flat submanifold6 of the symmetric space meeting allH -orbits orthog-
onally. The submanifold6 is automatically totally geodesic and it is called asection
of the action. Hyperpolar actions have necessarily singular orbits, which are inter-
preted as the polar set of the action. Principal orbits of hyperpolar actions are equi-
focal submanifolds in the sense of [17]. A. Kollross [14] classified hyperprolar actions
on irreducible symmetric spaces of compact type. Accordingto the classification, a
hyperpolar action on the symmetric space is a Hermann actionor a cohomogeneity
one action, where a Hermann action implies the action of a symmetric subgroup of the
isometry group of the symmetric space. Recently, the author[11] has introduced the
notions of a complex equifocal submanifold in a symmetric space of non-compact type
and a complex hyperpolar action on the symmetric space. These notions are defined as
follows. Let G=K be a symmetric space of non-compact type andM be an immersed
submanifold inG=K . The submanifoldM is called acomplex equifocal submanifold
if the following conditions (i)–(iii) hold:
(i) M has abelian normal bundle, that is, the sectional curvatureof any 2-plane in the
normal space ofM is equal to zero,
(ii) the normal holonomy group ofM is trivial,
(iii) for any parallel normal vector fieldv of M, the complex focal radii along the
normal geodesicvx with  0vx

(0) = vx are independent of the choice ofx 2 M, where
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 0vx
(0) is the velocity vector ofvx at 0.

In the case whereM is complete and real analytic, the complex focal radii alongthe
normal geodesic of M surjectively correspond to focal points along the complexified
normal geodesic c of the complexified submanifoldMc (which is a submanifold in the
anti-Kaehlerian symmetric spaceGc=K c). See [11] about the definition of the complex
focal radius. See [11, 13] about the study of a complex equifocal submanifold. LetH
be a closed subgroup ofG. If there exists a properly embedded complete flat sub-
manifold 6 meeting all H -orbits orthogonally, then theH -action onG=K is called a
complex hyperpolar action. The submanifold6 is automatically totally geodesic and it
is called asectionof the action. Note that complex hyperpolar actions are not neces-
sarily compact group actions. It is known that principal orbits of complex hyperpolar
actions are complex equifocal (see Theorem 12 of [11]). In this paper, we first show
the following fact.

Theorem A. All homogeneous submanifolds with abelian normal bundle ina
symmetric space of non-compact type occur as principal orbits of complex hyperpolar
actions on the symmetric space and hence they are complex equifocal.

Thus the study of homogeneous submanifolds with abelian normal bundle in a
symmetirc space of non-compact type is reduced to that of complex hyperpolar ac-
tions. Complex hyperprolar actions do not necessarily havesingular orbits (i.e., the
polar set). However, for almost all complex hyperpolar actions H on G=K , the com-
plexified actionsH c (which are actions on the anti-Kaehlerian symmetric spaceGc=K c)
have singular orbits (i.e., the polar set). The polar set should be named complex polar
set of the original action. From this reason, the original actions were named complex
hyperpolar actions. It is expected that the study of a complex hyperpolar action will
be useful to that of harmonic analysis on a symmetric space ofnon-compact type. If
H is a symmetric subgroup ofG, then theH -action on G=K is called aHermann
type action. It is known that a Hermann type action is a complex hyperpolar action
admitting a reflective orbit (see [12]), where the reflectivity implies that the geodesic
reflection in the orbit is a globally well-defined isometry ofG=K . Conversely we can
show the following statement.

Theorem B. Let G=K be a symmetric space of non-compact type, where G is
assumed to be simply connected. Then all complex hyperpolar actions on G=K admit-
ting a reflective orbit are orbit equivalent to Hermann type actions.

Reflective submanifolds are totally geodesic. Hence we naturally think if the state-
ment of the above theorem holds even if the part of “reflectiveorbit” is replaced by
“totally geodesic orbit”. However, it is shown in [5] that there exist cohomogeneity one
(hence complex hyperpolar) actions onG=K admitting a totally geodesic orbit which
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is not orbit equivalent to a Hermann type action. Complex hyperpolar actions on ir-
reducible symmetric space of non-compact type admitting a totally geodesic orbit are
classified as follows.

Theorem C. Complex hyperpolar actions on an irreducible symmetric space of
non-compact type admitting a totally geodesic orbit are orbit equivalent to a Hermann
type action, the G2

2-action on SO0(3, 4)=SO(3)� SO(4), the SU(1, 2)-action on
G2

2=SO(4), the SL(3, R)-action on G2
2=SO(4), the Gc

2-action on SO(7, C)=SO(7) or the
SL(3, C)-action on Gc

2=G2.

REMARK 1.1. Five actions other than a Hermann type action in this statement
are of cohomogeneity one.

From Theorems A, B and C, the following facts for homogeneoussubmanifolds
with abelian normal bundle follow directly.

Corollary D. Let M be a homogeneous submanifold with abelian normal bundle
in a symmetric space G=K of non-compact type.
(i) If M admits a reflective focal submanifold and G is simply connected, then M
occurs as a principal orbit of a Hermann type action.
(ii) If M admits a totally geodesic focal submanifold and G=K is irreducible, then M
occurs as a principal orbit of a Hermann type action or one of five non-Hermann type
actions in the statement ofTheorem C.

For complex hyperpolar actions admitting a totally geodesic principal orbit, we can
show the following fact.

Theorem E. Complex hyperpolar actions on an irreducible symmetric space of
non-compact type admitting a totally geodesic principal orbit are orbit equivalent to
the SO0(1, m� 1)-action on the hyperbolic space SO0(1, m)=SO(m), where m� 2.

2. Proofs of Theorems A, B, C and E

In this section, we shall prove Theorems A, B, C and E. First, we prepare the
following lemma.

Lemma 2.1. Let G be a semi-simple Lie group equipped with a bi-invariant
pseudo-Riemannian metrich , i, H be a closed subgroup of G� G (where H acts
on G by the adjoint representation) and a be an abelian subspace of the normal space
T?

e (He) of the orbit He at e, where e is the identity element of G. Then6 = expG(a)
meets all H-orbits through6 orthogonally, whereexpG is the exponential map of G.
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Proof. Denote byh the Lie algebra ofH . Let X0 2 a. Easily we can show

Te(He) = fY � Z j (Y, Z) 2 hg
and

(expG X0)�1� (TexpG X0 H (expG X0)) = fAd(expG X0)�1(Y)� Z j (Y, Z) 2 hg.
For any (Y, Z) 2 h and W 2 a, we have

hAd(expG X0)�1(Y)� Z, Wie = hY � Z, Wie = 0.

Hence it follows that (expG X0)�1� (TexpG X0 H (expG X0)) is orthogonal toa, that is,
TexpG X0 H (expG X0) is orthogonal to (expG X0)�(a) = TexpG X06. This completes the
proof.

By using this lemma, we can show the following fact.

Lemma 2.2. Let G=K be a symmetric space of non-compact type, H be a closed
subgroup of G anda be an abelian subspace of the normal space T?

eK H (eK) of the
orbit H (eK) at eK. Then6 := exp(a) meets all H-orbits through6 orthogonally,
whereexp is the exponential map of G=K .

Proof. Let� : G! G=K be the natural projection. The spacea is identified with
the horizontal lift of a to e with respect to� . Since orbits of theH � K -action on
G are the inverse images of orbits of theH -action on G=K by � , the subspacea
is contained in the normal spaceT?

e (H � K )e of the orbit (H � K )e at e. Hence,
according to the previous lemma,e6 := expG(a) meets all (H � K )-orbits throughe6
orthogonally. Therefore6 := exp(a) meets allH -orbits through6 orthogonally.

By using this lemma, we prove Theorem A.

Proof of Theorem A. LetM be a homogeneous submanifold with abelian normal
bundle in a symmetric spaceG=K of non-compact type. SinceM is homogeneous,
there exists a closed subgroupH of G having M as anH -orbit. We shall show that
the H -action is complex hyperpolar. Without loss of generality,we may assume that
M = H (eK). By the assumption, the normal spaceT?

eK M is an abelian subspace of
TeK(G=K ). According to Lemma 2.2, it is shown that the complete flat totally geo-
desic submanifold6 := exp(T?

eK M) meets allH -orbits through6 orthogonally. Take
any gK 2 G=K and a piecewise smooth curve� : [0, 1]! G=K with �(0) = eK and�(1) = gK. Since H -orbits give a singular Reimannian foliation onG=K and G=K is
complete, by imitating the proof of Lemma 2.1 of [3] (even if the foliation has singu-
lar leaves), we can construct a rectangleÆ: [0, 1]� [0, 1]! G=K such thatÆ(t , � ) lies
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in an H -orbit for t 2 [0, 1], Æ( � , s) meetsH -orbits orthogonally and thatÆ(t , t) = �(t)
(t 2 [0, 1]). Clearly we haveÆ(1, 0)2 H (gK) \ 6. Thus the orbitH (gK) meets6.
Therefore we see that allH -orbits meet6 orthogonally. This implies that theH -action
is complex hyperpolar and thatM = H (eK) is a principal orbit of theH -action. This
completes the proof.

Next, by using Lemma 2.2, we prove Theorem B.

Proof of Theorem B. LetG=K be as in the statement of Theorem B andH be
a closed subgroup ofG such that theH -action onG=K is a complex hyperpolar ac-
tion admitting a reflective orbit. By replacingH by its suitable conjugate group if
necessary, we may assume thatH (eK) is a reflective orbit. For simplicity, setM :=
H (eK). Since M is reflective, so is alsoM? := exp(T?

eK M). Denote byg (resp. f)
the Lie algebra ofG (resp. K ). Let g = f + p be the Cartan decomposition. Let
B be the Ad(G)-invariant non-degenerate inner product ofg such thatBjf�f is neg-
ative definite, Bjf�p = 0 and Bjp�p = h , ieK, where h , i is the Riemannian met-
ric of G=K and p is identified with TeK(G=K ). Set h0 := nf(TeK M) � TeK M and
m0 := (f 	 nf(TeK M)) � T?

eK M. Clearly we haveg = h0 � m0 (orthogonal direct sum)
andnf(TeK M) = nf(T?

eK M). SinceM is reflective, bothTeK M and T?
eK M are Lie triple

systems. By using these facts, we can show

(2.1) [h0, h0] � h0, [h0, m0] � m0 and [m0, m0] � h0.
Let H 0 be the connected subgroup ofG having h0 as its Lie algebra. It follows from
(2.1) and the simply connectedness ofG that H 0 is a symmetric subgroup ofG. That
is, the H 0-action onG=K is a Hermann type action. We shall show that theH 0-action
and theH -action have the same orbits. Denote by prp (resp. prf) the orthogonal projec-
tion of g onto p (resp.f). Also, let h be the Lie algebra ofH . We haveTe((H�K )e) =
prp(h) + f and Te((H 0 � K )e) = prp(h0) + f = TeK M + f. On the other hand, it follows

from ��1(M) = (H � K )e that TeK M = prp(Te((H � K )e)). So we haveTeK M = prp(h)
and henceTe((H 0 � K )e) = Te((H � K )e). This implies (H 0 � K )e = (H � K )e,
which furthermore impliesH 0(eK) = H (eK). Let 6 be a section of theH -action
through eK. Set a := TeK6, which is abelian. Sincea � T?

eK(H 0(eK)), it follows
from Lemma 2.2 thatH 0-orbits through6 meet6 orthogonally. On the other hand,
we have [prf(h), TeK M] = prp([h, TeK M]) � TeK M, that is, prf(h) � nf(TeK M), which
together with prp(h) = TeK M implies thath � h0, that is, H � H 0. HenceH 0-principal
orbits through6 coincides withH -principal orbits through6. From this fact, it fol-
lows that theH 0-action and theH -action have the same orbits. This completes the
proof.

Next we prove Theorem C.
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Proof of Theorem C. LetG=K be as in the statement of Theorem C andH be a
closed subgroup ofG such that theH -action onG=K is a complex hyperpolar action
admitting a totally geodesic orbit. According to the classification of cohomogeneity
one actions admitting a totally geodesic orbit by Berndt-Tamaru [5], if the H -action
is of cohomogeneity one, then the action is orbit equivalentto a Hermann type action
or one of five non-Hermann type actions in the statement of Theorem C. Assume that
the H -action is of cohomogeneity greater than one. By replacingH by its suitable
conjugate group if necessary, we may assume thatH (eK) is a totally geodesic orbit.
For simplicity, setM := H (eK). Let H 0 be a connected subgroup ofG defined as in
the proof of Theorem B. By the same argument as in the proof of Theorem B, we can
show that theH 0-action and theH -action have the same orbits. Seth0� := nf(TeK M)�p�1TeK M (� g� := f +

p�1p � gc). Let H 0� be the connected subgroup ofG� (:=
exp g�) having h0� as its Lie algebra. Since theH 0-action is a complex hyperpolar
action of cohomogeneity greater than one, it follows that the H 0�-action is a hyperpolar
action of cohomogeneity greater than one on the irreduciblesymmetric spaceG�=K of
compact type. According to the classification by A. Kollross[14] of hyperpolar actions
on irreducible symmetric spaces of compact type, theH 0�-action is orbit equivalent to
a Hermann action. We denote this Hermann action by (H 0�)0. By replacing (H 0�)0 by
its suitable conjugate group, we may assume that (H 0�)0(eK) = (H 0�)(eK). Then the
dual action (H 0�)0� of (H 0�)0 is defined. The (H 0�)0�-action is a Hermann type action
and it is orbit equivalent to theH 0-action. Therefore, theH -action is orbit equivalent
to the Hermann type (H 0�)0�-action. This completes the proof.

Next we prove Corollary D.

Proof of Corollary D. According to Theorem A,M occurs as a principal orbit of
a complex hyperpolar action onG=K . If M admits a reflective (resp. totally geodesic)
focal submanifold, then the focal submanifold is a reflective (resp. totally geodesic)
singular orbit of the action. Hence the statements (i) and (ii) of Corollary D follow
from Theorems B and C, respectively.

Next we prove Theorem E.

Proof of Theorem E. LetG=K be an irreducible symmetric space of non-compact
type and H be a closed subgroup ofG whose action onG=K is a complex hyper-
polar action admitting totally geodesic principal orbit. By replacing H by its suitable
conjugate group if necessary, we may assume that the orbitH (eK) is a totally geo-
desic principal orbit. LetH 0 be a connected subgroup ofG defined as in the proof of
Theorem B. As in the proof of Theorem B, we can show that theH 0-action and the
H -action have the same orbits. LetH 0� � G�=K ! G�=K be the dual action of the
H 0-action. Then it is shown thatH 0�(eK) is totally geodesic principal orbit. Hence,
according to the result in [6], theH 0�-action is conjugate to theSO(m)-action on the
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sphereSO(m+1)=SO(m) (m� 2) and hence it is also conjugate to theSO0(m)-action on

the sphere, whereSO(m) denotes the subgroup
n�

1 0
0 A

� ��� A 2 SO(m)
o

of SO(m + 1)

and SO0(m) denotes the conjugate group
n�

A 0
0 1

� ��� A 2 SO(m)
o
. It is easy to show

that the tangent spacesTeSO(m) H 0�(eSO(m)) and TeSO(m)SO0(m)(eSO(m)) are Lie triple
systems ofTeSO(m)(SO(m+ 1)=SO(m)) (� so(m+ 1)) and that they map to each other by
an element of the Ad(SO(m))-action. From this fact, it follows that theH 0-action is or-
bit equivalent to the dual action of theSO0(m)-action, that is, theSO0(1, m� 1)-action
on the hyperbolic spaceSO0(1, m)=SO(m). After all, the H -action is orbit equivalent
to the SO0(1, m� 1)-action.

3. Hermann type actions and their cohomogeneities

In this section, we shall list up Hermann type actions on irreducible symmetric
spaces of non-compact type and their cohomogeneities. LetG=K be an irreducible
symmetirc space of non-compact type andH be a symmetric subgroup ofG. Let� (resp.� ) be an involution ofG with (Fix �)0 � K � Fix � (resp. (Fix� )0 � H �
Fix � ). By replacingH by its suitable conjugate group if necessary, we may assume
that � Æ � = � Æ � . Set L := Fix(� Æ �). The orbit H (eK) and exp(T?

eK(H (eK))) are
reflective submanifolds, where exp is the exponential map ofG=K . It is shown that
the submanifold exp(T?

eK(H (eK))) is isometric to the symmetric spaceL=H \ K and
that the cohomogeneity of theH -action is equal to the rank ofL=H \ K . By us-
ing this fact, the cohomogeneities of Hermann type actions on irreducible symmetric
spaces of non-compact type are listed up as in Tables 1–5. In Tables 1–5,A � B de-

notes A � B=5, where5 is a discrete center ofA � B. The symbol ˜SO0(1, 8) in
the line of Type FII-II0 of Table 5 denotes the universal covering ofSO0(1, 8) and the
symbol � in the line of TypeG00 of Table 5 denotes an outer automorphism ofG2

2.
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Table 1.

type H G=K �= L=H \ K cohom
AI-I SO(n) SL(n,R)=SO(n) SL(n,R)=SO(n) n�1

AI-I 0 SO0(p,n�p) SL(n,R)=SO(n) SL(p,R)=SO(p)�SL(n�p,R)=SO(n�p)�R n�1

AI-II Sp(n,R) SL(2n,R)=SO(2n) SL(n,C)=SU(n) n�1

AI-III (SL(p,R)�SL(n�p,R))�R� SL(n,R)=SO(n) SO0(p,n�p)=SO(p)�SO(n�p) minfp,n�pg
AI-III 0 SL(n,C)�U (1) SL(2n,R)=SO(2n) Sp(n,R)=U (n) n

AII-I SO�(2n) SU�(2n)=Sp(n) SL(n,C)=SU(n) n�1

AII-II Sp(n) SU�(2n)=Sp(n) SU�(2n)=Sp(n) n�1

AII-II 0 Sp(p,n�p) SU�(2n)=Sp(n) SU�(2p)=Sp(p)�SU�(2n�2p)=Sp(n�p)�U (1) n�1

AII-III SU�(2p)�SU�(2n�2p)�U (1) SU�(2n)=Sp(n) Sp(p,n�p)=Sp(p)�Sp(n�p) minfp,n�pg
AII-III 0 SL(n,C)�U (1) SU�(2n)=Sp(n) SO�(2n)=U (n) [n=2]

AIII-I SO0(p,q) SU(p,q)=S(U (p)�U (q)) SO0(p,q)=SO(p)�SO(q) minfp,qg
AIII-I 0 SO�(2p) SU(p, p)=S(U (p)�U (p)) Sp(p,R)=U (p) p

AIII-II Sp(p,q) SU(2p,2q)=S(U (2p)�U (2q)) Sp(p,q)=Sp(p)�Sp(q) minfp,qg
AIII-II 0 Sp(p,R) SU(p, p)=S(U (p)�U (p)) SO�(2p)=U (p) [ p=2]

AIII-III S(U (i , j )�U (p�i ,q� j )) SU(p,q)=S(U (p)�U (q)) SU(p�i , j )=S(U (p�i )�U ( j ))�SU(i ,q� j )=S(U (i )�U (q� j ))
minfp�i , j g
+minfi ,q� j g

AIII-III 0 SL(p,C)�U (1) SU(p, p)=S(U (p)�U (p)) SL(p,C)=SU(p) p

IV-A1 SO(n,C) SL(n,C)=SU(n) SL(n,R)=SO(n) n�1

IV-A2 SL(n,R) SL(n,C)=SU(n) SO(n,C)=SO(n) [n=2]

IV-A3 SL(i ,C)�SL(n�i ,C)�U (1) SL(n,C)=SU(n) SU(i ,n�i )=S(U (i )�U (n�i )) minfi ,n�i g
IV-A4 SU(i ,n�i ) SL(n,C)=SU(n) SL(i ,C)=SU(i )�SL(n�i ,C)=SU(n�i ) n�2

IV-A5 Sp(n,C) SL(2n,C)=SU(2n) SU�(2n)=Sp(n) n�1

IV-A6 SU�(2n) SL(2n,C)=SU(2n) Sp(n,C)=Sp(n) n
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Table 2.

type H G=K �= L=H \ K cohom

BDI-I SO0(i , j )�SO0(p�i ,q� j ) SO0(p,q)=SO(p)�SO(q) (SO0(p�i , j )=SO(p�i )�SO( j ))�(SO0(i ,q� j )=SO(i )�SO(q� j ))
minfp�i , j g
+minfi ,q� j g

DI-I 0 SO(p,C) SO0(p, p)=SO(p)�SO(p) SL(p,R)�U (1)=SO(p) p

DI-III SU(p,q)�U (1) SO0(2p,2q)=SO(2p)�SO(2q) SU(p,q)=SU(p)�SU(q) minfp,qg
DI-III 0 SL(p,R)�U (1) SO0(p, p)=SO(p)�SO(p) SO(p,C)=SO(p) [ p=2]

DIII-I SO�(2i )�SO�(2n�2i ) SO�(2n)=U (n) SU(i ,n�i )=SU(i )�SU(n�i ) minfi ,n�i g
DIII-I 0 SO(n,C) SO�(2n)=U (n) SO(n,C)=SO(n) [n=2]

DIII-III U (n) SO�(2n)=U (n) SO�(2n)=U (n) [n=2]

DIII-III 0 SU(i ,n�i )�U (1) SO�(2n)=U (n) SO�(2i )=U (i )�SO�(2n�2i )=U (n�i ) [i =2]+[(n�i )=2]

DIII-III 00 SU�(2n)�U (1) SO�(4n)=U (2n) SU�(2n)=Sp(n) n�1

IV-BD1 SO(i ,C)�SO(n�i ,C) SO(n,C)=SO(n) SO0(i ,n�i )=SO(i )�SO(n�i ) minfi ,n�i g
IV-BD2 SO0(i ,n�i ) SO(n,C)=SO(n) SO(i ,C)=SO(i )�SO(n�i ,C)=SO(n�i ) [i =2]+[(n�i )=2]

IV-BD3 SL(n,C)�SO(2,C) SO(2n,C)=SO(2n) SO�(2n)=U (n) [n=2]

IV-BD4 SO�(2n) SO(2n,C)=SO(2n) SL(n,C)=SU(n)�SO(2,C)=SO(2) n

CI-I U (n) Sp(n,R)=U (n) Sp(n,R)=U (n) n

CI-I0 SU(i ,n�i )�U (1) Sp(n,R)=U (n) Sp(i ,R)=U (i )�Sp(n�i ,R)=U (n�i ) n

CI-I00 SL(n,R)�U (1) Sp(n,R)=U (n) SL(n,R)=SO(n) n�1

CI-II Sp(i ,R)�Sp(n�i ,R) Sp(n,R)=U (n) SU(i ,n�i )=S(U (i )�U (n�i )) minfi ,n�i g
CI-II 0 Sp(n,C) Sp(2n,R)=U (2n) Sp(n,C)=Sp(n) n

CII-I SU(p,q)�U (1) Sp(p,q)=Sp(p)�Sp(q) SU(p,q)=S(U (p)�U (q)) minfp,qg
CII-I 0 SU�(2p)�U (1) Sp(p, p)=Sp(p)�Sp(p) Sp(p,C)=Sp(p) p

CII-II Sp(p)�Sp(q) Sp(p,q)=Sp(p)�Sp(q) Sp(p,q)=Sp(p)�Sp(q) minfp,qg
CII-II 0 Sp(i , j )�Sp(p�i ,q� j ) Sp(p,q)=Sp(p)�Sp(q) (Sp(p�i , j )=Sp(p�i )�Sp( j ))�(Sp(i ,q� j )=Sp(i )�Sp(q� j ))

minfp�i , j g
+minfi ,q� j g

CII-II 00 Sp(p,C) Sp(p, p)=Sp(p)�Sp(p) SU�(2p)=Sp(p) p�1

IV-C1 SL(n,C)�SO(2,C) Sp(n,C)=Sp(n) Sp(n,R)=U (n) n

IV-C2 Sp(n,R) Sp(n,C)=Sp(n) SL(n,C)=SU(n)�SO(2,C)=SO(2) n

IV-C3 Sp(i ,C)�Sp(n�i ,C) Sp(n,C)=Sp(n) Sp(i ,n�i )=Sp(i )�Sp(n�i ) minfi ,n�i g
IV-C4 Sp(i ,n�i ) Sp(n,C)=Sp(n) Sp(i ,C)=Sp(i )�Sp(n�i ,C)=Sp(n�i ) n
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Table 3.

type H G=K �= L=H \ K cohom
EI-I Sp(4)=f�1g E6

6=(Sp(4)=f�1g) E6
6=(Sp(4)=f�1g) 6

EI-I0 Sp(4,R) E6
6=(Sp(4)=f�1g) SL(6,R)=SO(6)�SL(2,R)=SO(2) 6

EI-I 00 Sp(2,2) E6
6=(Sp(4)=f�1g) SO0(5,5)�R=SO(5)�SO(5) 6

EI-II SU�(6)�SU(2) E6
6=(Sp(4)=f�1g) F4

4 =Sp(3)�Sp(1) 4

EI-II 0 SL(6,R)�SL(2,R) E6
6=(Sp(4)=f�1g) Sp(4,R)=(U (4)=f�1g) 4

EI-III SO0(5,5)�R E6
6=(Sp(4)=f�1g) Sp(2,2)=((Sp(2)�Sp(2))=f�1g) 2

EI-IV F4
4 E6

6=(Sp(4)=f�1g) SU�(6)�SU(2)=Sp(3)�Sp(1) 2

EII-I Sp(1,3) E2
6=SU(6)�SU(2) F4

4 =Sp(3)�Sp(1) 4

EII-I 0 Sp(4,R) E2
6=SU(6)�SU(2) Sp(4,R)=U (4) 4

EII-II SU(6)�SU(2) E2
6=SU(6)�SU(2) E2

6=SU(6)�SU(2) 4

EII-II 0 SU(2,4)�SU(2) E2
6=SU(6)�SU(2) SO0(4,6)=SO(4)�SO(6) 4

EII-II 00 SU(3,3)�SL(2,R) E2
6=SU(6)�SU(2) SU(3,3)=S(U (3)�U (3))�SL(2,R)=SO(2) 4

EII-III SO�(10)�U (1) E2
6=SU(6)�SU(2) SO�(10)=U (5) 2

EII-III 0 SO0(4,6)�U (1) E2
6=SU(6)�SU(2) SU(2,4)=S(U (2)�U (4)) 2

EII-IV F4
4 E2

6=SU(6)�SU(2) Sp(1,3)=Sp(1)�Sp(3) 1

EIII-I Sp(2,2) E�14
6 =Spin(10)�U (1) Sp(2,2)=Sp(2)�Sp(2) 2

EIII-II SU(2,4)�SU(2) E�14
6 =Spin(10)�U (1) SU(2,4)=S(U (2)�U (4)) 2

EIII-II 0 SU(1,5)�SL(2,R) E�14
6 =Spin(10)�U (1) SO�(10)=U (5) 2

EIII-III Spin(10)�U (1) E�14
6 =Spin(10)�U (1) E�14

6 =Spin(10)�U (1) 2

EIII-III 0 SO�(10)�U (1) E�14
6 =Spin(10)�U (1) SU(1,5)�SL(2,R)=S(U (1)�U (5))�SO(2) 2

EIII-III 00 SO0(2,8)�U (1) E�14
6 =Spin(10)�U (1) SO0(2,8)=SO(2)�SO(8) 2

EIII-IV F�20
4 E�14

6 =Spin(10)�U (1) F�20
4 =Spin(9) 1

EIV-I Sp(1,3) E�26
6 =F4 SU�(6)�SU(2)=Sp(3)�Sp(1) 2

EIV-II SU�(6)�SU(2) E�26
6 =F4 Sp(1,3)=Sp(1)�Sp(3) 1

EIV-III SO0(1,9)�U (1) E�26
6 =F4 F�20

4 =Spin(9) 1

EIV-IV F4 E�26
6 =F4 E�26

6 =F4 2

EIV-IV 0 F�20
4 E�26

6 =F4 SO0(1,9)�U (1)=SO(1)�SO(9) 2

IV- E61 E6 Ec
6=E6 Ec

6=E6 6

IV- E62 E6
6 Ec

6=E6 Sp(4,C)=Sp(4) 4

IV- E63 E2
6 Ec

6=E6 SL(6,C)�SL(2,C)=SU(6)�SU(2) 6

IV- E64 E�14
6 Ec

6=E6 SO(10,C)�Sp(1)=Spin(10)�U (1) 6

IV- E65 Sp(4,C) Ec
6=E6 E6

6=Sp(4) 6

IV- E66 SL(6,C)�SL(2,C) Ec
6=E6 E2

6=SU(6)�SU(2) 4

IV- E67 SO(10,C)�Sp(1) Ec
6=E6 E�14

6 =Spin(10)�U (1) 2

IV- E68 FC
4 Ec

6=E6 E�26
6 =F4 2

IV- E69 E�26
6 Ec

6=E6 Fc
4=F4 4
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Table 4.

type H G=K �= L=H \ K cohom
EV-V SU(8)=f�1g E7

7=(SU(8)=f�1g) E7
7=(SU(8)=f�1g) 7

EV-V0 SL(8,R) E7
7=(SU(8)=f�1g) SL(8,R)=SO(8) 7

EV-V00 SU�(8) E7
7=(SU(8)=f�1g) E6

6 �U (1)=Sp(4) 7

EV-V000 SU(4,4) E7
7=(SU(8)=f�1g) SO0(6,6)�SL(2,R)=(SO(6)�SO(6))�SO(2) 7

EV-VI SO�(12)�SU(2) E7
7=(SU(8)=f�1g) E2

6 �U (1)=SU(6)�SU(2)�U (1) 4

EV-VI 0 SO0(6,6)�SL(2,R) E7
7=(SU(8)=f�1g) SU(4,4)=S(U (4)�U (4)) 4

EV-VII E6
6�U (1) E7

7=(SU(8)=f�1g) SU�(8)=Sp(4) 3

EV-VII 0 E2
6�U (1) E7

7=(SU(8)=f�1g) SO�(12)=U (6) 3

EVI-V SU(4,4) E�5
7 =SO0(12)�SU(2) SU(4,4)=S(U (4)�U (4)) 4

EVI-V 0 SU(2,6) E�5
7 =SO0(12)�SU(2) E2

6=SU(6)�SU(2) 4

EVI-VI SO0(12)�SU(2) E�5
7 =SO0(12)�SU(2) E�5

7 =SO0(12)�SU(2) 4

EVI-VI 0 SO�(12)�SL(2,R) E�5
7 =SO0(12)�SU(2) SO�(12)�SL(2,R)=U (6)�SO(2) 4

EVI-VI 00 SO0(4,8)�SU(2) E�5
7 =SO0(12)�SU(2) SO0(4,8)=SO(4)�SO(8) 4

EVI-VII E2
6�U (1) E�5

7 =SO0(12)�SU(2) SU(2,6)=S(U (2)�U (6)) 2

EVI-VII 0 E�14
6 �U (1) E�5

7 =SO0(12)�SU(2) E�14
6 =Spin(10)�U (1) 2

EVII-V SU�(8) E�25
7 =E6�U (1) SU�(8)=Sp(4) 3

EVII-V 0 SU(2,6) E�25
7 =E6�U (1) SO�(12)=SU(6) 3

EVII-VI SO�(12)�SU(2) E�25
7 =E6�U (1) SU(2,6)=S(U (2)�U (6)) 2

EVII-VI 0 SO0(2,10)�SL(2,R) E�25
7 =E6�U (1) E�14

6 =Spin(10)�U (1) 2

EVII-VII E6�U (1) E�25
7 =E6�U (1) E�25

7 =E6�U (1) 3

EVII-VII 0 E�14
6 �U (1) E�25

7 =E6�U (1) SO0(2,10)�SL(2,R)=(SO(2)�SO(10))�SO(2) 3

EVII-VII 00 E�26
6 �U (1) E�25

7 =E6�U (1) E�26
6 �U (1)=F4 2

IV- E71 E7 Ec
7=E7 Ec

7=E7 7

IV- E72 E7
7 Ec

7=E7 SL(8,C)=SU(8) 7

IV- E73 E�5
7 Ec

7=E7 SO(12,C)�SL(2,C)=SO0(12)�SU(2) 7

IV- E74 E�25
7 Ec

7=E7 Ec
6�C�=E6�U (1) 7

IV- E75 SL(8,C) Ec
7=E7 E7

7=SU(8) 7

IV- E76 SO(12,C)�SL(2,C) Ec
7=E7 E�5

7 =SO0(12)�SU(2) 4

IV- E77 Ec
6�C� Ec

7=E7 E�25
7 =E6�U (1) 3
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Table 5.

type H G=K �= L=H \ K cohom
EVIII-VIII SO0(16) E8

8=SO0(16) E8
8=SO0(16) 8

EVIII-VIII 0 SO�(16) E8
8=SO0(16) E7

7�SL(2,R)=SU(8)�SO(2) 4

EVIII-VIII 00 SO0(8,8) E8
8=SO0(16) SO0(8,8)=SO(8)�SO(8) 8

EVIII-IX E�5
7 �Sp(1) E8

8=SO0(16) E�5
7 =SO0(12)�SU(2) 4

EVIII-IX 0 E7
7 �SL(2,R) E8

8=SO0(16) SO�(16)=U (8) 4

EIX-VIII SO�(16) E�24
8 =E7�Sp(1) SO�(16)=U (8) 4

EIX-VIII 0 SO0(4,12) E�24
8 =E7�Sp(1) E�5

7 =SO0(12)�SU(2) 4

EIX-IX E7�Sp(1) E�24
8 =E7�Sp(1) E�24

8 =E7�Sp(1) 4

EIX-IX 0 E�5
7 �Sp(1) E�24

8 =E7�Sp(1) SO0(4,12)=SO(4)�SO(12) 4

EIX-IX 00 E�25
7 �SL(2,R) E�24

8 =E7�Sp(1) E�25
7 �SL(2,R)=E6�U (1)�SO(2) 4

IV E81 E8 Ec
8=E8 Ec

8=E8 8

IV E82 E8
8 Ec

8=E8 SO(16,C)=SO(16) 8

IV E83 E�24
8 Ec

8=E8 Ec
7�SL(2,C)=E7�SU(2) 8

IV E84 SO(16,C) Ec
8=E8 E8

8=SO(16) 8

IV E85 Ec
7�SL(2,C) Ec

8=E8 E�24
8 =E7�SU(2) 4

FI-I Sp(3)�Sp(1) F4
4 =Sp(3)�Sp(1) F4

4 =Sp(3)�Sp(1) 4

FI-I0 Sp(1,2)�Sp(1) F4
4 =Sp(3)�Sp(1) SO0(4,5)=SO(4)�SO(5) 4

FI-I00 Sp(3,R)�SL(2,R) F4
4 =Sp(3)�Sp(1) Sp(3,R)=U (3)�SL(2,R)=SO(2) 4

FI-II SO0(4,5) F4
4 =Sp(3)�Sp(1) Sp(1,2)=Sp(1)�Sp(2) 1

FII-I Sp(1,2)�Sp(1) F�20
4 =Spin(9) SO0(1,8)=SO(1)�SO(8) 1

FII-II Spin(9) F�20
4 =Spin(9) F�20

4 =Spin(9) 1

FII-II 0 S̃O0(1,8) F�20
4 =Spin(9) Sp(1,2)=Sp(1)�Sp(2) 1

IV-F1 F4
4 FC

4 =F4 Sp(3,C)=Sp(3)�SL(2,C)=SU(2) 4

IV-F2 F�20
4 FC

4 =F4 SO(9,C)=SO(9) 4

IV-F3 SO(9,C) FC
4 =F4 F�20

4 =Spin(9) 1

IV-F4 Sp(3,C)�SL(2,C) FC
4 =F4 F4

4 =Sp(3)�Sp(1) 4

G SO(4) G2
2=SO(4) G2

2=SO(4) 2

G0 SL(2,R)�SL(2,R) G2
2=SO(4) SO(4)=SO(2)�SO(2) 2

G00 �(SO(4)) G2
2=SO(4) SL(2,R)=SO(2)�SL(2,R)=SO(2) 2

IV-G1 G2
2 Gc

2=G2 SL(2,C)=SU(2)�SL(2,C)=SU(2) 2

IV-G2 SL(2,C)�SL(2,C) Gc
2=G2 G2

2=SO(4) 2
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